1
|
Slovák M, Melichárková A, Štubňová EG, Kučera J, Mandáková T, Smyčka J, Lavergne S, Passalacqua NG, Vďačný P, Paun O. Pervasive Introgression During Rapid Diversification of the European Mountain Genus Soldanella (L.) (Primulaceae). Syst Biol 2023; 72:491-504. [PMID: 36331548 PMCID: PMC10276626 DOI: 10.1093/sysbio/syac071] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 03/19/2024] Open
Abstract
Hybridization is a key mechanism involved in lineage diversification and speciation, especially in ecosystems that experienced repeated environmental oscillations. Recently radiated plant groups, which have evolved in mountain ecosystems impacted by historical climate change provide an excellent model system for studying the impact of gene flow on speciation. We combined organellar (whole-plastome) and nuclear genomic data (RAD-seq) with a cytogenetic approach (rDNA FISH) to investigate the effects of hybridization and introgression on evolution and speciation in the genus Soldanella (snowbells, Primulaceae). Pervasive introgression has already occurred among ancestral lineages of snowbells and has persisted throughout the entire evolutionary history of the genus, regardless of the ecology, cytotype, or distribution range size of the affected species. The highest extent of introgression has been detected in the Carpathian species, which is also reflected in their extensive karyotype variation. Introgression occurred even between species with dysploid and euploid cytotypes, which were considered to be reproductively isolated. The magnitude of introgression detected in snowbells is unprecedented in other mountain genera of the European Alpine System investigated hitherto. Our study stresses the prominent evolutionary role of hybridization in facilitating speciation and diversification on the one hand, but also enriching previously isolated genetic pools. [chloroplast capture; diversification; dysploidy; European Alpine system; introgression; nuclear-cytoplasmic discordance; ribosomal DNA.].
Collapse
Affiliation(s)
- Marek Slovák
- Department of Evolution and Systematics, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Institute of Botany, Bratislava, Slovakia
- Department of Botany, Charles University, Prague, Czech Republic
| | - Andrea Melichárková
- Department of Evolution and Systematics, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Institute of Botany, Bratislava, Slovakia
| | - Eliška Gbúrová Štubňová
- Department of Evolution and Systematics, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Institute of Botany, Bratislava, Slovakia
- Slovak National Museum, Natural History Museum, Bratislava, Slovakia
| | - Jaromír Kučera
- Department of Evolution and Systematics, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Institute of Botany, Bratislava, Slovakia
| | - Terezie Mandáková
- Central European Institute of Technology, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 753/5, CZ-625 00 Brno, Czech Republic
| | - Jan Smyčka
- Department of Botany, Charles University, Prague, Czech Republic
- Center for Theoretical Study, Charles University and the Academy of Sciences of the Czech Republic, Jilská 1, 110 00 Praha, Czech Republic
- Université Grenoble Alpes, University of Savoie Mont Blanc, CNRS, Grenoble, France
| | - Sébastien Lavergne
- Université Grenoble Alpes, University of Savoie Mont Blanc, CNRS, Grenoble, France
| | | | - Peter Vďačný
- Department of Zoology, Comenius University in Bratislava, Bratislava, Slovakia
| | - Ovidiu Paun
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| |
Collapse
|
2
|
Obert T, Zhang T, Rurik I, Vďačný P. First molecular evidence of hybridization in endosymbiotic ciliates (Protista, Ciliophora). Front Microbiol 2022; 13:1067315. [PMID: 36569075 PMCID: PMC9772525 DOI: 10.3389/fmicb.2022.1067315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/14/2022] [Indexed: 12/13/2022] Open
Abstract
Hybridization is an important evolutionary process that can fuel diversification via formation of hybrid species or can lead to fusion of previously separated lineages by forming highly diverse species complexes. We provide here the first molecular evidence of hybridization in wild populations of ciliates, a highly diverse group of free-living and symbiotic eukaryotic microbes. The impact of hybridization was studied on the model of Plagiotoma, an obligate endosymbiont of the digestive tube of earthworms, using split decomposition analyses and species networks, 2D modeling of the nuclear rRNA molecules and compensatory base change analyses as well as multidimensional morphometrics. Gene flow slowed down and eventually hampered the diversification of Lumbricus-dwelling plagiotomids, which collapsed into a single highly variable biological entity, the P. lumbrici complex. Disruption of the species boundaries was suggested also by the continuum of morphological variability in the phenotypic space. On the other hand, hybridization conspicuously increased diversity in the nuclear rDNA cistron and somewhat weakened the host structural specificity of the P. lumbrici complex, whose members colonize a variety of phylogenetically closely related anecic and epigeic earthworms. By contrast, another recorded species, P. aporrectodeae sp. n., showed no signs of introgression, no variability in the rDNA cistron, and very high host specificity. These contrasting eco-evolutionary patterns indicate that hybridization might decrease the alpha-diversity by dissolving species boundaries, weaken the structural host specificity by broadening ecological amplitudes, and increase the nuclear rDNA variability by overcoming concerted evolution within the P. lumbrici species complex.
