1
|
Ter Ü, Ertürk Gürkan S, Gürkan M, Kunili IE, Aksoy E. Pathological and oxidative stress responses of Mytilus galloprovincialis to Vibrio mediterranei infection: An in vivo challenge. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109889. [PMID: 39250984 DOI: 10.1016/j.fsi.2024.109889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024]
Abstract
Since the identification of Vibrio mediterranei as a causative agent in mass mortalities of pen shells across the Mediterranean, elucidating its pathogenicity, virulence, and interactions with other bivalves has gained importance. While the cellular and immune responses of bivalves to various Vibrio species have been extensively studied, the infectious characteristics of this Vibrio species, particularly in the context of pen shell outbreaks, remain unclear for other bivalves. Therefore, to evaluate its pathogenicity, we investigated the histological and oxidative effects on the Mediterranean mussel (Mytilus galloprovincialis), a key species in aquaculture. Two distinct infection setups were established: one involving the inoculation of seawater with the bacterial isolate and another involving direct injection of the bacteria into the mussels. After a 24-h exposure period, histological evaluations were conducted on the mantle, gill, and digestive gland tissues of the mussels. Additionally, measurements of superoxide dismutase (SOD), catalase (CAT), glutathione-S-transferase (GST), and lipid peroxidation levels were performed in the gill and digestive gland tissues. Oxidative responses were significantly elevated in both infection setups compared to the control group, with the directly injected samples exhibiting the highest oxidative responses (p < 0.05). Histological findings indicated that tissue-specific responses to host-pathogen interactions were consistent under both infection conditions. Notable observations included intense hemocytic infiltration in tissues, epithelial hyperplasia, and vacuolization in the gills, as well as focal necrotic areas in the digestive gland. The findings of this study indicate that V. mediterranei, a relatively novel pathogen, can provoke significant acute immune responses and tissue-level reactions in M. galloprovincialis, a species that is both widely distributed and vital to the food chain. These insights into the potential susceptibility of mussels underscore the need for further comprehensive research and inform the development of effective management strategies.
Collapse
Affiliation(s)
- Ümmügülsüm Ter
- Çanakkale Onsekiz Mart University, Faculty of Science, Department of Biology, Çanakkale, Turkey
| | - Selin Ertürk Gürkan
- Çanakkale Onsekiz Mart University, Faculty of Science, Department of Biology, Çanakkale, Turkey.
| | - Mert Gürkan
- Çanakkale Onsekiz Mart University, Faculty of Science, Department of Biology, Çanakkale, Turkey
| | - Ibrahim Ender Kunili
- Çanakkale Onsekiz Mart University, Faculty of Marine Science and Technology, Department of Fishing and Processing Technology, Çanakkale, Turkey
| | - Emircan Aksoy
- Çanakkale Onsekiz Mart University, Faculty of Science, Department of Biology, Çanakkale, Turkey
| |
Collapse
|
2
|
Golden CD, Zamborain-Mason J, Levis A, Rice BL, Allen LH, Hampel D, Hazen J, Metcalf CJE, Randriamady HJ, Shahab-Ferdows S, Wu SM, Haneuse S. Prevalence of micronutrient deficiencies across diverse environments in rural Madagascar. Front Nutr 2024; 11:1389080. [PMID: 38826583 PMCID: PMC11140575 DOI: 10.3389/fnut.2024.1389080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/18/2024] [Indexed: 06/04/2024] Open
Abstract
It is estimated that billions of people around the world are affected by micronutrient deficiencies. Madagascar is considered to be particularly nutritionally vulnerable, with nearly half of the population stunted, and parts of the country facing emergency, near famine-like conditions (IPC4). Although Madagascar is generally considered among the most undernourished of countries, empirical data in the form of biological samples to validate these claims are extremely limited. Our research drew data from three studies conducted between 2013-2020 and provided comprehensive biomarker profile information for 4,710 individuals from 30 communities in five different ecological regions during at least one time-point. Estimated prevalences of nutrient deficiencies and inflammation across various regions of rural Madagascar were of concern for both sexes and across all ages, with 66.5% of the population estimated to be deficient in zinc, 15.6% depleted in vitamin B12 (3.6% deficient), 11.6% deficient in retinol, and lower levels of iron deficiency (as indicated by 11.7% deficient in ferritin and 2.3% deficient assessed by soluble transferrin receptors). Beyond nutrient status biomarkers, nearly one quarter of the population (24.0%) exhibited chronic inflammation based on high values of α-1-acid glycoprotein, and 12.3% exhibited acute inflammation based on high values of C-reactive protein. There is an 8-fold difference between the lowest and highest regional observed prevalence of vitamin B12 deficiency, a 10-fold difference in vitamin A deficiency (based on retinol), and a 2-fold difference in acute inflammation (CRP) and deficiencies of zinc and iron (based on ferritin), highlighting strong geographical variations in micronutrient deficiencies across Madagascar.
Collapse
Affiliation(s)
- Christopher D. Golden
- Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA, United States
- Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, United States
- Madagascar Health and Environmental Research (MAHERY), Maroantsetra, Madagascar
| | | | - Alexander Levis
- Department of Biostatistics, Harvard TH Chan School of Public Health, Boston, MA, United States
| | - Benjamin L. Rice
- Madagascar Health and Environmental Research (MAHERY), Maroantsetra, Madagascar
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, United States
| | - Lindsay H. Allen
- Western Human Nutrition Research Center, Agricultural Research Service (USDA), Davis, CA, United States
| | - Daniela Hampel
- Western Human Nutrition Research Center, Agricultural Research Service (USDA), Davis, CA, United States
- Department of Nutrition, College of Agricultural and Environmental Sciences, University of California, Davis, Davis, CA, United States
| | - James Hazen
- Catholic Relief Services, Baltimore, MD, United States
| | - C. Jessica E. Metcalf
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, United States
| | - Hervet J. Randriamady
- Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA, United States
- Madagascar Health and Environmental Research (MAHERY), Maroantsetra, Madagascar
| | - Setareh Shahab-Ferdows
- Western Human Nutrition Research Center, Agricultural Research Service (USDA), Davis, CA, United States
| | - Stephanie M. Wu
- Department of Biostatistics, Harvard TH Chan School of Public Health, Boston, MA, United States
| | - Sebastien Haneuse
- Department of Biostatistics, Harvard TH Chan School of Public Health, Boston, MA, United States
| |
Collapse
|
3
|
Randolph HE, Aracena KA, Lin YL, Mu Z, Barreiro LB. Shaping immunity: The influence of natural selection on population immune diversity. Immunol Rev 2024; 323:227-240. [PMID: 38577999 DOI: 10.1111/imr.13329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Humans exhibit considerable variability in their immune responses to the same immune challenges. Such variation is widespread and affects individual and population-level susceptibility to infectious diseases and immune disorders. Although the factors influencing immune response diversity are partially understood, what mechanisms lead to the wide range of immune traits in healthy individuals remain largely unexplained. Here, we discuss the role that natural selection has played in driving phenotypic differences in immune responses across populations and present-day susceptibility to immune-related disorders. Further, we touch on future directions in the field of immunogenomics, highlighting the value of expanding this work to human populations globally, the utility of modeling the immune response as a dynamic process, and the importance of considering the potential polygenic nature of natural selection. Identifying loci acted upon by evolution may further pinpoint variants critically involved in disease etiology, and designing studies to capture these effects will enrich our understanding of the genetic contributions to immunity and immune dysregulation.
Collapse
Affiliation(s)
- Haley E Randolph
- Committee on Genetics, Genomics, and Systems Biology, University of Chicago, Chicago, Illinois, USA
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York, USA
| | | | - Yen-Lung Lin
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Zepeng Mu
- Committee on Genetics, Genomics, and Systems Biology, University of Chicago, Chicago, Illinois, USA
| | - Luis B Barreiro
- Committee on Genetics, Genomics, and Systems Biology, University of Chicago, Chicago, Illinois, USA
- Department of Human Genetics, University of Chicago, Chicago, Illinois, USA
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, Illinois, USA
- Committee on Immunology, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
4
|
Silva GGD, Lopez VM, Vilarinho AC, Datto-Liberato FH, Oliveira CJF, Poulin R, Guillermo-Ferreira R. Vector species richness predicts local mortality rates from Chagas disease. Int J Parasitol 2024; 54:139-145. [PMID: 37944883 DOI: 10.1016/j.ijpara.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 10/13/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023]
Abstract
Vector species richness may drive the prevalence of vector-borne diseases by influencing pathogen transmission rates. The dilution effect hypothesis predicts that higher biodiversity reduces disease prevalence, but with inconclusive evidence. In contrast, the amplification effect hypothesis suggests that higher vector diversity may result in greater disease transmission by increasing and diversifying the transmission pathways. The relationship between vector diversity and pathogen transmission remains unclear and requires further study. Chagas disease is a vector-borne disease most prevalent in Brazil and transmitted by multiple species of insect vectors of the subfamily Triatominae, yet the drivers of spatial variation in its impact on human populations remain unresolved. We tested whether triatomine species richness, latitude, bioclimatic variables, human host population density, and socioeconomic variables predict Chagas disease mortality rates across over 5000 spatial grid cells covering all of Brazil. Results show that species richness of triatomine vectors is a good predictor of mortality rates caused by Chagas disease, which supports the amplification effect hypothesis. Vector richness and the impact of Chagas disease may also be driven by latitudinal components of climate and human socioeconomic factors. We provide evidence that vector diversity is a strong predictor of disease prevalence and give support to the amplification effect hypothesis.
Collapse
Affiliation(s)
- Guilherme Gonzaga da Silva
- Lestes Laboratory, Center of Entomology and Experimental Biology, Federal University of Triangulo Mineiro - UFTM, Uberaba, MG, Brazil; Federal University of Sao Carlos - UFSCar, São Carlos, SP, Brazil
| | - Vinicius Marques Lopez
- Lestes Laboratory, Center of Entomology and Experimental Biology, Federal University of Triangulo Mineiro - UFTM, Uberaba, MG, Brazil; Graduate Program in Entomology, University of Sao Paulo - USP, Ribeirão Preto, SP, Brazil
| | - Ana Carolina Vilarinho
- Federal University of Sao Carlos - UFSCar, São Carlos, SP, Brazil; Health Sciences Institute, Federal University of Triangulo Mineiro - UFTM, Uberaba, MG, Brazil
| | - Felipe H Datto-Liberato
- Lestes Laboratory, Center of Entomology and Experimental Biology, Federal University of Triangulo Mineiro - UFTM, Uberaba, MG, Brazil; Graduate Program in Entomology, University of Sao Paulo - USP, Ribeirão Preto, SP, Brazil
| | - Carlo José Freire Oliveira
- Graduate Program in Tropical Medicine and Infectiology, Department of Natural and Biological Sciences, Federal University of Triangulo Mineiro - UFTM, Uberaba, MG, Brazil
| | - Robert Poulin
- Department of Zoology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Rhainer Guillermo-Ferreira
- Lestes Laboratory, Center of Entomology and Experimental Biology, Federal University of Triangulo Mineiro - UFTM, Uberaba, MG, Brazil; Federal University of Sao Carlos - UFSCar, São Carlos, SP, Brazil; Graduate Program in Entomology, University of Sao Paulo - USP, Ribeirão Preto, SP, Brazil; Graduate Program in Tropical Medicine and Infectiology, Department of Natural and Biological Sciences, Federal University of Triangulo Mineiro - UFTM, Uberaba, MG, Brazil.
| |
Collapse
|
5
|
Aleuy OA, Peacock SJ, Molnár PK, Ruckstuhl KE, Kutz SJ. Local thermal adaptation and local temperature regimes drive the performance of a parasitic helminth under climate change: The case of Marshallagia marshalli from wild ungulates. GLOBAL CHANGE BIOLOGY 2023; 29:6217-6233. [PMID: 37615247 DOI: 10.1111/gcb.16918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/25/2023]
Abstract
Across a species' range, populations are exposed to their local thermal environments, which on an evolutionary scale, may cause adaptative differences among populations. Helminths often have broad geographic ranges and temperature-sensitive life stages but little is known about whether and how local thermal adaptation can influence their response to climate change. We studied the thermal responses of the free-living stages of Marshallagia marshalli, a parasitic nematode of wild ungulates, along a latitudinal gradient. We first determine its distribution in wild sheep species in North America. Then we cultured M. marshalli eggs from different locations at temperatures from 5 to 38°C. We fit performance curves based on the metabolic theory of ecology to determine whether development and mortality showed evidence of local thermal adaptation. We used parameter estimates in life-cycle-based host-parasite models to understand how local thermal responses may influence parasite performance under general and location-specific climate-change projections. We found that M. marshalli has a wide latitudinal and host range, infecting wild sheep species from New Mexico to Yukon. Increases in mortality and development time at higher temperatures were most evident for isolates from northern locations. Accounting for location-specific parasite parameters primarily influenced the magnitude of climate change parasite performance, while accounting for location-specific climates primarily influenced the phenology of parasite performance. Despite differences in development and mortality among M. marshalli populations, when using site-specific climate change projections, there was a similar magnitude of impact on the relative performance of M. marshalli among populations. Climate change is predicted to decrease the expected lifetime reproductive output of M. marshalli in all populations while delaying its seasonal peak by approximately 1 month. Our research suggests that accurate projections of the impacts of climate change on broadly distributed species need to consider local adaptations of organisms together with local temperature profiles and climate projections.
