1
|
Jones JA, Newton IG, Moczek AP. Microbiome composition and turnover in the face of complex lifecycles and bottlenecks: insights through the study of dung beetles. Appl Environ Microbiol 2025; 91:e0127824. [PMID: 39704535 PMCID: PMC11784073 DOI: 10.1128/aem.01278-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 11/04/2024] [Indexed: 12/21/2024] Open
Abstract
Microbiome composition and function often change throughout a host's life cycle, reflecting shifts in the ecological niche of the host. The mechanisms that establish these relationships are therefore important dimensions of host ecology and evolution; yet, their nature remains poorly understood. Here, we sought to investigate the microbial communities associated with the complex life cycle of the dung beetle Onthophagus taurus and the relative contributions of host life stage, sex, and environment in determining microbiome assembly. We find that O. taurus plays host to a diverse microbiota that undergo drastic community shifts throughout host development, influenced by host life stage, environmental microbiota, and, to a lesser degree, sex. Contrary to predictions, we found that egg and pupal stages-despite the absence of a digestive tract or defined microbe-storing organs-do not constrain microbial maintenance, while host-constructed environments, such as a maternally derived fecal pellet or the pupal chamber constructed by late larvae, may still serve as complementary microbial refugia for select taxa. Lastly, we identify a small community of putative core microbiota likely to shape host development and fitness. Our results provide important insights into mechanisms employed by solitary organisms to assemble, maintain, and adjust beneficial microbiota to confront life-stage-specific needs and challenges. IMPORTANCE As the influence of symbionts on host ecology, evolution, and development has become more apparent so has the importance of understanding how hosts facilitate the reliable maintenance of their interactions with these symbionts. A growing body of work has thus begun to identify diverse behaviors and physiological mechanisms underpinning the selective colonization of beneficial symbionts across a range of host taxa. Yet, how organisms with complex life cycles, such as holometabolous insects, establish and maintain key symbionts remains poorly understood. This is particularly interesting considering the drastic transformations of both internal and external host morphology, and the ecological niche shifts in diet and environment, that are the hallmark of metamorphosis. This work investigates the dynamic changes of the microbiota associated with the complex life cycle and host-constructed environments of the bull-headed dung beetle, Onthophagus taurus, a useful model for understanding how organisms may maintain and modulate their microbiota across development.
Collapse
Affiliation(s)
- Joshua A. Jones
- Department of Biology, Indiana University Bloomington, Bloomington, Indiana, USA
| | - Irene Garcia Newton
- Department of Biology, Indiana University Bloomington, Bloomington, Indiana, USA
| | - Armin P. Moczek
- Department of Biology, Indiana University Bloomington, Bloomington, Indiana, USA
| |
Collapse
|
2
|
Rohner PT, Moczek AP. Vertically inherited microbiota and environment modifying behaviours conceal genetic variation in dung beetle life history. Proc Biol Sci 2024; 291:20240122. [PMID: 38628120 PMCID: PMC11021930 DOI: 10.1098/rspb.2024.0122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/15/2024] [Indexed: 04/19/2024] Open
Abstract
Diverse organisms actively manipulate their (sym)biotic and physical environment in ways that feed back on their own development. However, the degree to which these processes affect microevolution remains poorly understood. The gazelle dung beetle both physically modifies its ontogenetic environment and structures its biotic interactions through vertical symbiont transmission. By experimentally eliminating (i) physical environmental modifications and (ii) the vertical inheritance of microbes, we assess how environment modifying behaviour and microbiome transmission shape heritable variation and evolutionary potential. We found that depriving larvae of symbionts and environment modifying behaviours increased additive genetic variance and heritability for development time but not body size. This suggests that larvae's ability to manipulate their environment has the potential to modify heritable variation and to facilitate the accumulation of cryptic genetic variation. This cryptic variation may become released and selectable when organisms encounter environments that are less amenable to organismal manipulation or restructuring. Our findings also suggest that intact microbiomes, which are commonly thought to increase genetic variation of their hosts, may instead reduce and conceal heritable variation. More broadly, our findings highlight that the ability of organisms to actively manipulate their environment may affect the potential of populations to evolve when encountering novel, stressful conditions.