Collapse
Affiliation(s)
| | | | | | - Peter Vďačný
- Department of Zoology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| |
Collapse
|
3
|
Lewanski AL, Golcher-Benavides J, Rick JA, Wagner CE. Variable hybridization between two Lake Tanganyikan cichlid species in recent secondary contact. Mol Ecol 2022; 31:5041-5059. [PMID: 35913373 DOI: 10.1111/mec.16636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 12/01/2022]
Abstract
Closely related taxa frequently exist in sympatry before the evolution of robust reproductive barriers, which can lead to substantial gene flow. Post-divergence gene flow can promote several disparate trajectories of divergence ranging from the erosion of distinctiveness and eventual collapse of the taxa to the strengthening of reproductive isolation. Among many relevant factors, understanding the demographic history of divergence (e.g. divergence time, extent of historical gene flow) can be particularly informative when examining contemporary gene flow between closely related taxa because this history can influence gene flow's prevalence and consequences. Here, we used genotyping-by-sequencing data to investigate speciation and contemporary hybridization in two closely related and sympatrically distributed Lake Tanganyikan cichlid species in the genus Petrochromis. Demographic modeling supported a speciation scenario involving divergence in isolation followed by secondary contact with bidirectional gene flow. Further investigation of this recent gene flow found evidence of ongoing hybridization between the species that varied in extent between different co-occurring populations. Relationships between abundance and the degree of admixture across populations suggest that the availability of conspecific mates may influence patterns of hybridization. These results, together with the observation that sets of recently diverged cichlid taxa are generally geographically separated in the lake, suggest that ongoing speciation in Lake Tanganyikan cichlids relies on initial spatial isolation. Additionally, the spatially heterogeneous patterns of admixture between the Petrochromis species illustrates the complexities of hybridization when species are in recent secondary contact.
Collapse
Affiliation(s)
| | - Jimena Golcher-Benavides
- Department of Botany, University of Wyoming, Laramie, WY, USA.,Program in Ecology, University of Wyoming, Laramie, WY, USA
| | - Jessica A Rick
- Department of Botany, University of Wyoming, Laramie, WY, USA.,Program in Ecology, University of Wyoming, Laramie, WY, USA
| | - Catherine E Wagner
- Department of Botany, University of Wyoming, Laramie, WY, USA.,Program in Ecology, University of Wyoming, Laramie, WY, USA.,Biodiversity Institute, University of Wyoming, Laramie, WY, USA
| |
Collapse
|
4
|
Singh P, Irisarri I, Torres‐Dowdall J, Thallinger GG, Svardal H, Lemmon EM, Lemmon AR, Koblmüller S, Meyer A, Sturmbauer C. Phylogenomics of trophically diverse cichlids disentangles processes driving adaptive radiation and repeated trophic transitions. Ecol Evol 2022; 12:e9077. [PMID: 35866021 PMCID: PMC9288888 DOI: 10.1002/ece3.9077] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 05/28/2022] [Accepted: 05/31/2022] [Indexed: 11/12/2022] Open
Abstract
Cichlid fishes of the tribe Tropheini are a striking case of adaptive radiation, exemplifying multiple trophic transitions between herbivory and carnivory occurring in sympatry with other established cichlid lineages. Tropheini evolved highly specialized eco-morphologies to exploit similar trophic niches in different ways repeatedly and rapidly. To better understand the evolutionary history and trophic adaptations of this lineage, we generated a dataset of 532 targeted loci from 21 out of the 22 described Tropheini species. We resolved the Tropheini into seven monophyletic genera and discovered one to be polyphyletic. The polyphyletic genus, Petrochromis, represents three convergent origins of the algae grazing trophic specialization. This repeated evolution of grazing may have been facilitated by adaptive introgression as we found evidence for gene flow among algae grazing genera. We also found evidence of gene flow among algae browsing genera, but gene flow was restricted between herbivorous and carnivorous genera. Furthermore, we observed no evidence supporting a hybrid origin of this radiation. Our molecular evolutionary analyses suggest that opsin genes likely evolved in response to selection pressures associated with trophic ecology in the Tropheini. We found surprisingly little evidence of positive selection in coding regions of jaw-shaping genes in this trophically diverse lineage. This suggests low degrees of freedom for further change in these genes, and possibly a larger role for regulatory variation in driving jaw adaptations. Our study emphasizes Tropheini cichlids as an important model for studying the evolution of trophic specialization and its role in speciation.