Collapse
Affiliation(s)
- O Alejandro Aleuy
- Department of Biological Sciences, University of Calgary, Alberta, Calgary, Canada
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Alberta, Calgary, Canada
| | - Stephanie J Peacock
- Department of Biological Sciences, University of Calgary, Alberta, Calgary, Canada
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Alberta, Calgary, Canada
| | - Péter K Molnár
- Department of Ecology and Evolutionary Biology, University of Toronto, Ontario, Toronto, Canada
- Department of Biological Sciences, University of Toronto Scarborough, Ontario, Toronto, Canada
| | - Kathreen E Ruckstuhl
- Department of Biological Sciences, University of Calgary, Alberta, Calgary, Canada
| | - Susan J Kutz
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Alberta, Calgary, Canada
| |
Collapse
|
6
|
Yin S, Li N, Xu W, Becker DJ, de Boer WF, Xu C, Mundkur T, Fountain-Jones NM, Li C, Han GZ, Wu Q, Prosser DJ, Cui L, Huang ZYX. Functional traits explain waterbirds' host status, subtype richness, and community-level infection risk for avian influenza. Ecol Lett 2023; 26:1780-1791. [PMID: 37586885 DOI: 10.1111/ele.14294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/17/2023] [Indexed: 08/18/2023]
Abstract
Species functional traits can influence pathogen transmission processes, and consequently affect species' host status, pathogen diversity, and community-level infection risk. We here investigated, for 143 European waterbird species, effects of functional traits on host status and pathogen diversity (subtype richness) for avian influenza virus at species level. We then explored the association between functional diversity and HPAI H5Nx occurrence at the community level for 2016/17 and 2021/22 epidemics in Europe. We found that both host status and subtype richness were shaped by several traits, such as diet guild and dispersal ability, and that the community-weighted means of these traits were also correlated with community-level risk of H5Nx occurrence. Moreover, functional divergence was negatively associated with H5Nx occurrence, indicating that functional diversity can reduce infection risk. Our findings highlight the value of integrating trait-based ecology into the framework of diversity-disease relationship, and provide new insights for HPAI prediction and prevention.
Collapse
Affiliation(s)
- Shenglai Yin
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Ning Li
- Institute of Applied Ecology, Nanjing Xiaozhuang University, Nanjing, China
| | - Wenjie Xu
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Daniel J Becker
- Department of Biology, University of Oklahoma, Norman, Oklahoma, USA
| | - Willem F de Boer
- Wildlife Ecology and Conservation Group, Wageningen University, Wageningen, The Netherlands
| | - Chi Xu
- School of Life Sciences, Nanjing University, Nanjing, China
| | - Taej Mundkur
- Wetlands International, Ede, The Netherlands
- Good Earth Environmental, Arnhem, The Netherlands
| | | | - Chunlin Li
- School of Resources and Environmental Engineering, Anhui University, Hefei, China
| | - Guan-Zhu Han
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Qiang Wu
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Diann J Prosser
- Eastern Ecological Science Center, United States Geological Survey, Laurel, Maryland, USA
| | - Lijuan Cui
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Zheng Y X Huang
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
7
|
Löwenberg-Neto P, Winkelmann S, Verzotto ÁK. Biogeographic regionalization of human infectious diseases in Brazil based on geographically explicit data. Trop Med Int Health 2023; 28:742-752. [PMID: 37433750 DOI: 10.1111/tmi.13914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
OBJECTIVE Biogeographic regionalization represents abstractions of the organisation of life on Earth, and can provide a large-scaled framework for health management and planning. We aimed at determining a biogeographic regionalization for human infectious diseases in Brazil, and at investigating non-mutually exclusive hypotheses predicting the observed regions. METHODS Based on the spatial distributions of 12 infectious diseases with mandatory notification (SINAN database, 2007-2020, n = 15,839), we identified regions through a clustering procedure based on beta-diversity turnover. The analysis was repeated 1000 times by randomly shuffling the rows (0.5° cells) in the original matrix. We evaluated the relative importance of variables using multinomial logistic regression models: contemporary climate (temperature and precipitation), human activity (population density and geographic accessibility), land cover (11 classes), and the full model (all variables). We refined the geographic boundaries of each cluster by polygonising their kernel densities to identify clusters' core zones. RESULTS The two-cluster solution showed the best correspondence between disease ranges and clusters geographic limits. The largest cluster occurred with more density in the central and northeastern regions, while the smaller and complementary cluster occurred in the south and southeastern region. The best model for explaining the regionalization was the full model, supporting the 'complex association hypothesis'. The heatmap showed a NE-S directional display of the cluster's densities, and core zones showed geographic correspondence with tropical + arid (NE) versus temperate (S) climates. CONCLUSION Our findings indicate that there is a discernible latitudinal pattern in the turnover of disease in Brazil, and this phenomenon is associated with an intricate interplay between contemporary climate, population activity, and land cover. This generalised biogeographic pattern may offer the earliest insights into the geographic arrangement of diseases in the country. We suggested that the latitudinal pattern could be adopted as a nationwide framework for geographic vaccine allocation.
Collapse
Affiliation(s)
- Peter Löwenberg-Neto
- Biogeography Lab, Institute for Life and Nature Sciences, Universidade Federal da Integração Latino-Americana, Foz do Iguaçu, Brazil
| | - Stephanie Winkelmann
- Biogeography Lab, Institute for Life and Nature Sciences, Universidade Federal da Integração Latino-Americana, Foz do Iguaçu, Brazil
| | - Ágatha K Verzotto
- Biogeography Lab, Institute for Life and Nature Sciences, Universidade Federal da Integração Latino-Americana, Foz do Iguaçu, Brazil
| |
Collapse
|
8
|
Ivers NA, Jha S. Biogeography, climate, and land use create a mosaic of parasite risk in native bumble bees. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161545. [PMID: 36649773 DOI: 10.1016/j.scitotenv.2023.161545] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/06/2023] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
Host-parasite interactions are crucial to the regulation of host population growth, as they often impact both long-term population stability and ecological functioning. Animal hosts navigate a number of environmental conditions, including local climate, anthropogenic land use, and varying degrees of spatial isolation, all of which can mediate parasitism exposure. Despite this, we know little about the potential for these environmental conditions to impact pathogen prevalence at biogeographic scales, especially for key ecosystem service-providing animals. Bees are essential pollination providers that may be particularly sensitive to biogeography, climate, and land-use as these factors are known to limit bee dispersal and contribute to underlying population genetic variation, which may also impact host-parasite interactions. Importantly, many native bumble bee species have recently shown geographic range contractions, reduced genetic diversity, and increased parasitism rates, highlighting the potential importance of interacting and synergistic stressors. In this study, we incorporate spatially explicit environmental, biogeographic, and land-use data in combination with genetically derived host population data to conduct a large-scale epidemiological assessment of the drivers of pathogen prevalence across >1000 km for a keystone western US pollinator, the bumble bee Bombus vosnesenskii. We found high rates of infection from Crithidia bombi and C. expoekii, which show strong spatial autocorrelation and which were more prevalent in northern latitudes. We also show that land use barriers best explained differences in parasite prevalence and parasite community composition, while precipitation, elevation, and B. vosnesenskii nesting density were important drivers of parasite prevalence. Overall, our results demonstrate that human land use can impact critical host-parasite interactions for native bees at massive spatial scales. Further, our work indicates that disease-related survey and conservation measures should take into account the independent and interacting influences of climate, biogeography, land use, and local population dynamics.
Collapse
Affiliation(s)
- Nicholas A Ivers
- University of Texas at Austin, Dept. Integrative Biology, United States of America.
| | - Shalene Jha
- University of Texas at Austin, Dept. Integrative Biology, United States of America
| |
Collapse
|
9
|
Worldwide transmission and infection risk of mosquito vectors of West Nile, St. Louis encephalitis, Usutu and Japanese encephalitis viruses: a systematic review. Sci Rep 2023; 13:308. [PMID: 36609450 PMCID: PMC9822987 DOI: 10.1038/s41598-022-27236-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/28/2022] [Indexed: 01/07/2023] Open
Abstract
The increasing trend of mosquito-borne pathogens demands more accurate global estimations of infection and transmission risks between mosquitoes. Here, we systematically review field and laboratory studies to assess the natural field infection and experimental laboratory transmission risk in Culex mosquitoes. We studied four worldwide flaviviruses: West Nile, Usutu, Japanese encephalitis, and St. Louis encephalitis, belonging to the Japanese encephalitis Serocomplex (JES). The PRISMA statement was carried out for both approaches. The Transmission-Infection Risk of the diverse mosquito species for the different viruses was estimated through seven variables. We considered 130 and 95 articles for field and experimental approach, respectively. We identified 30 species naturally infected, and 23 species capable to transmit some of the four flaviviruses. For the JES, the highest Transmission-Infection Risk estimate was recorded in Culex quinquefasciatus (North America). The maximum Infection-Transmission Risk values for West Nile was Culex restuans, for Usutu it was Culex pipiens (Europe), for St. Louis encephalitis Culex quinquefasciatus (North America), and for Japanese encephalitis Culex gelidus (Oceania). We conclude that on a worldwide scale, a combination of field and experimental data offers a better way of understanding natural infection and transmission risks between mosquito populations.
Collapse
|
10
|
Reviewing the Past, Present, and Future Risks of Pathogens in Ghana and What This Means for Rethinking Infectious Disease Surveillance for Sub-Saharan Africa. J Trop Med 2022; 2022:4589007. [PMID: 35846072 PMCID: PMC9284326 DOI: 10.1155/2022/4589007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 04/17/2022] [Accepted: 06/15/2022] [Indexed: 11/18/2022] Open
Abstract
The current epidemiological transition makes us wonder how the parallel of infectious diseases (IDs) might be at the end of each passing year. Yet, the surveillance of these IDs continues to focus on high-profile diseases of public health importance without keeping track of the broad spectrum of the IDs we face. Here, we presented the prevalence of the broad spectrum of IDs in Ghana. Data from the annual reports on Gold Coast now Ghana, Global Infectious Diseases and Epidemiology Network (GIDEON), and the District Health Information Management System II (DHIMS2) databases were examined for records of ID prevalence in Ghana. Using the IDs from these databases, the paper assessed the epidemiological transition, pathogen-host interactions, spatiotemporal distribution, transmission routes, and their potential areas of impact in Ghana. The topmost ID recorded in health facilities in Ghana transitioned from yaws in the 1890s to malaria in the 1950s through 2020. We then presented the hosts of a pathogen and the pathogens of a host, the administrative districts where a pathogen was found, and the pathogens found in each district of Ghana. The highest modes of transmission routes were through direct contact for bacteria and airborne or droplet-borne for viral pathogens. From GIDEON, 226 IDs were identified as endemic or potentially endemic in Ghana, with 42% cited in peer-reviewed articles from 2000 to 2020. From the extent of risk of endemic or potentially endemic IDs, Ghana faces a high risk of ID burden that we should be mindful of their changing patterns and should keep track of the state of each of them.
Collapse
|
11
|
Human impact modulates chytrid fungus occurrence in amphibians in the Brazilian Atlantic Forest. Perspect Ecol Conserv 2022. [DOI: 10.1016/j.pecon.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
12
|
Aliaga-Samanez A, Real R, Segura M, Marfil-Daza C, Olivero J. Yellow fever surveillance suggests zoonotic and anthroponotic emergent potential. Commun Biol 2022; 5:530. [PMID: 35654842 PMCID: PMC9163115 DOI: 10.1038/s42003-022-03492-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 05/11/2022] [Indexed: 11/09/2022] Open
Abstract
Yellow fever is transmitted by mosquitoes among human and non-human primates. In the last decades, infections are occurring in areas that had been free from yellow fever for decades, probably as a consequence of the rapid spread of mosquito vectors, and of the virus evolutionary dynamic in which non-human primates are involved. This research is a pathogeographic assessment of where enzootic cycles, based on primate assemblages, could be amplifying the risk of yellow fever infections, in the context of spatial changes shown by the disease since the late 20th century. In South America, the most relevant spread of disease cases affects parts of the Amazon basin and a wide area of southern Brazil, where forest fragmentation could be activating enzootic cycles next to urban areas. In Africa, yellow fever transmission is apparently spreading from the west of the continent, and primates could be contributing to this in savannas around rainforests. Our results are useful for identifying new areas that should be prioritised for vaccination, and suggest the need of deep yellow fever surveillance in primates of South America and Africa.