Collapse
Affiliation(s)
- Patrick T. Rohner
- Department of Ecology, Behavior, and Evolution, University of California San Diego, La Jolla, CA 92093, USA
- Department of Biology, Indiana University Bloomington, Bloomington, IN 47405, USA
| | - Armin P. Moczek
- Department of Biology, Indiana University Bloomington, Bloomington, IN 47405, USA
| |
Collapse
|
3
|
Rohner PT, Jones JA, Moczek AP. Plasticity, symbionts and niche construction interact in shaping dung beetle development and evolution. J Exp Biol 2024; 227:jeb245976. [PMID: 38449332 DOI: 10.1242/jeb.245976] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Developmental plasticity is an important product of evolutionary processes, allowing organisms to maintain high fitness in the face of environmental perturbations. Once evolved, plasticity also has the potential to influence subsequent evolutionary outcomes, for example, by shaping phenotypic variation visible to selection and facilitating the emergence of novel trait variants. Furthermore, organisms may not just respond to environmental conditions through plasticity but may also actively modify the abiotic and (sym)biotic environments to which they themselves respond, causing plasticity to interact in complex ways with niche construction. Here, we explore developmental mechanisms and evolutionary consequences of plasticity in horned dung beetles. First, we discuss how post-invasion evolution of plasticity in an introduced Onthophagus species facilitated rapid range expansion and concurrent local adaptation of life history and morphology to novel climatic conditions. Second, we discuss how, in addition to plastically responding to variation in nutritional conditions, dung beetles engage in behaviors that modify the environment that they themselves respond to during later development. We document that these environment-modifying behaviors mask heritable variation for life history traits within populations, thereby shielding genetic variants from selection. Such cryptic genetic variation may be released and become selectable when these behaviors are compromised. Together, this work documents the complex interactions between plasticity, symbionts and niche construction, and highlights the usefulness of an integrative Eco-Evo-Devo framework to study the varied mechanisms and consequences of plasticity in development and evolution.
Collapse
Affiliation(s)
- Patrick T Rohner
- Department of Biology, Indiana University Bloomington, Bloomington, IN47405, USA
- Department of Ecology, Behavior, and Evolution, University of California San Diego, La Jolla, CA 92093, USA
| | - Joshua A Jones
- Department of Biology, Indiana University Bloomington, Bloomington, IN47405, USA
| | - Armin P Moczek
- Department of Biology, Indiana University Bloomington, Bloomington, IN47405, USA
| |
Collapse
|
4
|
Nuño de la Rosa L. Agency in Reproduction. Evol Dev 2023; 25:418-429. [PMID: 37243316 DOI: 10.1111/ede.12440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 03/22/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023]
Abstract
While niche construction theory and developmental approaches to evolution have brought to the front the active role of organisms as ecological and developmental agents, respectively, the role of agents in reproduction has been widely neglected by organismal perspectives of evolution. This paper addresses this problem by proposing an agential view of reproduction and shows that such a perspective has implications for the explanation of the origin of modes of reproduction, the evolvability of reproductive modes, and the coevolution between reproduction and social behavior. After introducing the two prevalent views of agency in evolutionary biology, namely those of organismal agency and selective agency, I contrast these two perspectives as applied to the evolution of animal reproduction. Taking eutherian pregnancy as a case study, I wonder whether organismal approaches to agency forged in the frame of niche construction and developmental plasticity theories can account for the goal-directed activities involved in reproductive processes. I conclude that the agential role of organisms in reproduction is irreducible to developmental and ecological agency, and that reproductive goals need to be included into our definitions of organismal agency. I then explore the evolutionary consequences of endorsing an agential approach to reproduction, showing how such an approach might illuminate our understanding of the evolutionary origination and developmental evolvability of reproductive modes. Finally, I analyze recent studies on the coevolution between viviparity and social behavior in vertebrates to suggest that an agential notion of reproduction can provide unforeseen links between developmental and ecological agency.