Collapse
Affiliation(s)
- Pooja Singh
- Institute of BiologyUniversity of GrazGrazAustria
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of BiologyUniversity of KonstanzConstanceGermany
- Institute of Ecology and EvolutionUniversity of BernBernSwitzerland
| | - Iker Irisarri
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of BiologyUniversity of KonstanzConstanceGermany
- Leibniz Institute for the Analysis of Biodiversity Change (LIB), Zoological Museum HamburgHamburgGermany
| | - Julián Torres‐Dowdall
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of BiologyUniversity of KonstanzConstanceGermany
| | - Gerhard G. Thallinger
- Institute of Biomedical InformaticsGraz University of TechnologyGrazAustria
- OMICS Center Graz, BioTechMed GrazGrazAustria
| | - Hannes Svardal
- Department of BiologyUniversity of AntwerpAntwerpBelgium
- Naturalis Biodiversity CenterLeidenThe Netherlands
| | - Emily Moriarty Lemmon
- Department of Biological ScienceFlorida State University, Biomedical Research FacilityTallahasseeFloridaUSA
| | - Alan R. Lemmon
- Department of Biological ScienceFlorida State University, Biomedical Research FacilityTallahasseeFloridaUSA
| | | | - Axel Meyer
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of BiologyUniversity of KonstanzConstanceGermany
| | | |
Collapse
|
5
|
Kirschner P, Arthofer W, Pfeifenberger S, Záveská E, Schönswetter P, Steiner FM, Schlick-Steiner BC. Performance comparison of two reduced-representation based genome-wide marker-discovery strategies in a multi-taxon phylogeographic framework. Sci Rep 2021; 11:3978. [PMID: 33597550 PMCID: PMC7889850 DOI: 10.1038/s41598-020-79778-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 12/09/2020] [Indexed: 01/31/2023] Open
Abstract
Multi-locus genetic data are pivotal in phylogenetics. Today, high-throughput sequencing (HTS) allows scientists to generate an unprecedented amount of such data from any organism. However, HTS is resource intense and may not be accessible to wide parts of the scientific community. In phylogeography, the use of HTS has concentrated on a few taxonomic groups, and the amount of data used to resolve a phylogeographic pattern often seems arbitrary. We explore the performance of two genetic marker sampling strategies and the effect of marker quantity in a comparative phylogeographic framework focusing on six species (arthropods and plants). The same analyses were applied to data inferred from amplified fragment length polymorphism fingerprinting (AFLP), a cheap, non-HTS based technique that is able to straightforwardly produce several hundred markers, and from restriction site associated DNA sequencing (RADseq), a more expensive, HTS-based technique that produces thousands of single nucleotide polymorphisms. We show that in four of six study species, AFLP leads to results comparable with those of RADseq. While we do not aim to contest the advantages of HTS techniques, we also show that AFLP is a robust technique to delimit evolutionary entities in both plants and animals. The demonstrated similarity of results from the two techniques also strengthens biological conclusions that were based on AFLP data in the past, an important finding given the wide utilization of AFLP over the last decades. We emphasize that whenever the delimitation of evolutionary entities is the central goal, as it is in many fields of biodiversity research, AFLP is still an adequate technique.
Collapse
Affiliation(s)
- Philipp Kirschner
- grid.5771.40000 0001 2151 8122Department of Ecology, University of Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria ,grid.5771.40000 0001 2151 8122Department of Botany, University of Innsbruck, Sternwartestraße 15, 6020 Innsbruck, Austria
| | - Wolfgang Arthofer
- grid.5771.40000 0001 2151 8122Department of Ecology, University of Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Stefanie Pfeifenberger
- grid.5771.40000 0001 2151 8122Department of Ecology, University of Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Eliška Záveská
- grid.5771.40000 0001 2151 8122Department of Botany, University of Innsbruck, Sternwartestraße 15, 6020 Innsbruck, Austria
| | - Peter Schönswetter
- grid.5771.40000 0001 2151 8122Department of Botany, University of Innsbruck, Sternwartestraße 15, 6020 Innsbruck, Austria
| | | | - Florian M. Steiner
- grid.5771.40000 0001 2151 8122Department of Ecology, University of Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Birgit C. Schlick-Steiner
- grid.5771.40000 0001 2151 8122Department of Ecology, University of Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| |
Collapse
|
6
|
Ferreira AS, Lima AP, Jehle R, Ferrão M, Stow A. The Influence of Environmental Variation on the Genetic Structure of a Poison Frog Distributed Across Continuous Amazonian Rainforest. J Hered 2020; 111:457-470. [PMID: 32827440 DOI: 10.1093/jhered/esaa034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/20/2020] [Indexed: 11/13/2022] Open
Abstract
Biogeographic barriers such as rivers have been shown to shape spatial patterns of biodiversity in the Amazon basin, yet relatively little is known about the distribution of genetic variation across continuous rainforest. Here, we characterize the genetic structure of the brilliant-thighed poison frog (Allobates femoralis) across an 880-km-long transect along the Purus-Madeira interfluve south of the Amazon river, based on 64 individuals genotyped at 7609 single-nucleotide polymorphism (SNP) loci. A population tree and clustering analyses revealed 4 distinct genetic groups, one of which was strongly divergent. These genetic groups were concomitant with femoral spot coloration differences, which was intermediate within a zone of admixture between two of the groups. The location of these genetic groups did not consistently correspond to current ecological transitions between major forest types. A multimodel approach to quantify the relative influence of isolation-by-geographic distance (IBD) and isolation-by-environmental resistance (IBR) nevertheless revealed that, in addition to a strong signal of IBD, spatial genetic differentiation was explained by IBR primarily linked to dry season intensity (r2 = 8.4%) and canopy cover (r2 = 6.4%). We show significant phylogenetic divergence in the absence of obvious biogeographical barriers and that finer-scaled measures of genetic structure are associated with environmental variables also known to predict the density of A. femoralis.