Collapse
Affiliation(s)
- Alisa Aliaga-Samanez
- Grupo de Biogeografía, Diversidad y Conservación, Departamento de Biología Animal, Facultad de Ciencias, Universidad de Málaga, 29071, Malaga, Spain.
| | - Raimundo Real
- Grupo de Biogeografía, Diversidad y Conservación, Departamento de Biología Animal, Facultad de Ciencias, Universidad de Málaga, 29071, Malaga, Spain
- Instituto IBYDA, Centro de Experimentación Grice-Hutchinson, Malaga, Spain
| | - Marina Segura
- Centro de Vacunación Internacional, Ministerio de Sanidad, Consumo y Bienestar Social, Estación Marítima, Recinto del Puerto, Muelle 3, 29001, Malaga, Spain
| | - Carlos Marfil-Daza
- Grupo de Biogeografía, Diversidad y Conservación, Departamento de Biología Animal, Facultad de Ciencias, Universidad de Málaga, 29071, Malaga, Spain
| | - Jesús Olivero
- Grupo de Biogeografía, Diversidad y Conservación, Departamento de Biología Animal, Facultad de Ciencias, Universidad de Málaga, 29071, Malaga, Spain
- Instituto IBYDA, Centro de Experimentación Grice-Hutchinson, Malaga, Spain
| |
Collapse
|
13
|
Sarabeev V, Balbuena JA, Desdevises Y, Morand S. Host-parasite relationships in invasive species: macroecological framework. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02821-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Culhane K, Sollmann R, White AM, Tarbill GL, Cooper SD, Young HS. Small mammal responses to fire severity mediated by vegetation characteristics and species traits. Ecol Evol 2022; 12:e8918. [PMID: 35600681 PMCID: PMC9120878 DOI: 10.1002/ece3.8918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/06/2022] [Accepted: 04/15/2022] [Indexed: 11/10/2022] Open
Abstract
The frequency of large, high‐severity “mega‐fires” has increased in recent decades, with numerous consequences for forest ecosystems. In particular, small mammal communities are vulnerable to post‐fire shifts in resource availability and play critical roles in forest ecosystems. Inconsistencies in previous observations of small mammal community responses to fire severity underscore the importance of examining mechanisms regulating the effects of fire severity on post‐fire recovery of small mammal communities. We compared small mammal abundance, diversity, and community structure among habitats that burned at different severities, and used vegetation characteristics and small mammal functional traits to predict community responses to fire severity three years after one mega‐fire in the Sierra Nevada, California. Using a model‐based fourth‐corner analysis, we examined how interactions between vegetation variables and small mammal traits associated with their resource use were associated with post‐fire small mammal community structure among fire severity categories. Small mammal abundance was similar across fire severity categories, but diversity decreased and community structure shifted as fire severity increased. Differences in small mammal communities were large only between unburned and high‐severity sites. Three highly correlated fire‐dependent vegetation variables affected by fire and the volume of soft coarse woody debris were associated with small mammal community structures. Furthermore, we found that interactions between vegetation variables and three small mammal traits (feeding guild, primary foraging mode, and primary nesting habit) predicted community structure across fire severity categories. We concluded that resource use was important in regulating small mammal recovery after the fire because vegetation provided required resources to small mammals as determined by their functional traits. Given the mechanistic nature of our analyses, these results may be applicable to other fire‐prone forest systems, although it will be important to conduct studies across large biogeographic regions and over long post‐fire time periods to assess generality.
Collapse
Affiliation(s)
- Kathryn Culhane
- Department of Ecology, Evolution, and Marine Biology University of California Santa Barbara California USA
| | - Rahel Sollmann
- Department of Wildlife, Fish, and Conservation Biology University of California Davis California USA
- Department of Ecological Dynamics Leibniz Institute for Zoo and Wildlife Research Berlin Germany
| | - Angela M. White
- Pacific Southwest Research Station USDA Forest Service Davis California USA
| | - Gina L. Tarbill
- Department of Wildlife, Fish, and Conservation Biology University of California Davis California USA
| | - Scott D. Cooper
- Department of Ecology, Evolution, and Marine Biology University of California Santa Barbara California USA
| | - Hillary S. Young
- Department of Ecology, Evolution, and Marine Biology University of California Santa Barbara California USA
| |
Collapse
|
15
|
Heffernan KS, Samonds KE, Godfrey LR, Raharison JL, Ranaivoarisoa JF, Irwin MT. Diademed sifakas (Propithecus diadema) in intact and degraded forest habitat at Tsinjoarivo, Madagascar, show high reproductive success and no evidence that dental senescence or rainfall affects reproductive output. Folia Primatol (Basel) 2022. [DOI: 10.1163/14219980-20210403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
Sifakas (genus Propithecus) diverge from other lemurs in their strategy to contend with Madagascar’s highly seasonal climate and maximize reproductive success: they have long lifetimes (presumably to wait out unfavorable times) and extreme dental precocity (to allow weanlings to effectively process tough foods and thereby relieve energetic stress on mothers). However, as sifakas age, dental senescence can contribute to reproductive failure, especially when coupled with unfavorable weather conditions (as shown by King et al., 2005 for P. edwardsi at Ranomafana). To extend the effective life of the teeth, compensatory blades maintain functionality for the female sifaka, but wear may eventually have consequences on infant survival in certain climatic scenarios. We investigate the impacts of climate, age, and dental senescence on the reproduction of another sifaka, Propithecus diadema, in fragmented and intact habitats of Tsinjoarivo, Madagascar. We documented birth and infant survival between 2002 and 2017 across twelve groups, including 73 births, and we used 77 dental casts representing 54 adults to estimate age when exact age was not known. We report that sifakas in Tsinjoarivo do not conform to the expectations that link advanced age with dental and reproductive senescence. Propithecus diadema at Tsinjoarivo show slower tooth wear, higher reproductive output and higher infant survival compared to congeners. Likelihood of birth and infant mortality do not correlate with intrinsic (mother’s age, tooth wear) or extrinsic (rainfall or habitat type) stressors. However, the small number of years without births or with infant deaths limits statistical power. At the local level, this study suggests that the long-term viability of Propithecus diadema at Tsinjoarivo is promising and reproductive output is high, even in disturbed fragments where nutrient intakes are reduced. Further research is needed to contextualize and understand these differences among sites and regions within Madagascar and avoid over-generalizing from single study sites.
Collapse
Affiliation(s)
- Katie S. Heffernan
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115, USA
- Department of Natural Sciences & Mathematics, Richard Bland College, Petersburg, VA 23805, USA
| | - Karen E. Samonds
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115, USA
| | - Laurie R. Godfrey
- Department of Anthropology, University of Massachusetts, Amherst, MA 01003, USA
| | | | - Jean Freddy Ranaivoarisoa
- Anthropobiologie et Développement Durable, Faculté des Sciences, Université d’Antananarivo, Madagascar
| | - Mitchell T. Irwin
- Department of Anthropology, Northern Illinois University, DeKalb, IL 60115, USA
| |
Collapse
|
16
|
Voinson M, Nunn CL, Goldberg A. Primate malarias as a model for cross-species parasite transmission. eLife 2022; 11:e69628. [PMID: 35086643 PMCID: PMC8798051 DOI: 10.7554/elife.69628] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 01/14/2022] [Indexed: 12/16/2022] Open
Abstract
Parasites regularly switch into new host species, representing a disease burden and conservation risk to the hosts. The distribution of these parasites also gives insight into characteristics of ecological networks and genetic mechanisms of host-parasite interactions. Some parasites are shared across many species, whereas others tend to be restricted to hosts from a single species. Understanding the mechanisms producing this distribution of host specificity can enable more effective interventions and potentially identify genetic targets for vaccines or therapies. As ecological connections between human and local animal populations increase, the risk to human and wildlife health from novel parasites also increases. Which of these parasites will fizzle out and which have the potential to become widespread in humans? We consider the case of primate malarias, caused by Plasmodium parasites, to investigate the interacting ecological and evolutionary mechanisms that put human and nonhuman primates at risk for infection. Plasmodium host switching from nonhuman primates to humans led to ancient introductions of the most common malaria-causing agents in humans today, and new parasite switching is a growing threat, especially in Asia and South America. Based on a wild host-Plasmodium occurrence database, we highlight geographic areas of concern and potential areas to target further sampling. We also discuss methodological developments that will facilitate clinical and field-based interventions to improve human and wildlife health based on this eco-evolutionary perspective.
Collapse
Affiliation(s)
- Marina Voinson
- Department of Evolutionary Anthropology, Duke UniversityDurhamUnited States
| | - Charles L Nunn
- Department of Evolutionary Anthropology, Duke UniversityDurhamUnited States
- Duke Global Health, Duke UniversityDurhamUnited States
| | - Amy Goldberg
- Department of Evolutionary Anthropology, Duke UniversityDurhamUnited States
| |
Collapse
|
17
|
Farrell MJ, Elmasri M, Stephens D, Davies TJ. Predicting missing links in global host‐parasite networks. J Anim Ecol 2022; 91:715-726. [DOI: 10.1111/1365-2656.13666] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 12/28/2021] [Indexed: 12/01/2022]
Affiliation(s)
- Maxwell J. Farrell
- Department of Biology McGill University
- Ecology & Evolutionary Biology Department University of Toronto
- Center for the Ecology of Infectious Diseases University of Georgia
| | | | - David Stephens
- Department of Mathematics & Statistics McGill University
| | - T. Jonathan Davies
- Botany, Forest & Conservation Sciences University of British Columbia
- African Centre for DNA Barcoding University of Johannesburg
| |
Collapse
|
18
|
Albery GF, Becker DJ, Brierley L, Brook CE, Christofferson RC, Cohen LE, Dallas TA, Eskew EA, Fagre A, Farrell MJ, Glennon E, Guth S, Joseph MB, Mollentze N, Neely BA, Poisot T, Rasmussen AL, Ryan SJ, Seifert S, Sjodin AR, Sorrell EM, Carlson CJ. The science of the host-virus network. Nat Microbiol 2021; 6:1483-1492. [PMID: 34819645 DOI: 10.1038/s41564-021-00999-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 10/18/2021] [Indexed: 01/21/2023]
Abstract
Better methods to predict and prevent the emergence of zoonotic viruses could support future efforts to reduce the risk of epidemics. We propose a network science framework for understanding and predicting human and animal susceptibility to viral infections. Related approaches have so far helped to identify basic biological rules that govern cross-species transmission and structure the global virome. We highlight ways to make modelling both accurate and actionable, and discuss the barriers that prevent researchers from translating viral ecology into public health policies that could prevent future pandemics.
Collapse
Affiliation(s)
- Gregory F Albery
- Department of Biology, Georgetown University, Washington DC, USA.
| | - Daniel J Becker
- Department of Biology, University of Oklahoma, Norman, OK, USA
| | - Liam Brierley
- Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Cara E Brook
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | | | - Lily E Cohen
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tad A Dallas
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Evan A Eskew
- Department of Biology, Pacific Lutheran University, Tacoma, WA, USA
| | - Anna Fagre
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Maxwell J Farrell
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Emma Glennon
- Disease Dynamics Unit, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Sarah Guth
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Maxwell B Joseph
- Earth Lab, Cooperative Institute for Research in Environmental Science, University of Colorado Boulder, Boulder, CO, USA
| | - Nardus Mollentze
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK.,MRC - University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Benjamin A Neely
- National Institute of Standards and Technology, Charleston, SC, USA
| | - Timothée Poisot
- Québec Centre for Biodiversity Sciences, Montréal, Québec, Canada.,Département de Sciences Biologiques, Université de Montréal, Montréal, Québec, Canada
| | - Angela L Rasmussen
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.,Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Sadie J Ryan
- Department of Geography, University of Florida, Gainesville, FL, USA.,Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA.,School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Stephanie Seifert
- Paul G. Allen School for Global Health, Washington State University, Pullman, WA, USA
| | - Anna R Sjodin
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA
| | - Erin M Sorrell
- Center for Global Health Science and Security, Georgetown University Medical Center, Washington, DC, USA.,Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC, USA
| | - Colin J Carlson
- Center for Global Health Science and Security, Georgetown University Medical Center, Washington, DC, USA. .,Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC, USA.
| |
Collapse
|
19
|
Research on helminths from Mexican amphibians: gaps, trends, and biases. J Helminthol 2021; 95:e67. [PMID: 34802480 DOI: 10.1017/s0022149x21000614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We present a taxonomic, spatial, and thematic overview of the current state of knowledge on helminth parasites of Mexican amphibians. Sixty-six host species have been studied so far, representing 17.5% of the amphibian species distributed in Mexico. A total of 139 nominal species of helminths - 68 platyhelminths, 62 nematodes, three acanthocephalans, three annelids (hirudineans), and three arthropods (pentastomids) - have been recorded parasitizing these hosts. Most taxa found in larval stages have not been identified at the species level. The gastrointestinal nematode Aplectana itzocanensis exhibits the broadest host range, while the bladder fluke Gorgoderina attenuata and A. itzocanensis show the widest geographic distribution. Our analysis of helminthological studies evidenced gaps and biases on research efforts that have been devoted to relatively few host species, regions, and approaches. Most helminthological records come from two species, the cane toad Rhinella marina and the Montezuma's frog Lithobates montezumae, and most studies have focused on describing the helminth fauna of a host species in a particular location or on the description of new helminth species. The highest proportion of records corresponds to the Veracruzan biogeographic province, and helminth richness is significantly correlated with host richness and with total amphibian richness by biogeographic province. Only three provinces (Yucatan Peninsula, Pacific Lowlands, and Baja Californian) have positive, yet still low helminth species discovery effort. Based on our findings, we recommend pursuing research approaches unexplored in Mexico and we provide guidelines to improve research on helminths parasitizing amphibians.