Collapse
Affiliation(s)
- Laura Nuño de la Rosa
- Department of Logic and Theoretical Philosophy, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
5
|
Rohner PT, Moczek AP. Vertically inherited microbiota and environment-modifying behaviors indirectly shape the exaggeration of secondary sexual traits in the gazelle dung beetle. Ecol Evol 2023; 13:e10666. [PMID: 37915805 PMCID: PMC10616735 DOI: 10.1002/ece3.10666] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/05/2023] [Accepted: 10/13/2023] [Indexed: 11/03/2023] Open
Abstract
Many organisms actively manipulate the environment in ways that feed back on their own development, a process referred to as developmental niche construction. Yet, the role that constructed biotic and abiotic environments play in shaping phenotypic variation and its evolution is insufficiently understood. Here, we assess whether environmental modifications made by developing dung beetles impact the environment-sensitive expression of secondary sexual traits. Gazelle dung beetles both physically modify their ontogenetic environment and structure their biotic interactions through the vertical inheritance of microbial symbionts. By experimentally eliminating (i) physical environmental modifications and (ii) the vertical inheritance of microbes, we assess the degree to which (sym)biotic and physical environmental modifications shape the exaggeration of several traits varying in their degree and direction of sexual dimorphism. We expected the experimental reduction of a larva's ability to shape its environment to affect trait size and scaling, especially for traits that are sexually dimorphic and environmentally plastic. We find that compromised developmental niche construction indeed shapes sexual dimorphism in overall body size and the absolute sizes of male-limited exaggerated head horns, the strongly sexually dimorphic fore tibia length and width, as well as the weakly dimorphic elytron length and width. This suggests that environmental modifications affect sex-specific phenotypic variation in functional traits. However, most of these effects can be attributed to nutrition-dependent plasticity in size and non-isometric trait scaling rather than body-size-independent effects on the developmental regulation of trait size. Our findings suggest that the reciprocal relationship between developing organisms, their symbionts, and their environment can have considerable impacts on sexual dimorphism and functional morphology.
Collapse
Affiliation(s)
- Patrick T. Rohner
- Department of BiologyIndiana University BloomingtonBloomingtonIndianaUSA
- Department of Ecology, Behavior and EvolutionUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Armin P. Moczek
- Department of BiologyIndiana University BloomingtonBloomingtonIndianaUSA
| |
Collapse
|
6
|
Nadolski EM, Moczek AP. Promises and limits of an agency perspective in evolutionary developmental biology. Evol Dev 2023; 25:371-392. [PMID: 37038309 DOI: 10.1111/ede.12432] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/23/2023] [Accepted: 03/02/2023] [Indexed: 04/12/2023]
Abstract
An agent-based perspective in the study of complex systems is well established in diverse disciplines, yet is only beginning to be applied to evolutionary developmental biology. In this essay, we begin by defining agency and associated terminology formally. We then explore the assumptions and predictions of an agency perspective, apply these to select processes and key concept areas relevant to practitioners of evolutionary developmental biology, and consider the potential epistemic roles that an agency perspective might play in evo devo. Throughout, we discuss evidence supportive of agential dynamics in biological systems relevant to evo devo and explore where agency thinking may enrich the explanatory reach of research efforts in evolutionary developmental biology.
Collapse
Affiliation(s)
- Erica M Nadolski
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Armin P Moczek
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
7
|
Charabidze D, Aubernon C. Aggregation in an heterospecific population of blowfly larvae: social behaviour is impacted by species-specific thermal requirements and settlement order. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220098. [PMID: 37066644 PMCID: PMC10107231 DOI: 10.1098/rstb.2022.0098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 02/22/2023] [Indexed: 04/18/2023] Open
Abstract
Larvae of several blowfly species grow on carcasses and actively aggregate together. They face harsh developmental conditions resulting in a strong pressure to reduce development time: this is achieved either through thermoregulation or aggregation. We investigate how these two developmental strategies are modulated within heterospecific groups. In a first experiment, larvae of two species with different thermal requirements were deposited simultaneously on a thermal gradient. This resulted in the formation of two monospecific groups, each located at the species-specific thermal preferendum. However, when Calliphora vomitoria (Linnaeus) larvae were placed first, the later arriving Lucilia sericata (Meigen) larvae attracted the whole group to its own thermal preferendum. In the reverse experiment, half of the replicates resulted in single dense heterospecific groups observed at temperatures ranging from C. vomitoria to L. sericata preferendum. The other half of the replicates resulted in loose groups spread out on the thermal gradient. These results highlight the emergence of collective decisions ranging from thermal optimization to heterospecific aggregation at suboptimal temperatures. They demonstrate that species settlement order strongly affects self-organization processes and mixed-species group formation. We conclude that thermal optimization and heterospecific niche construction are two developmental strategies of carrion fly larvae. This article is part of the theme issue 'Mixed-species groups and aggregations: shaping ecological and behavioural patterns and processes'.