Collapse
Affiliation(s)
- Anthony S Ferreira
- Programa de Capacitação Institucional, Instituto Nacional de Pesquisas da Amazônia, Manaus, Amazonas, Brazil
| | - Albertina P Lima
- Coordenacão de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Manaus, Amazonas, Brazil
| | - Robert Jehle
- School of Science, Engineering and Environment, University of Salford, Salford, UK
| | - Miquéias Ferrão
- Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| | - Adam Stow
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
7
|
Congruent geographic variation in saccular otolith shape across multiple species of African cichlids. Sci Rep 2020; 10:12820. [PMID: 32733082 PMCID: PMC7393159 DOI: 10.1038/s41598-020-69701-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/10/2020] [Indexed: 12/13/2022] Open
Abstract
The otoliths of teleost fishes exhibit a great deal of inter- and intra-species shape variation. The ecomorphology of the saccular otolith is often studied by comparing its shape across species and populations inhabiting a range of environments. However, formal tests are often lacking to examine how closely variation in otolith shape follows the genetic drift of a neutral trait. Here, we examine patterns of saccular otolith shape variation in four species of African cichlid fishes, each sampled from three field sites. All four species showed the greatest level of otolith shape variation along two principal component axes, one pertaining to otolith height and another to the prominence of an anterior notch. Fish collected from the same site possessed similarities in saccular otolith shape relative to fish from other sites, and these ‘site-difference’ signatures were consistent across species and observable in both sexes. Sex-differences in saccular otolith shape differed in magnitude from site to site. Population differences in saccular otolith shape did not covary with neutral genetic differentiation between those populations. Otolith height, in particular, displayed large site similarities across species, weak correlation with neutral genetic variation, and strong sex differences, collectively suggesting that otolith shape represents a selectively non-neutral trait.
Collapse
|
8
|
Kmentová N, Bray RA, Koblmüller S, Artois T, De Keyzer ELR, Gelnar M, Vanhove MPM, Georgieva S. Uncharted digenean diversity in Lake Tanganyika: cryptogonimids (Digenea: Cryptogonimidae) infecting endemic lates perches (Actinopterygii: Latidae). Parasit Vectors 2020; 13:221. [PMID: 32357898 PMCID: PMC7195733 DOI: 10.1186/s13071-020-3913-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 01/24/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Lake Tanganyika is considered a biodiversity hotspot with exceptional species richness and level of endemism. Given the global importance of the lake in the field of evolutionary biology, the understudied status of its parasite fauna is surprising with a single digenean species reported to date. Although the most famous group within the lake's fish fauna are cichlids, the pelagic zone is occupied mainly by endemic species of clupeids (Actinopterygii: Clupeidae) and lates perches (Actinopterygii: Latidae, Lates Cuvier), which are an important commercial source for local fisheries. In this study, we focused on the lake's four lates perches and targeted their thus far unexplored endoparasitic digenean fauna. METHODS A total of 85 lates perches from four localities in Lake Tanganyika were examined. Cryptogonimid digeneans were studied by means of morphological and molecular characterisation. Partial sequences of the nuclear 28S rRNA gene and the mitochondrial cytochrome c oxidase subunit 1 (cox1) gene were sequenced for a representative subset of the specimens recovered. Phylogenetic analyses were conducted at the family level under Bayesian inference. RESULTS Our integrative approach revealed the presence of six species within the family Cryptogonimidae Ward, 1917. Three out of the four species of Lates were found to be infected with at least one cryptogonimid species. Two out of the three reported genera are new to science. Low interspecific but high intraspecific phenotypic and genetic diversity was found among Neocladocystis spp. Phylogenetic inference based on partial 28S rDNA sequences revealed a sister group relationship for two of the newly erected genera and their close relatedness to the widely distributed genus Acanthostomum Looss, 1899. CONCLUSIONS The present study provides the first comprehensive characterisation of the digenean diversity in a fish family from Lake Tanganyika which will serve as a baseline for future explorations of the lake's digenean fauna. Our study highlights the importance of employing an integrative approach for revealing the diversity in this unique host-parasite system.