Collapse
|
20
|
Huang S, Farrell M, Stephens PR. Infectious disease macroecology: parasite diversity and dynamics across the globe. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200350. [PMID: 34538145 PMCID: PMC8450632 DOI: 10.1098/rstb.2020.0350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2021] [Indexed: 11/12/2022] Open
Affiliation(s)
- Shan Huang
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt am Main, Germany
| | - Maxwell Farrell
- Ecology and Evolutionary Biology, University Toronto, Toronto, Ontario, Canada
| | - Patrick R. Stephens
- Odum School of Ecology and Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA, USA
| |
Collapse
|
21
|
Stephens PR, Gottdenker N, Schatz AM, Schmidt JP, Drake JM. Characteristics of the 100 largest modern zoonotic disease outbreaks. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200535. [PMID: 34538141 PMCID: PMC8450623 DOI: 10.1098/rstb.2020.0535] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2021] [Indexed: 12/19/2022] Open
Abstract
Zoonotic disease outbreaks are an important threat to human health and numerous drivers have been recognized as contributing to their increasing frequency. Identifying and quantifying relationships between drivers of zoonotic disease outbreaks and outbreak severity is critical to developing targeted zoonotic disease surveillance and outbreak prevention strategies. However, quantitative studies of outbreak drivers on a global scale are lacking. Attributes of countries such as press freedom, surveillance capabilities and latitude also bias global outbreak data. To illustrate these issues, we review the characteristics of the 100 largest outbreaks in a global dataset (n = 4463 bacterial and viral zoonotic outbreaks), and compare them with 200 randomly chosen background controls. Large outbreaks tended to have more drivers than background outbreaks and were related to large-scale environmental and demographic factors such as changes in vector abundance, human population density, unusual weather conditions and water contamination. Pathogens of large outbreaks were more likely to be viral and vector-borne than background outbreaks. Overall, our case study shows that the characteristics of large zoonotic outbreaks with thousands to millions of cases differ consistently from those of more typical outbreaks. We also discuss the limitations of our work, hoping to pave the way for more comprehensive future studies. This article is part of the theme issue 'Infectious disease macroecology: parasite diversity and dynamics across the globe'.
Collapse
Affiliation(s)
- Patrick R. Stephens
- Odum School of Ecology and Center for the Ecology of Infectious Diseases, University of Georgia, Athens, 30602 GA, USA
| | - N. Gottdenker
- Odum School of Ecology and Center for the Ecology of Infectious Diseases, University of Georgia, Athens, 30602 GA, USA
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, 30602 GA, USA
| | - A. M. Schatz
- Odum School of Ecology and Center for the Ecology of Infectious Diseases, University of Georgia, Athens, 30602 GA, USA
| | - J. P. Schmidt
- Odum School of Ecology and Center for the Ecology of Infectious Diseases, University of Georgia, Athens, 30602 GA, USA
| | - John M. Drake
- Odum School of Ecology and Center for the Ecology of Infectious Diseases, University of Georgia, Athens, 30602 GA, USA
| |
Collapse
|
22
|
Poulin R. Functional biogeography of parasite traits: hypotheses and evidence. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200365. [PMID: 34538149 PMCID: PMC8450621 DOI: 10.1098/rstb.2020.0365] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Functional biogeography, or the study of trait-based distributional patterns, not only complements our understanding of spatial patterns in biodiversity, but also sheds light on the underlying processes generating them. In parallel with the well-studied latitudinal diversity gradient, decades-old ecogeographical rules also postulate latitudinal variation in species traits. Notably, species in the tropics are predicted to have smaller body sizes (Bergmann's rule), narrower niches (MacArthur's rule) and smaller geographical ranges (Rapoport's rule) than their counterparts at higher latitudes. Although originally proposed for free-living organisms, these rules have been extended to parasitic organisms as well. In this review, I discuss the mechanistic hypotheses most likely to explain latitudinal gradients in parasite traits, and assess the empirical evidence obtained from comparative studies testing the above three rules as well as latitudinal gradients in other parasite traits. Overall, there is only weak empirical support for latitudinal gradients in any parasite trait, with little consistency among comparative analyses. The most parsimonious explanation for the existence of geographical patterns in parasite traits is that they are primarily host-driven, i.e. ecological traits of parasites track those of their hosts, with a direct influence of bioclimatic factors playing a secondary role. Thus, geographical patterns in parasite traits probably emerge as epiphenomena of parallel patterns in their hosts. This article is part of the theme issue ‘Infectious disease macroecology: parasite diversity and dynamics across the globe’.
Collapse
Affiliation(s)
- Robert Poulin
- Department of Zoology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| |
Collapse
|
23
|
Martins PM, Poulin R, Gonçalves-Souza T. Drivers of parasite β-diversity among anuran hosts depend on scale, realm and parasite group. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200367. [PMID: 34538138 DOI: 10.1098/rstb.2020.0367] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
A robust understanding of what drives parasite β-diversity is an essential step towards explaining what limits pathogens' geographical spread. We used a novel global dataset (latitude -39.8 to 61.05 and longitude -117.84 to 151.49) on helminths of anurans to investigate how the relative roles of climate, host composition and spatial distance to parasite β-diversity vary with spatial scale (global, Nearctic and Neotropical), parasite group (nematodes and trematodes) and host taxonomic subset (family). We found that spatial distance is the most important driver of parasite β-diversity at the global scale. Additionally, we showed that the relative effects of climate concerning distance increase at the regional scale when compared with the global scale and that trematodes are generally more responsive to climate than nematodes. Unlike previous studies done at the regional scale, we did not find an effect of host composition on parasite β-diversity. Our study presents a new contribution to parasite macroecological theory, evidencing spatial and taxonomic contingencies of parasite β-diversity patterns, which are related to the zoogeographical realm and host taxonomic subset, respectively. This article is part of the theme issue 'Infectious disease macroecology: parasite diversity and dynamics across the globe'.
Collapse
Affiliation(s)
- Paulo Mateus Martins
- Programa de Pós-Graduação em Etnobiologia e Conservação da Natureza, Universidade Federal Rural de Pernambuco (UFRPE), Recife, Pernambuco, Brazil.,Laboratório de Síntese Ecológica e Conservação da Biodiversidade [Ecological Synthesis and Biodiversity Conservation Lab], Departamento de Biologia, Universidade Federal Rural de Pernambuco (UFRPE), Recife, Pernambuco, Brazil
| | - Robert Poulin
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Thiago Gonçalves-Souza
- Laboratório de Síntese Ecológica e Conservação da Biodiversidade [Ecological Synthesis and Biodiversity Conservation Lab], Departamento de Biologia, Universidade Federal Rural de Pernambuco (UFRPE), Recife, Pernambuco, Brazil
| |
Collapse
|
24
|
Gougherty AV, Davies TJ. Host phylogenetic diversity predicts the global extent and composition of tree pests. Ecol Lett 2021; 25:101-112. [PMID: 34719086 DOI: 10.1111/ele.13908] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/10/2021] [Accepted: 09/15/2021] [Indexed: 10/19/2022]
Abstract
Tree pests cause billions of dollars of damage annually; yet, we know little about what limits their regional composition and distribution. Here, we model the co-occurrence of 4510 pests and 981 tree host genera spread across 233 countries. We show the composition of tree pests is primarily driven by the phylogenetic composition of host trees, whereas effects of climate and geography tend to be more minor. Pests that utilise many hosts tend to be more widespread; however, most pests do not fill the geographic range of their hosts-indicating that many pests could expand their extents if able to overcome barriers limiting their current distribution. Our results suggest that the establishment of pests in new regions may be largely dictated by the presence of suitable host trees, but more work is needed to fully understand the influences climate has on the distributions of individual pest species.
Collapse
Affiliation(s)
- Andrew V Gougherty
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - T Jonathan Davies
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Forest & Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
25
|
Predicting the Geographic Range of an Invasive Livestock Disease across the Contiguous USA under Current and Future Climate Conditions. CLIMATE 2021. [DOI: 10.3390/cli9110159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Vesicular stomatitis (VS) is the most common vesicular livestock disease in North America. Transmitted by direct contact and by several biting insect species, this disease results in quarantines and animal movement restrictions in horses, cattle and swine. As changes in climate drive shifts in geographic distributions of vectors and the viruses they transmit, there is considerable need to improve understanding of relationships among environmental drivers and patterns of disease occurrence. Multidisciplinary approaches integrating pathology, ecology, climatology, and biogeophysics are increasingly relied upon to disentangle complex relationships governing disease. We used a big data model integration approach combined with machine learning to estimate the potential geographic range of VS across the continental United States (CONUS) under long-term mean climate conditions over the past 30 years. The current extent of VS is confined to the western portion of the US and is related to summer and winter precipitation, winter maximum temperature, elevation, fall vegetation biomass, horse density, and proximity to water. Comparison with a climate-only model illustrates the importance of current processes-based parameters and identifies regions where uncertainty is likely to be greatest if mechanistic processes change. We then forecast shifts in the range of VS using climate change projections selected from CMIP5 climate models that most realistically simulate seasonal temperature and precipitation. Climate change scenarios that altered climatic conditions resulted in greater changes to potential range of VS, generally had non-uniform impacts in core areas of the current potential range of VS and expanded the range north and east. We expect that the heterogeneous impacts of climate change across the CONUS will be exacerbated with additional changes in land use and land cover affecting biodiversity and hydrological cycles that are connected to the ecology of insect vectors involved in VS transmission.
Collapse
|
26
|
Doherty JF, Chai X, Cope LE, de Angeli Dutra D, Milotic M, Ni S, Park E, Filion A. The rise of big data in disease ecology. Trends Parasitol 2021; 37:1034-1037. [PMID: 34602364 DOI: 10.1016/j.pt.2021.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/03/2021] [Accepted: 09/08/2021] [Indexed: 10/20/2022]
Abstract
Big data have become readily available to explore patterns in large-scale disease ecology. However, the rate at which these public databases are exploited remains unknown. We highlight trends in big data usage in disease ecology during the past decade and encourage researchers to integrate big data into their study framework.
Collapse
Affiliation(s)
| | - Xuhong Chai
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Laurie E Cope
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | | | - Marin Milotic
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Steven Ni
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Eunji Park
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Antoine Filion
- Department of Zoology, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
27
|
The ecology of zoonotic parasites in the Carnivora. Trends Parasitol 2021; 37:1096-1110. [PMID: 34544647 DOI: 10.1016/j.pt.2021.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 01/08/2023]
Abstract
The order Carnivora includes over 300 species that vary many orders of magnitude in size and inhabit all major biomes, from tropical rainforests to polar seas. The high diversity of carnivore parasites represents a source of potential emerging diseases of humans. Zoonotic risk from this group may be driven in part by exceptionally high functional diversity of host species in behavioral, physiological, and ecological traits. We review global macroecological patterns of zoonotic parasites within carnivores, and explore the traits of species that serve as hosts of zoonotic parasites. We synthesize theoretical and empirical research and suggest future work on the roles of carnivores as biotic multipliers, regulators, and sentinels of zoonotic disease as timely research frontiers.
Collapse
|
28
|
Johnson PT, Haas SE. Why do parasites exhibit reverse latitudinal diversity gradients? Testing the roles of host diversity, habitat and climate. GLOBAL ECOLOGY AND BIOGEOGRAPHY : A JOURNAL OF MACROECOLOGY 2021; 30:1810-1821. [PMID: 34539245 PMCID: PMC8447859 DOI: 10.1111/geb.13347] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 05/24/2021] [Indexed: 06/13/2023]
Abstract
AIM The latitudinal diversity gradient (LDG) - in which species richness decreases from the equator toward the poles - is among the most fundamental distributional patterns in ecology. Despite the expectation that the diversity of parasites tracks that of their hosts, available evidence suggests that many parasites exhibit reverse latitudinal gradients or no pattern, yet the rarity of large-scale datasets on host-parasite interactions calls into question the robustness of such trends. Here, we collected parasitological data from a host group of conservation importance - lentic-breeding amphibians - to characterize the form and direction of relationships among latitude, parasite richness, and parasite load. LOCATION The contiguous USA. TIME PERIOD 2000 to 2014. MAJOR TAXA STUDIED Lentic-breeding frogs and toads and their helminth parasites. METHODS We collected information on parasite richness and infection load for 846 amphibian populations representing 31 species. We combined these data with environmental and biological data to test for LDGs and potential mechanisms. RESULTS Both parasite richness and abundance increased across 20 degrees of latitude - a reverse LDG. For parasite richness, this pattern was partially explained by latitudinal increases in wetland area, landcover diversity, and the richness of waterbirds - which function as definitive hosts for many amphibian parasites. Host body size also correlated positively with latitude and helminth richness, potentially reflecting increased habitat availability, greater host longevity, or a persistent phylogenetic signal. Parasite abundance associated positively with wetland area and landcover diversity, but negatively with amphibian taxonomic richness. Longitude exhibited non-linear relationships with parasite abundance and richness, which we suggest stem from large-scale variation in host availability (e.g., migratory bird flyways). MAIN CONCLUSIONS With growing interest in the distribution of parasites and pathogens, these results highlight the importance of inverse latitudinal gradients while emphasizing the explanatory influence of host body size, habitat availability, and host diversity.