Collapse
Affiliation(s)
- Damien Charabidze
- Centre d'Histoire Judiciaire, UMR 8025, University of Lille, 59000 Lille, France
- University of Lille, 59000 Lille, France
| | | |
Collapse
|
8
|
Mosquera KD, Martínez Villegas LE, Rocha Fernandes G, Rocha David M, Maciel-de-Freitas R, A Moreira L, Lorenzo MG. Egg-laying by female Aedes aegypti shapes the bacterial communities of breeding sites. BMC Biol 2023; 21:97. [PMID: 37101136 PMCID: PMC10134544 DOI: 10.1186/s12915-023-01605-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 04/18/2023] [Indexed: 04/28/2023] Open
Abstract
BACKGROUND Aedes aegypti, the main arboviral mosquito vector, is attracted to human dwellings and makes use of human-generated breeding sites. Past research has shown that bacterial communities associated with such sites undergo compositional shifts as larvae develop and that exposure to different bacteria during larval stages can have an impact on mosquito development and life-history traits. Based on these facts, we hypothesized that female Ae. aegypti shape the bacteria communities of breeding sites during oviposition as a form of niche construction to favor offspring fitness. RESULTS To test this hypothesis, we first verified that gravid females can act as mechanical vectors of bacteria. We then elaborated an experimental scheme to test the impact of oviposition on breeding site microbiota. Five different groups of experimental breeding sites were set up with a sterile aqueous solution of larval food, and subsequently exposed to (1) the environment alone, (2) surface-sterilized eggs, (3) unsterilized eggs, (4) a non-egg laying female, or (5) oviposition by a gravid female. The microbiota of these differently treated sites was assessed by amplicon-oriented DNA sequencing once the larvae from the sites with eggs had completed development and formed pupae. Microbial ecology analyses revealed significant differences between the five treatments in terms of diversity. In particular, between-treatment shifts in abundance profiles were detected, showing that females induce a significant decrease in microbial alpha diversity through oviposition. In addition, indicator species analysis pinpointed bacterial taxa with significant predicting values and fidelity coefficients for the samples in which single females laid eggs. Furthermore, we provide evidence regarding how one of these indicator taxa, Elizabethkingia, exerts a positive effect on the development and fitness of mosquito larvae. CONCLUSIONS Ovipositing females impact the composition of the microbial community associated with a breeding site, promoting certain bacterial taxa over those prevailing in the environment. Among these bacteria, we found known mosquito symbionts and showed that they can improve offspring fitness if present in the water where eggs are laid. We deem this oviposition-mediated bacterial community shaping as a form of niche construction initiated by the gravid female.
Collapse
Affiliation(s)
- Katherine D Mosquera
- Vector Behavior and Pathogen Interaction Group, René Rachou Institute-FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
| | - Luis Eduardo Martínez Villegas
- Department of Entomology, The Ohio State University, 2001 Fyffe Rd., Room 232 Howlett Hall, Columbus, OH, 43210, USA
- Mosquito Vectors: Endosymbionts and Pathogen-Vector Interactions Group, René Rachou Institute-FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
| | | | - Mariana Rocha David
- Laboratory of Hematozoa Transmitting Mosquitoes, Oswaldo Cruz Institute-FIOCRUZ, Rio de Janeiro, Brazil
| | - Rafael Maciel-de-Freitas
- Laboratory of Hematozoa Transmitting Mosquitoes, Oswaldo Cruz Institute-FIOCRUZ, Rio de Janeiro, Brazil
| | - Luciano A Moreira
- Mosquito Vectors: Endosymbionts and Pathogen-Vector Interactions Group, René Rachou Institute-FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
| | - Marcelo G Lorenzo
- Vector Behavior and Pathogen Interaction Group, René Rachou Institute-FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
9
|
Moczek AP. When the end modifies its means: the origins of novelty and the evolution of innovation. Biol J Linn Soc Lond 2022. [DOI: 10.1093/biolinnean/blac061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
The origin of novel complex traits constitutes a central yet largely unresolved challenge in evolutionary biology. Intriguingly, many of the most promising breakthroughs in understanding the genesis of evolutionary novelty in recent years have occurred not in evolutionary biology itself, but through the comparative study of development and, more recently, the interface of developmental biology and ecology. Here, I discuss how these insights are changing our understanding of what matters in the origin of novel, complex traits in ontogeny and evolution. Specifically, my essay has two major objectives. First, I discuss how the nature of developmental systems biases the production of phenotypic variation in the face of novel or stressful environments toward functional, integrated and, possibly, adaptive variants. This, in turn, allows the production of novel phenotypes to precede (rather than follow) changes in genotype and allows developmental processes that are the product of past evolution to shape evolutionary change that has yet to occur. Second, I explore how this nature of developmental systems has itself evolved over time, increasing the repertoire of ontogenies to pursue a wider range of objectives across an expanding range of conditions, thereby creating an increasingly extensive affordance landscape in development and developmental evolution. Developmental systems and their evolution can thus be viewed as dynamic processes that modify their own means across ontogeny and phylogeny. The study of these dynamics necessitates more than the strict reductionist approach that currently dominates the fields of developmental and evolutionary developmental biology.