Collapse
Affiliation(s)
- Nikol Kmentová
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
- Centre for Environmental Sciences, Research Group Zoology: Biodiversity & Toxicology, Hasselt University, Agoralaan Gebouw D, 3590 Diepenbeek, Belgium
- Laboratory of Biodiversity and Evolutionary Genomics, Department of Biology, KU Leuven, Ch. Deberiotstraat 32, 3000 Leuven, Belgium
| | - Rodney A. Bray
- Parasitic Worms Division, Department of Life Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD UK
| | - Stephan Koblmüller
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
| | - Tom Artois
- Centre for Environmental Sciences, Research Group Zoology: Biodiversity & Toxicology, Hasselt University, Agoralaan Gebouw D, 3590 Diepenbeek, Belgium
| | - Els Lea R. De Keyzer
- Laboratory of Biodiversity and Evolutionary Genomics, Department of Biology, KU Leuven, Ch. Deberiotstraat 32, 3000 Leuven, Belgium
| | - Milan Gelnar
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Maarten P. M. Vanhove
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
- Centre for Environmental Sciences, Research Group Zoology: Biodiversity & Toxicology, Hasselt University, Agoralaan Gebouw D, 3590 Diepenbeek, Belgium
- Laboratory of Biodiversity and Evolutionary Genomics, Department of Biology, KU Leuven, Ch. Deberiotstraat 32, 3000 Leuven, Belgium
- Zoology Unit, Finnish Museum of Natural History, University of Helsinki, P.O.Box 17, Helsinki, 00014 Finland
| | - Simona Georgieva
- Cavanilles Institute of Biodiversity and Evolutionary Biology, Science Park, University of Valencia, P.O. Box 46071, Valencia, Spain
| |
Collapse
|
9
|
Weak population structure and recent demographic expansion of the monogenean parasite Kapentagyrus spp. infecting clupeid fishes of Lake Tanganyika, East Africa. Int J Parasitol 2020; 50:471-486. [PMID: 32277985 DOI: 10.1016/j.ijpara.2020.02.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 02/14/2020] [Accepted: 02/18/2020] [Indexed: 11/22/2022]
Abstract
Lake Tanganyika, East Africa, is the oldest and deepest African Great Lake and harbours one of the most diverse fish assemblages on earth. Two clupeid fishes, Limnothrissa miodon and Stolothrissa tanganicae, constitute a major part of the total fish catch, making them indispensable for local food security. Parasites have been proposed as indicators of stock structure in highly mobile pelagic hosts. We examined the monogeneans Kapentagyrus limnotrissae and Kapentagyrus tanganicanus (Dactylogyridae) infecting these clupeids to explore the parasites' lake-wide population structure and patterns of demographic history. Samples were collected at seven sites distributed across three sub-basins of the lake. Intraspecific morphological variation of the monogeneans (n = 380) was analysed using morphometrics and geomorphometrics of sclerotised structures. Genetic population structure of both parasite species (n = 246) was assessed based on a 415 bp fragment of the mitochondrial cytochrome c oxidase subunit I (COI) gene. Overall, we observed a lack of clear geographical morphological differentiation in both parasites along a north-south axis. This lack of geographical population structure was also reflected by a large proportion of shared haplotypes, and a pattern of seemingly unrestricted gene flow between populations. Significant morphological and genetic differentiation between some populations might reflect temporal differentiation rather than geographical isolation. Overall, the shallow population structure of both species of Kapentagyrus reflects the near-panmictic population structure of both host species as previously reported. Morphological differences related to host species identity of K. tanganicanus were consistent with incipient speciation at the genetic level. Both parasite species experienced a recent demographic expansion, which might be linked to paleohydrological events. Finally, interspecific hybridisation was found in Kapentagyrus, representing the first case in dactylogyrid monogeneans.
Collapse
|
10
|
Rojas D, Lima AP, Momigliano P, Simões PI, Dudaniec RY, de Avila-Pires TCS, Hoogmoed MS, da Cunha Bitar YO, Kaefer IL, Amézquita A, Stow A. The evolution of polymorphism in the warning coloration of the Amazonian poison frog Adelphobates galactonotus. Heredity (Edinb) 2020; 124:439-456. [PMID: 31712747 PMCID: PMC7028985 DOI: 10.1038/s41437-019-0281-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/25/2019] [Accepted: 10/26/2019] [Indexed: 11/09/2022] Open
Abstract
While intraspecific variation in aposematic signals can be selected for by different predatory responses, their evolution is also contingent on other processes shaping genetic variation. We evaluate the relative contributions of selection, geographic isolation, and random genetic drift to the evolution of aposematic color polymorphism in the poison frog Adelphobates galactonotus, distributed throughout eastern Brazilian Amazonia. Dorsal coloration was measured for 111 individuals and genetic data were obtained from 220 individuals at two mitochondrial genes (mtDNA) and 7963 Single Nucleotide Polymorphisms (SNPs). Four color categories were described (brown, blue, yellow, orange) and our models of frog and bird visual systems indicated that each color was distinguishable for these taxa. Using outlier and correlative analyses we found no compelling genetic evidence for color being under divergent selection. A time-calibrated mtDNA tree suggests that the present distribution of dorsal coloration resulted from processes occurring during the Pleistocene. Separate phylogenies based on SNPs and mtDNA resolved the same well supported clades, each containing different colored populations. Ancestral character state analysis provided some evidence for evolutionary transitions in color type. Genetic structure was more strongly associated with geographic features, than color category, suggesting that the distribution of color is explained by localized processes. Evidence for geographic isolation together with estimates of low effective population size implicates drift as playing a key role in color diversification. Our results highlight the relevance of considering the neutral processes involved with the evolution of traits with important fitness consequences.