Collapse
Affiliation(s)
| | - Sarah E. Haas
- Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
- Current address: Texas Parks & Wildlife Department, Inland Fisheries Division, Austin, TX, USA
| |
Collapse
|
29
|
Doherty JF, Filion A, Bennett J, Raj Bhattarai U, Chai X, de Angeli Dutra D, Donlon E, Jorge F, Milotic M, Park E, Sabadel AJM, Thomas LJ, Poulin R. The people vs science: can passively crowdsourced internet data shed light on host-parasite interactions? Parasitology 2021; 148:1313-1319. [PMID: 34103103 PMCID: PMC11010187 DOI: 10.1017/s0031182021000962] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/01/2021] [Accepted: 06/04/2021] [Indexed: 11/07/2022]
Abstract
Every internet search query made out of curiosity by anyone who observed something in nature, as well as every photo uploaded to the internet, constitutes a data point of potential use to scientists. Researchers have now begun to exploit the vast online data accumulated through passive crowdsourcing for studies in ecology and epidemiology. Here, we demonstrate the usefulness of iParasitology, i.e. the use of internet data for tests of parasitological hypotheses, using hairworms (phylum Nematomorpha) as examples. These large worms are easily noticeable by people in general, and thus likely to generate interest on the internet. First, we show that internet search queries (collated with Google Trends) and photos uploaded to the internet (specifically, to the iNaturalist platform) point to parts of North America with many sightings of hairworms by the public, but few to no records in the scientific literature. Second, we demonstrate that internet searches predict seasonal peaks in hairworm abundance that accurately match scientific data. Finally, photos uploaded to the internet by non-scientists can provide reliable data on the host taxa that hairworms most frequently parasitize, and also identify hosts that appear to have been neglected by scientific studies. Our findings suggest that for any parasite group likely to be noticeable by non-scientists, information accumulating through internet search activity, photo uploads, social media or any other format available online, represents a valuable source of data that can complement traditional scientific data sources in parasitology.
Collapse
Affiliation(s)
| | - Antoine Filion
- Department of Zoology, University of Otago, P.O. Box 56, Dunedin, New Zealand
| | - Jerusha Bennett
- Department of Zoology, University of Otago, P.O. Box 56, Dunedin, New Zealand
| | | | - Xuhong Chai
- Department of Zoology, University of Otago, P.O. Box 56, Dunedin, New Zealand
| | | | - Erica Donlon
- Department of Zoology, University of Otago, P.O. Box 56, Dunedin, New Zealand
| | - Fátima Jorge
- Department of Zoology, University of Otago, P.O. Box 56, Dunedin, New Zealand
| | - Marin Milotic
- Department of Zoology, University of Otago, P.O. Box 56, Dunedin, New Zealand
| | - Eunji Park
- Department of Zoology, University of Otago, P.O. Box 56, Dunedin, New Zealand
| | | | - Leighton J. Thomas
- Department of Zoology, University of Otago, P.O. Box 56, Dunedin, New Zealand
| | - Robert Poulin
- Department of Zoology, University of Otago, P.O. Box 56, Dunedin, New Zealand
| |
Collapse
|
30
|
The rise of ecological parasitology: twelve landmark advances that changed its history. Int J Parasitol 2021; 51:1073-1084. [PMID: 34390744 DOI: 10.1016/j.ijpara.2021.07.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/29/2021] [Accepted: 07/07/2021] [Indexed: 11/23/2022]
Abstract
In the five decades since the first publication of the International Journal for Parasitology, ecological parasitology has grown from modest beginnings to become a modern discipline with a strong theoretical foundation, a diverse toolkit, and a multidisciplinary approach. In this review, I highlight 12 advances in the field that have spurred its growth over the past 50 years. Where relevant, I identify pivotal contributions that have altered the course of research, as well as the influence of developments in other fields such as mainstream ecology and molecular biology. The 12 key advances discussed are in areas including parasite population dynamics and community assembly, the regulation of host population abundance and food web structure, parasites as agents of natural selection, the impacts of biodiversity and anthropogenic changes on host-parasite interactions, the biogeography of parasite diversity, and the evolutionary genetics of parasites. I conclude by identifying some challenges and opportunities lying ahead, which need to be met for the future growth of ecological research on host-parasite interactions.
Collapse
|
31
|
The Patterns and Causes of Dermatitis in Terrestrial and Semi-Aquatic Mammalian Wildlife. Animals (Basel) 2021; 11:ani11061691. [PMID: 34204062 PMCID: PMC8228222 DOI: 10.3390/ani11061691] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/03/2021] [Indexed: 12/26/2022] Open
Abstract
Causative disease and stress agents which manifest as dermatitis in mammals have varying effects on individual animals, from benign irritation and inflammation, to causing morbidity and even mortality. Bacteria, viruses and ectoparasites are all potential causes of dermatitis, and it can be exacerbated by various environmental, genetic and social factors. Furthermore, it is uncertain whether dermatitis is more likely to manifest in already-vulnerable wildlife species. Here, we systematically review the literature for reports of dermatitis in terrestrial and semi-aquatic wild mammalian species, with the goal of determining the biogeographical scale of dermatitis reports, the causes of dermatitis, and whether manifestation of dermatitis is reported more commonly in certain wildlife species or their captivity status (i.e., free-living, in captivity or in a laboratory). We reveal biases in the reporting of dermatitis by a biogeographic realm, with 55% of cases reported in the Nearctic, and towards particular orders of mammals, namely Artiodactyla and Carnivora. Overall, free-living wildlife is almost twice as likely to be reported as having dermatitis than individuals in captivity and six times more likely than individuals in laboratories, which we interpret as owing to exposure to a broader spectrum of parasites in free-ranging individuals, and potential reporting bias in captive individuals. Notably, dermatitis was reported in 23 threatened species, with some species more likely than others to be reported exhibiting clinical signs of dermatitis resulting from underlying health problems. We also find that threatened species are more likely to be reported as having dermatitis in captivity, particularly outside of their endemic home range. This review highlights diverse patterns of dermatological disease causes in captive and free-ranging wildlife, conditions under which they are more likely to be documented, and the need for cross-disciplinary research to ascertain (and so better manage) the varied causes.
Collapse
|
32
|
Naldoni J, Okamura B, Hartikainen H, Corrêa LL, Adriano EA. Broad but restricted detection of malacosporeans in a Neotropical cradle of diversification. Parasitology 2021; 148:511-518. [PMID: 33298205 PMCID: PMC10950377 DOI: 10.1017/s0031182020002322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 11/07/2022]
Abstract
This study undertook the first investigation of malacosporean infections in Neotropical fish. We used polymerase chain reaction detection with a primer set generally targeting known malacosporeans to assay for infection in the kidney of 146 fish in 21 species belonging to 12 families collected from two areas in the Amazon Basin. Infections were found in 13 fish variously belonging to seven species in six families and included the first identification of a malacosporean infection in cartilaginous fish (a freshwater stingray). Based on ssrDNA, all infections represented a single Buddenbrockia species (Buddenbrockia sp. E) that demonstrates an exceptionally broad range of fish species infected, and countered our expectations of high Neotropical malacosporean diversity. Infections were characterized at varying and often high prevalences in fish species but sample sizes were small. Ascertaining whether highly divergent malacosporeans have not been detected by current primers, and more comprehensive sampling may reveal whether malacosporeans are truly as species poor in the Amazon Basin as present data suggest. Our results prompt speculations about evolutionary scenarios including introduction via marine incursions and patterns of host use over time.
Collapse
Affiliation(s)
- Juliana Naldoni
- Departamento de Ciências Biológicas, Universidade Federal de São Paulo (UNIFESP), Diadema, SP, Brazil
| | - Beth Okamura
- Department of Life Sciences, Natural History Museum, Cromwell Road, LondonSW7 5BD, UK
| | - Hanna Hartikainen
- School of Life Sciences, University of Nottingham, University Park, NottinghamNG7 2RD, UK
| | - Lincoln L. Corrêa
- Instituto de Ciências e Tecnologia das Águas, Universidade Federal do Oeste do Pará (UFOPA), Santarém, PA, Brazil
| | - Edson A. Adriano
- Departamento de Ciências Biológicas, Universidade Federal de São Paulo (UNIFESP), Diadema, SP, Brazil
- Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil
| |
Collapse
|
33
|
Do latitudinal and bioclimatic gradients drive parasitism in Odonata? Int J Parasitol 2021; 51:463-470. [PMID: 33610523 DOI: 10.1016/j.ijpara.2020.11.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 10/30/2020] [Accepted: 11/01/2020] [Indexed: 11/24/2022]
Abstract
Prevalence of parasites in wild animals may follow ecogeographic patterns, under the influence of climatic factors and macroecological features. One of the largest scale biological patterns on Earth is the latitudinal diversity gradient; however, latitudinal gradients may also exist regarding the frequency of interspecific interactions such as the prevalence of parasitism in host populations. Dragonflies and damselflies (order Odonata) are hosts of a wide range of ecto- and endoparasites, interactions that can be affected by environmental factors that shape their occurrence and distribution, such as climatic variation, ultraviolet radiation and vegetation structure. Here, we retrieved data from the literature on parasites of Odonata, represented by 90 populations infected by ectoparasites (water mites) and 117 populations infected by endoparasites (intestinal gregarines). To test whether there is a latitudinal and bioclimatic gradient in the prevalence of water mites and gregarines parasitizing Odonata, we applied Bayesian phylogenetic comparative models. We found that prevalence of ectoparasites was partially associated with latitude, showing the opposite pattern from our expectations - prevalence was reduced at lower latitudes. Prevalence of endoparasites was not affected by latitude. While prevalence of water mites was also positively associated with vegetation biomass and climatic stability, we found no evidence of the effect of bioclimatic variables on the prevalence of gregarines. Our study suggests that infection by ectoparasites of dragonflies and damselflies is driven by latitudinal and bioclimatic variables. We add evidence of the role of global-scale biological patterns in shaping biodiversity, suggesting that parasitic organisms may prove reliable sources of information about climate change and its impact on ecological interactions.
Collapse
|
34
|
Runghen R, Poulin R, Monlleó-Borrull C, Llopis-Belenguer C. Network Analysis: Ten Years Shining Light on Host-Parasite Interactions. Trends Parasitol 2021; 37:445-455. [PMID: 33558197 DOI: 10.1016/j.pt.2021.01.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/15/2021] [Accepted: 01/16/2021] [Indexed: 12/24/2022]
Abstract
Biological interactions are key drivers of ecological and evolutionary processes. The complexity of such interactions hinders our understanding of ecological systems and our ability to make effective predictions in changing environments. However, network analysis allows us to better tackle the complexity of ecosystems because it extracts the properties of an ecological system according to the number and distribution of links among interacting entities. The number of studies using network analysis to solve ecological and evolutionary questions in parasitology has increased over the past decade. Here, we synthesise the contribution of network analysis toward disentangling host-parasite processes. Furthermore, we identify current trends in mainstream ecology and novel applications of network analysis that present opportunities for research on host-parasite interactions.
Collapse
Affiliation(s)
- Rogini Runghen
- Centre for Integrative Ecology, School of Biological Sciences, University of Canterbury, Private Bag 4800, 8140 Christchurch, New Zealand
| | - Robert Poulin
- Department of Zoology, University of Otago, 340 Great King Street, 9054 Dunedin, New Zealand
| | - Clara Monlleó-Borrull
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, PO Box 22085, ES-46071, Valencia, Spain
| | - Cristina Llopis-Belenguer
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, PO Box 22085, ES-46071, Valencia, Spain.
| |
Collapse
|
35
|
Uelmen JA, Irwin P, Bartlett D, Brown W, Karki S, Ruiz MO, Fraterrigo J, Li B, Smith RL. Effects of Scale on Modeling West Nile Virus Disease Risk. Am J Trop Med Hyg 2021; 104:151-165. [PMID: 33146116 DOI: 10.4269/ajtmh.20-0416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Modeling vector-borne diseases is best conducted when heterogeneity among interacting biotic and abiotic processes is captured. However, the successful integration of these complex processes is difficult, hindered by a lack of understanding of how these relationships influence disease transmission across varying scales. West Nile virus (WNV) is the most important mosquito-borne disease in the United States. Vectored by Culex mosquitoes and maintained in the environment by avian hosts, the virus can spill over into humans and horses, sometimes causing severe neuroinvasive illness. Several modeling studies have evaluated drivers of WNV disease risk, but nearly all have done so at broad scales and have reported mixed results of the effects of common explanatory variables. As a result, fine-scale relationships with common explanatory variables, particularly climatic, socioeconomic, and human demographic, remain uncertain across varying spatial extents. Using an interdisciplinary approach and an ongoing 12-year study of the Chicago region, this study evaluated the factors explaining WNV disease risk at high spatiotemporal resolution, comparing the human WNV model and covariate performance across three increasing spatial extents: ultrafine, local, and county scales. Our results demonstrate that as spatial extent increased, model performance increased. In addition, only six of the 23 assessed covariates were included in best-fit models of at least two scales. These results suggest that the mechanisms driving WNV ecology are scale-dependent and covariate importance increases as extent decreases. These tools may be particularly helpful for public health, mosquito, and disease control personnel in predicting and preventing disease within local and fine-scale jurisdictions, before spillover occurs.