Collapse
Affiliation(s)
- Armin P Moczek
- Department of Biology, Indiana University , Bloomington, IN , USA
| |
Collapse
|
10
|
Fogarty L, Wade MJ. Niche construction in quantitative traits: heritability and response to selection. Proc Biol Sci 2022; 289:20220401. [PMID: 35642369 PMCID: PMC9156914 DOI: 10.1098/rspb.2022.0401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
A central tenet of niche construction (NC) theory is that organisms can alter their environments in heritable and evolutionarily important ways, often altering selection pressures. We suggest that the physical changes niche constructors make to their environments may also alter trait heritability and the response of phenotypes to selection. This effect might change evolution, over and above the effect of NC acting via selection alone. We develop models of trait evolution that allow us to partition the effects of NC on trait heritability from those on selection to better investigate their distinct effects. We show that the response of a phenotype to selection and so the pace of phenotypic change can be considerably altered in the presence of NC and that this effect is compounded when trans-generational interactions are included. We argue that novel mathematical approaches are needed to describe the simultaneous effects of NC on trait evolution via selection and heritability. Just as indirect genetic effects have been shown to significantly increase trait heritability, the effects of NC on heritability in our model suggest a need for further theoretical development of the concept of heritability.
Collapse
Affiliation(s)
- Laurel Fogarty
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | | |
Collapse
|
11
|
Chakraborty A, Mori B, Rehermann G, Garcia AH, Lemmen‐Lechelt J, Hagman A, Khalil S, Håkansson S, Witzgall P, Becher PG. Yeast and fruit fly mutual niche construction and antagonism against mould. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Amrita Chakraborty
- Department of Plant Protection Biology Swedish University of Agricultural Sciences Box 102 23053 Alnarp Sweden
- EVA 4.0 Unit, Faculty of Forestry and Wood Sciences Czech University of Life Sciences Kamýcka 129 16500 Prague Czech Republic
| | - Boyd Mori
- Department of Plant Protection Biology Swedish University of Agricultural Sciences Box 102 23053 Alnarp Sweden
- Department of Agricultural, Food and Nutritional Science University of Alberta Agriculture/Forestry Centre 4‐10 Edmonton Alberta Canada T6G 2P5
| | - Guillermo Rehermann
- Department of Plant Protection Biology Swedish University of Agricultural Sciences Box 102 23053 Alnarp Sweden
| | - Armando Hernández Garcia
- Department of Molecular Sciences Swedish University of Agricultural Sciences Box 7015 75007 Uppsala Sweden
- Division of Biotechnology Department of Chemistry Faculty of Engineering Lund University Box 124 221 00 Lund Sweden
| | - Joelle Lemmen‐Lechelt
- Department of Plant Protection Biology Swedish University of Agricultural Sciences Box 102 23053 Alnarp Sweden
| | - Arne Hagman
- Division of Biotechnology Department of Chemistry Faculty of Engineering Lund University Box 124 221 00 Lund Sweden
| | - Sammar Khalil
- Department of Biosystems and Technology Swedish University of Agricultural Sciences Box 102 23053 Alnarp Sweden
| | - Sebastian Håkansson
- Department of Molecular Sciences Swedish University of Agricultural Sciences Box 7015 75007 Uppsala Sweden
- Division of Applied Microbiology Department of Chemistry Faculty of Engineering Lund University Lund Sweden
| | - Peter Witzgall
- Department of Plant Protection Biology Swedish University of Agricultural Sciences Box 102 23053 Alnarp Sweden
| | - Paul G Becher
- Department of Plant Protection Biology Swedish University of Agricultural Sciences Box 102 23053 Alnarp Sweden
| |
Collapse
|
12
|
Morimoto J, Than AT, Nguyen B, Lundbäck I, Dinh H, Ponton F. Density-by-diet interactions during larval development shape adult life-history trait expression and fitness in a polyphagous fly. Am Nat 2022; 199:E170-E185. [DOI: 10.1086/718910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
13
|