Collapse
Affiliation(s)
- Diana Rojas
- Programa de Pós-Graduação em Ecologia, Instituto Nacional de Pesquisas da Amazônia, Av. André Araújo 2936, P.O. Box 2223, Manaus, AM, 69011-970, Brazil
- Universidade Federal do Amazonas, Instituto de Natureza e Cultura, Rua 1º de Maio 05, Benjamin Constant, AM, 69630-000, Brazil
| | - Albertina P Lima
- Coordenação de Pesquisas em Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Av. André Araújo 2936, Manaus, AM, 69011-970, Brazil
| | - Paolo Momigliano
- Ecological Genetics Research Unit, Research Programme in Organismal and Evolutionary Biology, University of Helsinki, Helsinki, Finland
| | - Pedro Ivo Simões
- Coordenação de Pesquisas em Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Av. André Araújo 2936, Manaus, AM, 69011-970, Brazil
- Departamento de Zoologia, Centro de Biociências, Universidade Federal de Pernambuco, Av. Prof Moraes 1235, Recife, 50670-901, Brazil
| | - Rachael Y Dudaniec
- Department of Biological Sciences, Macquarie University, Balaclava Road, North Ryde, Sydney, NSW, 2109, Australia
| | | | - Marinus S Hoogmoed
- Museu Paraense Emilío Goeldi, Caixa Postal 399, Belém, PA, 66017-970, Brazil
| | - Youszef Oliveira da Cunha Bitar
- Programa de Pós-Graduação em Zoologia UFPA/Museu Paraense Emilio Goeldi, Universidade Federal do Pará, Instituto de Ciências Biológicas, Belém, PA, Brazil
| | - Igor L Kaefer
- Instituto de Ciências Biológicas, Universidade Federal do Amazonas, Av. Rodrigo Octávio 6200, Manaus, AM, 69077-000, Brazil
| | - Adolfo Amézquita
- Departamento de Ciencias Biológicas, Universidad de Los Andes, Bogotá, Colombia
| | - Adam Stow
- Department of Biological Sciences, Macquarie University, Balaclava Road, North Ryde, Sydney, NSW, 2109, Australia.
| |
Collapse
|
11
|
Cogălniceanu D, Stănescu F, Arntzen JW. Testing the hybrid superiority hypothesis in crested and marbled newts. J ZOOL SYST EVOL RES 2019. [DOI: 10.1111/jzs.12322] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Dan Cogălniceanu
- Faculty of Natural and Agricultural Sciences Ovidius University Constanţa Romania
- Chelonia Romania Bucharest Romania
| | - Florina Stănescu
- Faculty of Natural and Agricultural Sciences Ovidius University Constanţa Romania
- Chelonia Romania Bucharest Romania
| | | |
Collapse
|
12
|
Van Steenberge M, Raeymaekers JAM, Hablützel PI, Vanhove MPM, Koblmüller S, Snoeks J. Delineating species along shifting shorelines: Tropheus (Teleostei, Cichlidae) from the southern subbasin of Lake Tanganyika. Front Zool 2018; 15:42. [PMID: 30459820 PMCID: PMC6234679 DOI: 10.1186/s12983-018-0287-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 10/14/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Species delineation is particularly challenging in taxa with substantial intra-specific variation. In systematic studies of fishes, meristics and linear measurements that describe shape are often used to delineate species. Yet, little is known about the taxonomic value of these two types of morphological characteristics. Here, we used Tropheus (Teleostei, Cichlidae) from the southern subbasin of Lake Tanganyika to test which of these types of characters best matched genetic lineages that could represent species in this group of stenotypic rock-dwelling cichlids. We further investigated intra-population variation in morphology. By linking this to a proxy of a population's age, we could assess the evolutionary stability of different kinds of morphological markers. RESULTS Morphological data was collected from 570 specimens originating from 86 localities. An AFLP approach revealed the presence of five lineages in the southern subbasin: T. moorii, T. brichardi, T. sp. 'maculatus', T. sp. 'Mpimbwe' and T. sp. 'red', which we consider to represent distinct species. Although both types of morphological data supported this classification, a comparison of PST-values that describe inter-population morphological differentiation, revealed a better correspondence between the taxon delineation based on AFLP data and the patterns revealed by an analysis of meristics than between the AFLP-based taxon delineation and the patterns revealed by an analysis of shape. However, classifying southern populations of Tropheus was inherently difficult as they contained a large amount of clinal variation, both in genetic and in morphological data, and both within and among species. A scenario is put forward to explain the current-day distribution of the species and colour varieties and the observed clinal variation across the subbasin's shoreline. Additionally, we observed that variation in shape was larger in populations from shallow shores whereas populations from steep shores were more variable in meristics. This difference is explained in terms of the different timescales at which small and large scale lake level fluctuations affected populations of littoral cichlids at steep and shallow shores. CONCLUSIONS Our results showed meristics to be more evolutionary stable, and of higher taxonomic value for species delimitation in Tropheus, than linear measurements that describe shape. These results should be taken into account when interpreting morphological differences between populations of highly stenotypic species, such as littoral cichlids from the Great East African Lakes.