Collapse
Affiliation(s)
- Johnny A Uelmen
- 1Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | | | - Dan Bartlett
- 2Northwest Mosquito Abatement, Wheeling, Illinois
| | - William Brown
- 1Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Surendra Karki
- 1Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois.,3Department of Epidemiology and Public Health, Himalayan College of Agricultural Sciences and Technology, Kirtipur, Nepal
| | - Marilyn O'Hara Ruiz
- 1Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Jennifer Fraterrigo
- 4Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Bo Li
- 5Department of Statistics, University of Illinois at Urbana-Champaign, Champaign, Illinois
| | - Rebecca L Smith
- 1Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois
| |
Collapse
|
36
|
The Role of Carrion in the Landscapes of Fear and Disgust: A Review and Prospects. DIVERSITY 2021. [DOI: 10.3390/d13010028] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Animal behavior is greatly shaped by the ‘landscape of fear’, induced by predation risk, and the equivalent ‘landscape of disgust’, induced by parasitism or infection risk. However, the role that carrion may play in these landscapes of peril has been largely overlooked. Here, we aim to emphasize that animal carcasses likely represent ubiquitous hotspots for both predation and infection risk, thus being an outstanding paradigm of how predation and parasitism pressures can concur in space and time. By conducting a literature review, we highlight the manifold inter- and intra-specific interactions linked to carrion via predation and parasitism risks, which may affect not only scavengers, but also non-scavengers. However, we identified major knowledge gaps, as reviewed articles were highly biased towards fear, terrestrial environments, vertebrates, and behavioral responses. Based on the reviewed literature, we provide a conceptual framework on the main fear- and disgust-based interaction pathways associated with carrion resources. This framework may be used to formulate predictions about how the landscape of fear and disgust around carcasses might influence animals’ individual behavior and ecological processes, from population to ecosystem functioning. We encourage ecologists, evolutionary biologists, epidemiologists, forensic scientists, and conservation biologists to explore the promising research avenues associated with the scary and disgusting facets of carrion. Acknowledging the multiple trophic and non-trophic interactions among dead and live animals, including both herbivores and carnivores, will notably improve our understanding of the overlapping pressures that shape the landscape of fear and disgust.
Collapse
|
37
|
Carlson CJ, Dallas TA, Alexander LW, Phelan AL, Phillips AJ. What would it take to describe the global diversity of parasites? Proc Biol Sci 2020; 287:20201841. [PMID: 33203333 PMCID: PMC7739500 DOI: 10.1098/rspb.2020.1841] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/22/2020] [Indexed: 11/12/2022] Open
Abstract
How many parasites are there on Earth? Here, we use helminth parasites to highlight how little is known about parasite diversity, and how insufficient our current approach will be to describe the full scope of life on Earth. Using the largest database of host-parasite associations and one of the world's largest parasite collections, we estimate a global total of roughly 100 000-350 000 species of helminth endoparasites of vertebrates, of which 85-95% are unknown to science. The parasites of amphibians and reptiles remain the most poorly described, but the majority of undescribed species are probably parasites of birds and bony fish. Missing species are disproportionately likely to be smaller parasites of smaller hosts in undersampled countries. At current rates, it would take centuries to comprehensively sample, collect and name vertebrate helminths. While some have suggested that macroecology can work around existing data limitations, we argue that patterns described from a small, biased sample of diversity aren't necessarily reliable, especially as host-parasite networks are increasingly altered by global change. In the spirit of moonshots like the Human Genome Project and the Global Virome Project, we consider the idea of a Global Parasite Project: a global effort to transform parasitology and inventory parasite diversity at an unprecedented pace.
Collapse
Affiliation(s)
- Colin J. Carlson
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC 20057, USA
- Center for Global Health Science and Security, Georgetown University, Washington, DC, USA
| | - Tad A. Dallas
- Centre for Ecological Change, University of Helsinki, 00840 Helsinki, Finland
| | - Laura W. Alexander
- Department of Integrative Biology, University of California, Berkeley, CA, USA
| | - Alexandra L. Phelan
- Center for Global Health Science and Security, Georgetown University, Washington, DC, USA
- O’Neill Institute for National and Global Health Law, Georgetown University Law Center, Washington, DC, USA
| | - Anna J. Phillips
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013, USA
| |
Collapse
|
38
|
Villalobos-Segura MDC, García-Prieto L, Rico-Chávez O. Effects of latitude, host body size, and host trophic guild on patterns of diversity of helminths associated with humans, wild and domestic mammals of Mexico. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2020; 13:221-230. [PMID: 33224727 PMCID: PMC7666364 DOI: 10.1016/j.ijppaw.2020.10.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 11/29/2022]
Abstract
Parasites are strictly associated with their hosts and present a great diversity of life histories, often resulting in different diversity patterns than those observed in free-living species. However, ecological approaches have detected that, in some cases, mammal-associated helminths respond similarly to non-parasitic species in terms of diversity patterns. Using 2200 recorded interactions, we analysed the diversity patterns of helminths (Acanthocephala, Nematoda and Platyhelminthes) harbored by humans, wild and domestic mammals of Mexico, depending on latitude, host body mass and trophic guild (carnivore, herbivore, insectivore, omnivore), considering helminth richness and average taxonomic distinctness, and host phylogenetic diversity and phylogenetic clustering. Latitude was positively correlated with the average taxonomic distinctness encompassing the three parasite phyla and nematodes. Northern latitudes had less taxonomically related parasite assemblages. Host body mass had a significant negative relationship with the average taxonomic distinctness of acanthocephalans and the richness of helminths associated to wild hosts. The omnivore hosts had greater parasite richness, while insectivores had a less taxonomically related parasite assemblage and herbivores had a more heterogeneous parasite assemblage. Our results highlight the importance of incorporating different dimensions of diversity, such as average taxonomic distinctness and to consider the composition of parasite assemblages to better understand their diversity patterns. Four diversity measures were used to describe diversity patterns of helminths. Latitude was positively correlated with helminth average taxonomic distinctness. Host body mass was negatively related with the helminth richness of wildlife hosts. Helminth sets of omnivore hosts were richer in parasite species. Helminth sets of insectivore hosts had a wider taxonomic breadth.
Collapse
Affiliation(s)
- María Del Carmen Villalobos-Segura
- Laboratorio de Ecología de Enfermedades y Una Salud, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, 04510, México City, Mexico
| | - Luis García-Prieto
- Laboratorio de Helmintología, Instituto de Biología, Universidad Nacional Autónoma de México, Apartado Postal 70-153, 04510, México City, Mexico
| | - Oscar Rico-Chávez
- Laboratorio de Ecología de Enfermedades y Una Salud, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, 04510, México City, Mexico
| |
Collapse
|
39
|
Large-scale disease patterns explained by climatic seasonality and host traits. Oecologia 2020; 194:723-733. [DOI: 10.1007/s00442-020-04782-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 10/09/2020] [Indexed: 12/19/2022]
|
40
|
Parmentier T, De Laender F, Bonte D. The topology and drivers of ant-symbiont networks across Europe. Biol Rev Camb Philos Soc 2020; 95:1664-1688. [PMID: 32691527 DOI: 10.1111/brv.12634] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 12/21/2022]
Abstract
Intimate associations between different species drive community composition across ecosystems. Understanding the ecological and evolutionary drivers of these symbiotic associations is challenging because their structure eventually determines stability and resilience of the entire species network. Here, we compiled a detailed database on naturally occurring ant-symbiont networks in Europe to identify factors that affect symbiont network topology. These networks host an unrivalled diversity of macrosymbiotic associations, spanning the entire mutualism-antagonism continuum, including: (i) myrmecophiles - commensalistic and parasitic arthropods; (ii) trophobionts - mutualistic aphids, scale insects, planthoppers and caterpillars; (iii) social parasites - parasitic ant species; (iv) parasitic helminths; and (v) parasitic fungi. We dissected network topology to investigate what determines host specificity, symbiont species richness, and the capacity of different symbiont types to switch hosts. We found 722 macrosymbionts (multicellular symbionts) associated with European ants. Symbiont type explained host specificity and the average relatedness of the host species. Social parasites were associated with few hosts that were phylogenetically highly related, whereas the other symbiont types interacted with a larger number of hosts across a wider taxonomic distribution. The hosts of trophobionts were the least phylogenetically related across all symbiont types. Colony size, host range and habitat type predicted total symbiont richness: ant hosts with larger colony size, a larger distribution range or with a wider habitat range contained more symbiont species. However, we found that different sets of host factors affected diversity in the different types of symbionts. Ecological factors, such as colony size, host range and niche width predominantly determined myrmecophile species richness, whereas host phylogeny was the most important predictor of mutualistic trophobiont, social parasite and parasitic helminth species richness. Lastly, we found that hosts with a common biogeographic history support a more similar community of symbionts. Phylogenetically related hosts also shared more trophobionts, social parasites and helminths, but not myrmecophiles. Taken together, these results suggest that ecological and evolutionary processes structure host specificity and symbiont richness in large-scale ant-symbiont networks, but these drivers may shift in importance depending on the type of symbiosis. Our findings highlight the potential of well-characterized bipartite networks composed of different types of symbioses to identify candidate processes driving community composition.
Collapse
Affiliation(s)
- Thomas Parmentier
- Terrestrial Ecology Unit (TEREC), Department of Biology, Ghent University, Ghent, B-9000, Belgium.,Research Unit of Environmental and Evolutionary Biology, Namur Institute of Complex Systems, and Institute of Life, Earth, and the Environment, University of Namur, Namur, 5000, Belgium
| | - Frederik De Laender
- Research Unit of Environmental and Evolutionary Biology, Namur Institute of Complex Systems, and Institute of Life, Earth, and the Environment, University of Namur, Namur, 5000, Belgium
| | - Dries Bonte
- Terrestrial Ecology Unit (TEREC), Department of Biology, Ghent University, Ghent, B-9000, Belgium
| |
Collapse
|
41
|
Johnson CK, Hitchens PL, Pandit PS, Rushmore J, Evans TS, Young CCW, Doyle MM. Global shifts in mammalian population trends reveal key predictors of virus spillover risk. Proc Biol Sci 2020; 287:20192736. [PMID: 32259475 PMCID: PMC7209068 DOI: 10.1098/rspb.2019.2736] [Citation(s) in RCA: 176] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Emerging infectious diseases in humans are frequently caused by pathogens originating from animal hosts, and zoonotic disease outbreaks present a major challenge to global health. To investigate drivers of virus spillover, we evaluated the number of viruses mammalian species have shared with humans. We discovered that the number of zoonotic viruses detected in mammalian species scales positively with global species abundance, suggesting that virus transmission risk has been highest from animal species that have increased in abundance and even expanded their range by adapting to human-dominated landscapes. Domesticated species, primates and bats were identified as having more zoonotic viruses than other species. Among threatened wildlife species, those with population reductions owing to exploitation and loss of habitat shared more viruses with humans. Exploitation of wildlife through hunting and trade facilitates close contact between wildlife and humans, and our findings provide further evidence that exploitation, as well as anthropogenic activities that have caused losses in wildlife habitat quality, have increased opportunities for animal–human interactions and facilitated zoonotic disease transmission. Our study provides new evidence for assessing spillover risk from mammalian species and highlights convergent processes whereby the causes of wildlife population declines have facilitated the transmission of animal viruses to humans.