Rohner PT, Moczek AP. Evolutionary and plastic variation in larval growth and digestion reveal the complex underpinnings of size and age at maturation in dung beetles. Ecol Evol 2021; 11:15098-15110. [PMID: 34765163 PMCID: PMC8571579 DOI: 10.1002/ece3.8192] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 09/13/2021] [Accepted: 09/17/2021] [Indexed: 11/05/2022] Open
Abstract
Age and size at maturity are key life-history components, yet the proximate underpinnings that mediate intra- and interspecific variation in life history remain poorly understood. We studied the proximate underpinnings of species differences and nutritionally plastic variation in adult size and development time in four species of dung beetles. Specifically, we investigated how variation in insect growth mediates adult size variation, tested whether fast juvenile growth trades-off with developmental stability in adult morphology and quantified plastic responses of digestive systems to variation in food quality. Contrary to the common size-development time trade-off, the largest species exhibited by far the shortest development time. Correspondingly, species diverged strongly in the shape of growth trajectories. Nutritionally plastic adjustments to growth were qualitatively similar between species but differed in magnitude. Although we expected rapid growth to induce developmental costs, neither instantaneous growth rates nor the duration of larval growth were related to developmental stability in the adult. This renders the putative costs of rapid growth enigmatic. We further found that larvae that encounter a challenging diet develop a larger midgut and digest more slowly than animals reared on a more nutritious diet. These data are consistent with the hypothesis that larvae invest into a more effective digestive system when exposed to low-quality nutrition, but suggest that species may diverge readily in their reliance on these mechanisms. More generally, our data highlight the complex, and often hidden, relationships between immature growth and age and size at maturation even in ecologically similar species.
Collapse
Affiliation(s)
| | - Armin P. Moczek
- Department of BiologyIndiana UniversityBloomingtonIndianaUSA
| |
Collapse
|
14
|
D'Aguillo M, Hazelwood C, Quarles B, Donohue K. Genetic Consequences of Biologically Altered Environments. J Hered 2021; 113:26-36. [PMID: 34534330 DOI: 10.1093/jhered/esab047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/16/2021] [Indexed: 11/14/2022] Open
Abstract
Evolvable traits of organisms can alter the environment those organisms experience. While it is well appreciated that those modified environments can influence natural selection to which organisms are exposed, they can also influence the expression of genetic variances and covariances of traits under selection. When genetic variance and covariance change in response to changes in the evolving, modified environment, rates and outcomes of evolution also change. Here we discuss the basic mechanisms whereby organisms modify their environments, review how those modified environments have been shown to alter genetic variance and covariance, and discuss potential evolutionary consequences of such dynamics. With these dynamics, responses to selection can be more rapid and sustained, leading to more extreme phenotypes, or they can be slower and truncated, leading to more conserved phenotypes. Patterns of correlated selection can also change, leading to greater or less evolutionary independence of traits, or even causing convergence or divergence of traits, even when selection on them is consistent across environments. Developing evolutionary models that incorporate changes in genetic variances and covariances when environments themselves evolve requires developing methods to predict how genetic parameters respond to environments-frequently multifactorial environments. It also requires a population-level analysis of how traits of collections of individuals modify environments for themselves and/or others in a population, possibly in spatially explicit ways. Despite the challenges of elucidating the mechanisms and nuances of these processes, even qualitative predictions of how environment-modifying traits alter evolutionary potential are likely to improve projections of evolutionary outcomes.