Collapse
Affiliation(s)
- Maarten Van Steenberge
- Vertebrates Section, Royal Museum for Central Africa, Leuvensesteenweg 13, 3080 Tervuren, Belgium
- Laboratory of Biodiversity and Evolutionary Genomics, University of Leuven, Charles Deberiotstraat 32, 3000 Leuven, Belgium
- Operational Directorate Taxonomy and Phylogeny, Royal Belgian Institute for Natural Sciences, Vautierstraat 29, 1000 Brussels, Belgium
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
| | | | - Pascal István Hablützel
- Laboratory of Biodiversity and Evolutionary Genomics, University of Leuven, Charles Deberiotstraat 32, 3000 Leuven, Belgium
- Flanders Marine Institute (VLIZ), Wandelaarkaai 7, 8400 Oostende, Belgium
| | - Maarten Pieterjan Maria Vanhove
- Laboratory of Biodiversity and Evolutionary Genomics, University of Leuven, Charles Deberiotstraat 32, 3000 Leuven, Belgium
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
- Centre for Environmental Sciences, Research Group Zoology: Biodiversity & Toxicology, Hasselt University, Agoralaan Gebouw D, B-3590 Diepenbeek, Belgium
- Zoology Unit, Finnish Museum of Natural History, University of Helsinki, P.O.Box 17, FI-00014 Helsinki, Finland
| | - Stephan Koblmüller
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
| | - Jos Snoeks
- Vertebrates Section, Royal Museum for Central Africa, Leuvensesteenweg 13, 3080 Tervuren, Belgium
- Laboratory of Biodiversity and Evolutionary Genomics, University of Leuven, Charles Deberiotstraat 32, 3000 Leuven, Belgium
| |
Collapse
|
13
|
Koblmüller S, Zangl L, Börger C, Daill D, Vanhove MPM, Sturmbauer C, Sefc KM. Only true pelagics mix: comparative phylogeography of deepwater bathybatine cichlids from Lake Tanganyika. HYDROBIOLOGIA 2018; 832:93-103. [PMID: 30880831 PMCID: PMC6394743 DOI: 10.1007/s10750-018-3752-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/28/2018] [Accepted: 08/29/2018] [Indexed: 05/15/2023]
Abstract
In the absence of dispersal barriers, species with great dispersal ability are expected to show little, if at all, phylogeographic structure. The East African Great Lakes and their diverse fish faunas provide opportunities to test this hypothesis in pelagic fishes, which are presumed to be highly mobile and unrestricted in their movement by physical barriers. Here, we address the link between panmixis and pelagic habitat use by comparing the phylogeographic structure among four deepwater cichlid species of the tribe Bathybatini from Lake Tanganyika. We show that the mitochondrial genealogies (based on the most variable part or the control region) of the four species are very shallow (0.8-4% intraspecific divergence across entire distribution ranges) and that all species experienced recent population growth. A lack of phylogeographic structure in the two eupelagic species, Bathybates fasciatus and B. leo, was consistent with expectations and with findings in other pelagic cichlid species. Contrary to expectations, a clear phylogeographic structure was detected in the two benthopelagic species, B. graueri and Hemibates stenosoma. Differences in genetic diversity between eupelagic and benthopelagic species may be due to differences in their dispersal propensity, mediated by their respective predatory niches, rather than precipitated by external barriers to dispersal.