Collapse
Affiliation(s)
- Christine K Johnson
- EpiCenter for Disease Dynamics, One Health Institute, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Peta L Hitchens
- Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Werribee, VIC 3030, Australia
| | - Pranav S Pandit
- EpiCenter for Disease Dynamics, One Health Institute, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Julie Rushmore
- EpiCenter for Disease Dynamics, One Health Institute, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Tierra Smiley Evans
- EpiCenter for Disease Dynamics, One Health Institute, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Cristin C W Young
- EpiCenter for Disease Dynamics, One Health Institute, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Megan M Doyle
- EpiCenter for Disease Dynamics, One Health Institute, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| |
Collapse
|
42
|
Becker DJ, Downs CJ, Martin LB. Multi-Scale Drivers of Immunological Variation and Consequences for Infectious Disease Dynamics. Integr Comp Biol 2020; 59:1129-1137. [PMID: 31559436 DOI: 10.1093/icb/icz138] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The immune system is the primary barrier to parasite infection, replication, and transmission following exposure, and variation in immunity can accordingly manifest in heterogeneity in traits that govern population-level infectious disease dynamics. While much work in ecoimmunology has focused on individual-level determinants of host immune defense (e.g., reproductive status and body condition), an ongoing challenge remains to understand the broader evolutionary and ecological contexts of this variation (e.g., phylogenetic relatedness and landscape heterogeneity) and to connect these differences into epidemiological frameworks. Ultimately, such efforts could illuminate general principles about the drivers of host defense and improve predictions and control of infectious disease. Here, we highlight recent work that synthesizes the complex drivers of immunological variation across biological scales of organization and scales these within-host differences to population-level infection outcomes. Such studies note the limitations involved in making species-level comparisons of immune phenotypes, stress the importance of spatial scale for immunology research, showcase several statistical tools for translating within-host data into epidemiological parameters, and provide theoretical frameworks for linking within- and between-host scales of infection processes. Building from these studies, we highlight several promising avenues for continued work, including the application of machine learning tools and phylogenetically controlled meta-analyses to immunology data and quantifying the joint spatial and temporal dependencies in immune defense using range expansions as model systems. We also emphasize the use of organismal traits (e.g., host tolerance, competence, and resistance) as a way to interlink various scales of analysis. Such continued collaboration and disciplinary cross-talk among ecoimmunology, disease ecology, and mathematical modeling will facilitate an improved understanding of the multi-scale drivers and consequences of variation in host defense.
Collapse
Affiliation(s)
- Daniel J Becker
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.,Center for the Ecology of Infectious Disease, University of Georgia, Athens, GA 30602, USA
| | - Cynthia J Downs
- Department of Biology, Hamilton College, Clinton, NY 13323, USA
| | - Lynn B Martin
- Department of Global and Planetary Health, University of South Florida, Tampa, FL 33620, USA
| |
Collapse
|
43
|
Becker DJ, Nachtmann C, Argibay HD, Botto G, Escalera-Zamudio M, Carrera JE, Tello C, Winiarski E, Greenwood AD, Méndez-Ojeda ML, Loza-Rubio E, Lavergne A, de Thoisy B, Czirják GÁ, Plowright RK, Altizer S, Streicker DG. Leukocyte Profiles Reflect Geographic Range Limits in a Widespread Neotropical Bat. Integr Comp Biol 2020; 59:1176-1189. [PMID: 30873523 PMCID: PMC6907035 DOI: 10.1093/icb/icz007] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Quantifying how the environment shapes host immune defense is important for understanding which wild populations may be more susceptible or resistant to pathogens. Spatial variation in parasite risk, food and predator abundance, and abiotic conditions can each affect immunity, and these factors can also manifest at both local and biogeographic scales. Yet identifying predictors and the spatial scale of their effects is limited by the rarity of studies that measure immunity across many populations of broadly distributed species. We analyzed leukocyte profiles from 39 wild populations of the common vampire bat (Desmodus rotundus) across its wide geographic range throughout the Neotropics. White blood cell differentials varied spatially, with proportions of neutrophils and lymphocytes varying up to six-fold across sites. Leukocyte profiles were spatially autocorrelated at small and very large distances, suggesting that local environment and large-scale biogeographic factors influence cellular immunity. Generalized additive models showed that bat populations closer to the northern and southern limits of the species range had more neutrophils, monocytes, and basophils, but fewer lymphocytes and eosinophils, than bats sampled at the core of their distribution. Habitats with access to more livestock also showed similar patterns in leukocyte profiles, but large-scale patterns were partly confounded by time between capture and sampling across sites. Our findings suggest that populations at the edge of their range experience physiologically limiting conditions that predict higher chronic stress and greater investment in cellular innate immunity. High food abundance in livestock-dense habitats may exacerbate such conditions by increasing bat density or diet homogenization, although future spatially and temporally coordinated field studies with common protocols are needed to limit sampling artifacts. Systematically assessing immune function and response over space will elucidate how environmental conditions influence traits relevant to epidemiology and help predict disease risks with anthropogenic disturbance, land conversion, and climate change.
Collapse
Affiliation(s)
- Daniel J Becker
- Odum School of Ecology, University of Georgia, Athens, GA 30602, USA.,Center for the Ecology of Infectious Disease, University of Georgia, Athens, GA 30602, USA.,Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Cecilia Nachtmann
- Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
| | - Hernan D Argibay
- Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - Germán Botto
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59715, USA.,Departamento de Metodos Cuantitativos, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - Marina Escalera-Zamudio
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Berlin 10315, Germany.,Department of Zoology, University of Oxford, Oxford OX1 3SY, UK
| | - Jorge E Carrera
- Facultad de Ciencias, Universidad Nacional de Piura, Piura 20009, Peru.,Programa de Conservación de Murciélagos de Perú, Piura Lima-1, Peru
| | - Carlos Tello
- Association for the Conservation and Development of Natural Resources, Lima 15037, Peru.,Yunkawasi, Lima 15049, Peru
| | - Erik Winiarski
- Departamento de Histología, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - Alex D Greenwood
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Berlin 10315, Germany.,Department of Veterinary Medicine, Freie Universität Berlin, Berlin 14163, Germany
| | - Maria L Méndez-Ojeda
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Veracruzana, Veracruz 91710, Mexico
| | - Elizabeth Loza-Rubio
- Centro Nacional de Investigación Disciplinaria en Microbiología Animal, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Mexico City 05110, Mexico
| | - Anne Lavergne
- Laboratoire des Interactions Virus-Hôtes, Institut Pasteur de la Guyane, Cayenne, French Guiana F-97300, France
| | - Benoit de Thoisy
- Laboratoire des Interactions Virus-Hôtes, Institut Pasteur de la Guyane, Cayenne, French Guiana F-97300, France
| | - Gábor Á Czirják
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Berlin 10315, Germany
| | - Raina K Plowright
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59715, USA
| | - Sonia Altizer
- Odum School of Ecology, University of Georgia, Athens, GA 30602, USA.,Center for the Ecology of Infectious Disease, University of Georgia, Athens, GA 30602, USA
| | - Daniel G Streicker
- Odum School of Ecology, University of Georgia, Athens, GA 30602, USA.,Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.,MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| |
Collapse
|
44
|
Poulin R, Presswell B, Jorge F. The state of fish parasite discovery and taxonomy: a critical assessment and a look forward. Int J Parasitol 2020; 50:733-742. [PMID: 32151615 DOI: 10.1016/j.ijpara.2019.12.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/05/2019] [Accepted: 12/23/2019] [Indexed: 01/13/2023]
Abstract
Efforts to find and characterise new parasite species in fish hosts are crucial not just to complete our inventory of Earth's biodiversity, but also to monitor and mitigate disease threats in fisheries and aquaculture in the face of global climate change. Here, we review recent quantitative assessments of research efforts into fish parasite discovery and taxonomy. We address broad questions including: Are efforts aimed at finding new parasite species targeted at geographical hotspots of fish biodiversity, where there should be more parasite species to be found? Is the application of molecular tools to study parasite genetic diversity deployed strategically across regions of the world, or focused disproportionately on certain areas? How well coordinated is the search for new parasite species of fish among workers specialising on different higher helminth taxa? Are parasite discovery efforts in any geographical area consistent over time, or subject to idiosyncrasies due to the waxing and waning of highly prolific research careers? Is the quality of taxonomic descriptions of new species improving over time, with the incorporation of new tools to characterise species? Are taxonomic descriptions moving away from a focus on the adult stage only toward attempts to characterise the full life cycle of newly-discovered helminth species? By using empirical evidence to answer these questions, we assess the current state of research into fish parasite discovery and taxonomy. We also explore the far-reaching implications of recent research on parasite microbiomes for parasite taxonomy. We end with recommendations aimed at maximising the knowledge gained per fish sacrificed, and per dollar and time invested into research on fish parasite biodiversity.
Collapse
Affiliation(s)
- Robert Poulin
- Department of Zoology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand.
| | - Bronwen Presswell
- Department of Zoology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| | - Fátima Jorge
- Department of Zoology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| |
Collapse
|
45
|
Wells K, Morand S, Wardeh M, Baylis M. Distinct spread of DNA and RNA viruses among mammals amid prominent role of domestic species. GLOBAL ECOLOGY AND BIOGEOGRAPHY : A JOURNAL OF MACROECOLOGY 2020; 29:470-481. [PMID: 32336945 PMCID: PMC7165700 DOI: 10.1111/geb.13045] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 10/05/2019] [Accepted: 11/20/2019] [Indexed: 05/02/2023]
Abstract
AIM Emerging infectious diseases arising from pathogen spillover from mammals to humans constitute a substantial health threat. Tracing virus origin and predicting the most likely host species for future spillover events are major objectives in One Health disciplines.We assessed patterns of virus sharing among a large diversity of mammals, including humans and domestic species. LOCATION Global. TIME PERIOD Current. MAJOR TAXA STUDIED Mammals and associated viruses. METHODS We used network centrality analysis and trait-based Bayesian hierarchical models to explore patterns of virus sharing among mammals. We analysed a global database that compiled the associations between 1,785 virus species and 725 mammalian host species as sourced from automatic screening of meta-data accompanying published nucleotide sequences between 1950 and 2019. RESULTS We show that based on current evidence, domesticated mammals hold the most central positions in networks of known mammal-virus associations. Among entire host-virus networks, Carnivora and Chiroptera hold central positions for mainly sharing RNA viruses, whereas ungulates hold central positions for sharing both RNA and DNA viruses with other host species. We revealed strong evidence that DNA viruses were phylogenetically more host specific than RNA viruses. RNA viruses exhibited low functional host specificity despite an overall tendency to infect phylogenetically related species, signifying high potential to shift across hosts with different ecological niches. The frequencies of sharing viruses among hosts and the proportion of zoonotic viruses in hosts were larger for RNA than for DNA viruses. MAIN CONCLUSIONS Acknowledging the role of domestic species in addition to host and virus traits in patterns of virus sharing is necessary to improve our understanding of virus spread and spillover in times of global change. Understanding multi-host virus-sharing pathways adds focus to curtail disease spread.
Collapse
Affiliation(s)
| | - Serge Morand
- CIRAD ASTRE, CNRS ISEM, Faculty of Veterinary TechnologyKasetsart UniversityBangkokThailand
| | - Maya Wardeh
- Department of Epidemiology and Population HealthInstitute of Infection and Global HealthUniversity of LiverpoolNestonUK
| | - Matthew Baylis
- Department of Epidemiology and Population HealthInstitute of Infection and Global HealthUniversity of LiverpoolNestonUK
- Health Protection Research Unit in Emerging and Zoonotic InfectionsUniversity of LiverpoolUK
| |
Collapse
|
46
|
Becker DJ, Albery GF, Kessler MK, Lunn TJ, Falvo CA, Czirják GÁ, Martin LB, Plowright RK. Macroimmunology: The drivers and consequences of spatial patterns in wildlife immune defence. J Anim Ecol 2020; 89:972-995. [PMID: 31856309 DOI: 10.1111/1365-2656.13166] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 11/06/2019] [Indexed: 01/26/2023]
Abstract
The prevalence and intensity of parasites in wild hosts varies across space and is a key determinant of infection risk in humans, domestic animals and threatened wildlife. Because the immune system serves as the primary barrier to infection, replication and transmission following exposure, we here consider the environmental drivers of immunity. Spatial variation in parasite pressure, abiotic and biotic conditions, and anthropogenic factors can all shape immunity across spatial scales. Identifying the most important spatial drivers of immunity could help pre-empt infectious disease risks, especially in the context of how large-scale factors such as urbanization affect defence by changing environmental conditions. We provide a synthesis of how to apply macroecological approaches to the study of ecoimmunology (i.e. macroimmunology). We first review spatial factors that could generate spatial variation in defence, highlighting the need for large-scale studies that can differentiate competing environmental predictors of immunity and detailing contexts where this approach might be favoured over small-scale experimental studies. We next conduct a systematic review of the literature to assess the frequency of spatial studies and to classify them according to taxa, immune measures, spatial replication and extent, and statistical methods. We review 210 ecoimmunology studies sampling multiple host populations. We show that whereas spatial approaches are relatively common, spatial replication is generally low and unlikely to provide sufficient environmental variation or power to differentiate competing spatial hypotheses. We also highlight statistical biases in macroimmunology, in that few studies characterize and account for spatial dependence statistically, potentially affecting inferences for the relationships between environmental conditions and immune defence. We use these findings to describe tools from geostatistics and spatial modelling that can improve inference about the associations between environmental and immunological variation. In particular, we emphasize exploratory tools that can guide spatial sampling and highlight the need for greater use of mixed-effects models that account for spatial variability while also allowing researchers to account for both individual- and habitat-level covariates. We finally discuss future research priorities for macroimmunology, including focusing on latitudinal gradients, range expansions and urbanization as being especially amenable to large-scale spatial approaches. Methodologically, we highlight critical opportunities posed by assessing spatial variation in host tolerance, using metagenomics to quantify spatial variation in parasite pressure, coupling large-scale field studies with small-scale field experiments and longitudinal approaches, and applying statistical tools from macroecology and meta-analysis to identify generalizable spatial patterns. Such work will facilitate scaling ecoimmunology from individual- to habitat-level insights about the drivers of immune defence and help predict where environmental change may most alter infectious disease risk.