Collapse
Affiliation(s)
- Stephan Koblmüller
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
- Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, Května 8, 603 65 Brno, Czech Republic
| | - Lukas Zangl
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
| | - Christine Börger
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
| | - Daniel Daill
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
- Consultants in Aquatic Ecology and Engineering – blattfisch e.U., Gabelsbergerstraße 7, 4600 Wels, Austria
| | - Maarten P. M. Vanhove
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 34 Brno, Czech Republic
- Research Group Zoology: Biodiversity & Toxicology, Centre for Environmental Sciences, Hasselt University, Agoralaan Gebouw D, 3590 Diepenbeek, Belgium
- Zoology Unit, Finnish Museum of Natural History, University of Helsinki, P.O. Box 17, 00014 Helsinki, Finland
- Laboratory of Biodiversity and Evolutionary Genomics, Department of Biology, University of Leuven, Ch. Deberiotstraat 32, 3000 Louvain, Belgium
| | - Christian Sturmbauer
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
| | - Kristina M. Sefc
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
| |
Collapse
|
14
|
Raffini F, Fruciano C, Meyer A. Morphological and genetic correlates in the left–right asymmetric scale-eating cichlid fish of Lake Tanganyika. Biol J Linn Soc Lond 2018. [DOI: 10.1093/biolinnean/bly024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Francesca Raffini
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, Universitätsstrasse, Konstanz, Germany
- International Max Planck Research School (IMPRS) for Organismal Biology, University of Konstanz, Konstanz, Germany
| | - Carmelo Fruciano
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, Universitätsstrasse, Konstanz, Germany
- School of Earth, Environmental and Biological Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Axel Meyer
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, Universitätsstrasse, Konstanz, Germany
- International Max Planck Research School (IMPRS) for Organismal Biology, University of Konstanz, Konstanz, Germany
- Radcliffe Institute for Advance Study, Harvard University, Cambridge, MA, USA
| |
Collapse
|
15
|
Kéver L, Parmentier E, Derycke S, Verheyen E, Snoeks J, Van Steenberge M, Poncin P. Limited possibilities for prezygotic barriers in the reproductive behaviour of sympatric Ophthalmotilapia species (Teleostei, Cichlidae). ZOOLOGY 2018; 126:71-81. [PMID: 29307727 DOI: 10.1016/j.zool.2017.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 11/30/2017] [Accepted: 12/02/2017] [Indexed: 10/18/2022]
Abstract
Since prezygotic rather than postzygotic barriers are believed to maintain the diversity of closely related sympatric cichlids, differences in phenotypic traits and reproductive behaviours are likely involved in maintaining species boundaries. Here, we focused on the reproductive behaviour of three Ophthalmotilapia species with distributions that only overlap on a small stretch of the shore line of Lake Tanganyika. Repeated introgression of mitochondrial DNA between these species was previously reported, which suggested they can hybridise. Our aim is to test the hypothesis that reproductive behaviour acts as a prezygotic barrier that prevents frequent hybridisation in sympatric Ophthalmotilapia species. We performed a quantitative analysis of twelve reproductions (four for O. ventralis, six for O. nasuta, one for O. boops, and one between a female O. ventralis and a male O. nasuta). Although similar ethograms were obtained for these reproductions, the O. ventralis and O. boops males displayed a behaviour that was never performed by O. nasuta males. This behaviour was displayed during courtship and we called it 'invite'. In O. ventralis, we could show that it was associated with the emission of a single pulse sound. The comparison of O. nasuta and O. ventralis reproductive behaviours also revealed some quantitative differences: O. ventralis males showed the location of the bower more often to the female, whereas O. ventralis females followed the male more often. The similarity between the reproductive behaviours in O. ventralis and O. nasuta could explain the occurrence of the heterospecific spawning event recorded between an O. nasuta male and an O. ventralis female. Importantly, few eggs were laid and the maternal mouthbrooding that resulted from this heterospecific reproduction only lasted for two days, which suggested the abortion of egg development. Hence, in the absence of conspecifics, courtship and mating behaviours alone do not constitute perfect prezygotic barriers between these two species.
Collapse
Affiliation(s)
- Loïc Kéver
- Laboratory of Fish and Amphibian Ethology, Behavioural Biology Unit, Liège University, 4000 Liège, Belgium; Laboratory of Functional and Evolutionary Morphology, Liège University, 4000 Liège, Belgium.
| | - Eric Parmentier
- Laboratory of Functional and Evolutionary Morphology, Liège University, 4000 Liège, Belgium
| | - Sofie Derycke
- Operational Directorate Taxonomy and phylogeny, Royal Belgian Institute of Natural Sciences, 1000 Brussels, Belgium; Department of Biology, Ghent University, 9000 Ghent, Belgium
| | - Erik Verheyen
- Operational Directorate Taxonomy and phylogeny, Royal Belgian Institute of Natural Sciences, 1000 Brussels, Belgium
| | - Jos Snoeks
- Section Vertebrates, Ichthyology, Royal Museum for Central Africa, 3080 Tervuren, Belgium; Laboratory of Biodiversity and Evolutionary Genomics, University of Leuven, 3000 Leuven, Belgium
| | - Maarten Van Steenberge
- Operational Directorate Taxonomy and phylogeny, Royal Belgian Institute of Natural Sciences, 1000 Brussels, Belgium; Section Vertebrates, Ichthyology, Royal Museum for Central Africa, 3080 Tervuren, Belgium; Laboratory of Biodiversity and Evolutionary Genomics, University of Leuven, 3000 Leuven, Belgium
| | - Pascal Poncin
- Laboratory of Fish and Amphibian Ethology, Behavioural Biology Unit, Liège University, 4000 Liège, Belgium
| |
Collapse
|