Collapse
Affiliation(s)
- Daniel J Becker
- Department of Biology, Indiana University, Bloomington, IN, USA.,Center for the Ecology of Infectious Disease, University of Georgia, Athens, GA, USA
| | - Gregory F Albery
- Department of Biology, Georgetown University, Washington, DC, USA
| | | | - Tamika J Lunn
- Environmental Futures Research Institute, Griffith University, Nathan, Queensland, Australia
| | - Caylee A Falvo
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | - Gábor Á Czirják
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Lynn B Martin
- Department of Global and Planetary Health, University of South Florida, Tampa, FL, USA
| | - Raina K Plowright
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| |
Collapse
|
47
|
Dallas TA, Carlson CJ, Poisot T. Testing predictability of disease outbreaks with a simple model of pathogen biogeography. ROYAL SOCIETY OPEN SCIENCE 2019; 6:190883. [PMID: 31827836 PMCID: PMC6894608 DOI: 10.1098/rsos.190883] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 10/08/2019] [Indexed: 05/15/2023]
Abstract
Predicting disease emergence and outbreak events is a critical task for public health professionals and epidemiologists. Advances in global disease surveillance are increasingly generating datasets that are worth more than their component parts for prediction-oriented work. Here, we use a trait-free approach which leverages information on the global community of human infectious diseases to predict the biogeography of pathogens through time. Our approach takes pairwise dissimilarities between countries' pathogen communities and pathogens' geographical distributions and uses these to predict country-pathogen associations. We compare the success rates of our model for predicting pathogen outbreak, emergence and re-emergence potential as a function of time (e.g. number of years between training and prediction), pathogen type (e.g. virus) and transmission mode (e.g. vector-borne). With only these simple predictors, our model successfully predicts basic network structure up to a decade into the future. We find that while outbreak and re-emergence potential are especially well captured by our simple model, prediction of emergence events remains more elusive, and sudden global emergences like an influenza pandemic are beyond the predictive capacity of the model. However, these stochastic pandemic events are unlikely to be predictable from such coarse data. Together, our model is able to use the information on the existing country-pathogen network to predict pathogen outbreaks fairly well, suggesting the importance in considering information on co-occurring pathogens in a more global view even to estimate outbreak events in a single location or for a single pathogen.
Collapse
Affiliation(s)
- Tad A. Dallas
- Research Centre for Ecological Change, University of Helsinki, 00840 Helsinki, Finland
- Department of Biology, Louisiana State University, Baton Rouge, LA 70803, USA
- Author for correspondence: Tad A. Dallas e-mail:
| | - Colin J. Carlson
- Department of Biology, Georgetown University, Washington, DC 20057, USA
| | - Timothée Poisot
- Dépt de Sciences Biologiques, Univ. de Montréal, Montréal, Canada
| |
Collapse
|
48
|
Fecchio A, Bell JA, Bosholn M, Vaughan JA, Tkach VV, Lutz HL, Cueto VR, Gorosito CA, González-Acuña D, Stromlund C, Kvasager D, Comiche KJM, Kirchgatter K, Pinho JB, Berv J, Anciães M, Fontana CS, Zyskowski K, Sampaio S, Dispoto JH, Galen SC, Weckstein JD, Clark NJ. An inverse latitudinal gradient in infection probability and phylogenetic diversity for Leucocytozoon blood parasites in New World birds. J Anim Ecol 2019; 89:423-435. [PMID: 31571223 DOI: 10.1111/1365-2656.13117] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 08/30/2019] [Indexed: 01/26/2023]
Abstract
Geographic variation in environmental conditions as well as host traits that promote parasite transmission may impact infection rates and community assembly of vector-transmitted parasites. Identifying the ecological, environmental and historical determinants of parasite distributions and diversity is therefore necessary to understand disease outbreaks under changing environments. Here, we identified the predictors and contributions of infection probability and phylogenetic diversity of Leucocytozoon (an avian blood parasite) at site and species levels across the New World. To explore spatial patterns in infection probability and lineage diversity for Leucocytozoon parasites, we surveyed 69 bird communities from Alaska to Patagonia. Using phylogenetic Bayesian hierarchical models and high-resolution satellite remote-sensing data, we determined the relative influence of climate, landscape, geography and host phylogeny on regional parasite community assembly. Infection rates and parasite diversity exhibited considerable variation across regions in the Americas. In opposition to the latitudinal gradient hypothesis, both the diversity and prevalence of Leucocytozoon parasites decreased towards the equator. Host relatedness and traits known to promote vector exposure neither predicted infection probability nor parasite diversity. Instead, the probability of a bird being infected with Leucocytozoon increased with increasing vegetation cover (NDVI) and moisture levels (NDWI), whereas the diversity of parasite lineages decreased with increasing NDVI. Infection rates and parasite diversity also tended to be higher in cooler regions and higher latitudes. Whereas temperature partially constrains Leucocytozoon diversity and infection rates, landscape features, such as vegetation cover and water body availability, play a significant role in modulating the probability of a bird being infected. This suggests that, for Leucocytozoon, the barriers to host shifting and parasite host range expansion are jointly determined by environmental filtering and landscape, but not by host phylogeny. Our results show that integrating host traits, host ancestry, bioclimatic data and microhabitat characteristics that are important for vector reproduction are imperative to understand and predict infection prevalence and diversity of vector-transmitted parasites. Unlike other vector-transmitted diseases, our results show that Leucocytozoon diversity and prevalence will likely decrease with warming temperatures.
Collapse
Affiliation(s)
- Alan Fecchio
- Programa de Pós-Graduação em Ecologia e Conservação da Biodiversidade, Universidade Federal de Mato Grosso, Cuiabá, Brazil
| | - Jeffrey A Bell
- Department of Biology, University of North Dakota, Grand Forks, ND, USA
| | - Mariane Bosholn
- Laboratório de Biologia Evolutiva e Comportamento Animal, Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Brazil
| | | | - Vasyl V Tkach
- Department of Biology, University of North Dakota, Grand Forks, ND, USA
| | - Holly L Lutz
- Department of Surgery, University of Chicago, Chicago, IL, USA.,Integrative Research Center, Field Museum of Natural History, Chicago, IL, USA
| | - Victor R Cueto
- Centro de Investigación Esquel de Montaña y Estepa Patagónica (CIEMEP), CONICET - Universidad Nacional de la Patagonia San Juan Bosco, Esquel, Argentina
| | - Cristian A Gorosito
- Centro de Investigación Esquel de Montaña y Estepa Patagónica (CIEMEP), CONICET - Universidad Nacional de la Patagonia San Juan Bosco, Esquel, Argentina
| | - Daniel González-Acuña
- Laboratorio de Parásitos y Enfermedades de Fauna Silvestre, Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán, Chile
| | - Chad Stromlund
- Department of Biology, University of North Dakota, Grand Forks, ND, USA
| | - Danielle Kvasager
- Department of Biology, University of North Dakota, Grand Forks, ND, USA
| | - Kiba J M Comiche
- Núcleo de Estudos em Malária, Superintendência de Controle de Endemias, Instituto de Medicina Tropical de São Paulo, Universidade de São Paulo, Sao Paulo, Brazil
| | - Karin Kirchgatter
- Núcleo de Estudos em Malária, Superintendência de Controle de Endemias, Instituto de Medicina Tropical de São Paulo, Universidade de São Paulo, Sao Paulo, Brazil
| | - João B Pinho
- Laboratório de Ecologia de Aves, Universidade Federal de Mato Grosso, Cuiabá, Brazil
| | - Jacob Berv
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - Marina Anciães
- Laboratório de Biologia Evolutiva e Comportamento Animal, Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Brazil
| | - Carla S Fontana
- Laboratório de Ornitologia, Museu de Ciências e Tecnologia e Programa de Pós-graduação em Ecologia e Evolução da Biodiversidade, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Kristof Zyskowski
- Peabody Museum of Natural History, Yale University, New Haven, CT, USA
| | - Sidnei Sampaio
- Laboratório de Evolução e Biogeografia, Universidade Federal da Bahia, Salvador, Brazil
| | - Janice H Dispoto
- Department of Ornithology, Academy of Natural Sciences of Drexel University, Philadelphia, PA, USA
| | - Spencer C Galen
- Department of Ornithology, Academy of Natural Sciences of Drexel University, Philadelphia, PA, USA
| | - Jason D Weckstein
- Department of Ornithology, Academy of Natural Sciences of Drexel University, Philadelphia, PA, USA.,Department of Biodiversity, Earth, and Environmental Science, Drexel University, Philadelphia, PA, USA
| | - Nicholas J Clark
- School of Veterinary Science, University of Queensland, Gatton, Qld, Australia
| |
Collapse
|
49
|
Mestre A, Poulin R, Holt RD, Barfield M, Clamp JC, Fernandez-Leborans G, Mesquita-Joanes F. The interplay of nested biotic interactions and the abiotic environment regulates populations of a hypersymbiont. J Anim Ecol 2019; 88:1998-2010. [PMID: 31408529 DOI: 10.1111/1365-2656.13091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 07/01/2019] [Accepted: 07/21/2019] [Indexed: 01/13/2023]
Abstract
The role of biotic interactions in shaping the distribution and abundance of species should be particularly pronounced in symbionts. Indeed, symbionts have a dual niche composed of traits of their individual hosts and the abiotic environment external to the host, and often combine active dispersal at finer scales with host-mediated dispersal at broader scales. The biotic complexity in the determinants of species distribution and abundance should be even more pronounced for hyper symbionts (symbionts of other symbionts). We use a chain of symbiosis to explore the relative influence of nested biotic interactions and the abiotic environment on occupancy and abundance of a hypersymbiont. Our empirical system is the epibiont ciliate Lagenophrys discoidea, which attaches to an ostracod that is itself ectosymbiotic on crayfish (the basal host). We applied multimodel selection and variance partitioning for GLMM to assess the relative importance of (a) traits of symbiotic hosts (ostracod sex and abundance), (b) traits of basal hosts (crayfish body weight, abundance and intermoult stage), (c) the abiotic environment (water chemistry and climate) and (d) geospatial autocorrelation patterns (capturing potential effects of crayfish dispersal among localities). Our models explained about half of the variation in prevalence and abundance of the hypersymbiont. Variation in prevalence was partly explained, in decreasing order of importance (18%-4%) by shared effects of symbiotic host traits and the abiotic environment, pure fixed effects of symbiotic hosts, abiotic environment and geospatial patterns (traits of basal hosts were not relevant). Hypersymbiont abundance was most strongly explained by random effects of host traits (mainly the symbiotic host), in addition to weaker fixed effects (mostly abiotic environment). Our results highlight the major role of the interplay between abundance of symbiotic hosts and water physico-chemistry in regulating populations of a hypersymbiotic ciliate, which is likely critical for dispersal dynamics, availability of attachment resources and suitability of on-host living conditions for the ciliate. We also found moderate signal of regulation by the basal host, for which we propose three mechanisms: (a) modulation of microhabitat suitability (crayfish-created water currents); (b) concentration of symbiotic hosts within crayfish; and (c) dispersal mediated by crayfish.
Collapse
Affiliation(s)
- Alexandre Mestre
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Valencia, Spain.,Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Robert Poulin
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Robert D Holt
- Department of Biology, University of Florida, Gainesville, Florida
| | - Michael Barfield
- Department of Biology, University of Florida, Gainesville, Florida
| | - John C Clamp
- Department of Biological and Biomedical Sciences, North Carolina Central University, Durham, North Carolina
| | | | - Francesc Mesquita-Joanes
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Valencia, Spain
| |
Collapse
|
50
|
Guégan JF, de Thoisy B, Ayouba A, Cappelle J. [Tropical forests, changes in land uses and emerging infectious hazards]. SANTE PUBLIQUE 2019; S1:91-106. [PMID: 31210496 DOI: 10.3917/spub.190.0091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Tropical forests have the greatest biodiversity in macroorganisms on the planet, and they are also the richest in myriads of microorganisms for which so little is known today. Over the last 50 years, many of these microbial forms, that are naturally embedded into wildlife or the environment, e.g. soil, water, have revealed to be more or less dangerous pathogens for people exposed to these new natural threats, i.e. emerging infectious diseases. Here, we discuss about the extraordinary diversity of microorganisms that are present in tropical rainforests. We first present the main global distribution patterns for microbial forms at the interface between tropical wildlife and human, and second we provide an epidemiological picture on how microbial transmission from wild animals or the environment to people operates in tropical areas through four case-studies. We examine the animal hosts or environment, and transmission mechanisms involved in spillover of zoonotic or environmentally-persistent microbes, and identify land-use changes through deforestation for the development of agriculture, and contacts with wildlife notably through bush meat hunting as major drivers that facilitate mixing of diverse animal hosts and their microbial communities with human during practices. With an increase of deforestation in the tropics and more contacts between wildlife and people, new emerging disease events with high epidemic and pandemic potential will happen, that should guide new health policies and strategies at the global scale.
Collapse
|