Collapse
Affiliation(s)
- Michelle D'Aguillo
- Department of Biology, Duke University, Durham, NC, USA.,Department of Biological Sciences, Wesleyan University, Middletown, CT, USA
| | - Caleb Hazelwood
- Department of Biology, Duke University, Durham, NC, USA.,Department of Philosophy, Duke University, Durham, NC, USA
| | | | | |
Collapse
|
15
|
Charabidze D, Trumbo S, Grzywacz A, Costa JT, Benbow ME, Barton PS, Matuszewski S. Convergence of Social Strategies in Carrion Breeding Insects. Bioscience 2021. [DOI: 10.1093/biosci/biab068] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Abstract
Carrion is a highly ephemeral and nutrient rich resource, characterized by extreme biotic and abiotic stressors. We hypothesized that specific constraints of the carrion ecosystem, and especially its nutrient richness, ephemerality, and competition with microbes, have promoted the evolution of social behaviors in necrophagous insects. We show that group living is prevalent among early succession carrion breeding insects, suggesting that this trait has emerged as an adaptation to facilitate survival in the highly competitive environment of fresh carrion. We then highlight how developmental niche construction allows larvae to compete with microbes, efficiently feed on fresh cadavers, and rapidly reach maturity. We observed that larval societies and parental care are two different strategies responding to similar competitive and environmental constraints. We conclude that intra and interspecific competition on carrion are mitigated by social behavior.
Collapse
Affiliation(s)
- Damien Charabidze
- Centre d'Histoire Judiciaire, Université de Lille, Lille, France, with the Unit of Social Ecology, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Stephen Trumbo
- Department of Ecology and Evolutionary Biology, University of Connecticut, Waterbury, in Waterbury, Connecticut, United States
| | - Andrzej Grzywacz
- Department of Ecology and Biogeography, Nicolaus Copernicus University, Toruń, Toruń, Poland
| | - James T Costa
- Highlands Biological Station, Highlands, North Carolina, United States, and with the Department of Biology, Western Carolina University, Cullowhee, North Carolina, United States
| | - Mark E Benbow
- Department of Osteopathic Medical Specialties, with the Ecology, Evolutionary Biology, and Behavior Program, with AgBioResearch, and with the Department of Entomology at Michigan State University, East Lansing, Michigan, United States
| | - Philip S Barton
- Future Regions Research Centre, and School of Science, Psychology, and Sport, Federation University, Mount Helen, Victoria, Australia
| | - Szymon Matuszewski
- Laboratory of Criminalistics and with the Centre for Advanced Technologies at Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
16
|
Woods HA, Pincebourde S, Dillon ME, Terblanche JS. Extended phenotypes: buffers or amplifiers of climate change? Trends Ecol Evol 2021; 36:889-898. [PMID: 34147289 DOI: 10.1016/j.tree.2021.05.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/24/2021] [Accepted: 05/27/2021] [Indexed: 01/09/2023]
Abstract
Historic approaches to understanding biological responses to climate change have viewed climate as something external that happens to organisms. Organisms, however, at least partially influence their own climate experience by moving within local mosaics of microclimates. Such behaviors are increasingly being incorporated into models of species distributions and climate sensitivity. Less attention has focused on how organisms alter microclimates via extended phenotypes: phenotypes that extend beyond the organismal surface, including structures that are induced or built. We argue that predicting the consequences of climate change for organismal performance and fitness will depend on understanding the expression and consequences of extended phenotypes, the microclimatic niches they generate, and the power of plasticity and evolution to shape those niches.
Collapse
Affiliation(s)
- H Arthur Woods
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA.
| | - Sylvain Pincebourde
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261, CNRS - Université de Tours, 37200 Tours, France
| | - Michael E Dillon
- Department of Zoology & Physiology and Program in Ecology, University of Wyoming, Laramie, WY 82071, USA
| | - John S Terblanche
- Department of Conservation Ecology and Entomology, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
17
|
Fouche Q, Hedouin V, Charabidze D. Effect of density and species preferences on collective choices: an experimental study on maggot aggregation behaviours. J Exp Biol 2021; 224:jeb.233791. [PMID: 33536311 DOI: 10.1242/jeb.233791] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 01/25/2021] [Indexed: 01/10/2023]
Abstract
Collective decisions have been extensively studied in arthropods, but they remain poorly understood in heterospecific groups. This study was designed to (1) assess the collective behaviours of blow fly larvae (Diptera: Calliphoridae) in groups varying in density and species composition, and (2) relate them to the costs and benefits of aggregating on fresh or decomposed food. First, experiments testing conspecific groups of Lucilia sericata and Calliphora vicina larvae, two species feeding at the same time on fresh carcasses, demonstrated decreases in growth and survival on rotten beef liver compared with fresh liver. However, mixing species together reduced this adverse impact of decomposition by increasing the mass of emerged adults. Second, larval groups were observed in binary choice tests between fresh and rotten liver (i.e. optimal and sub-optimal food sources). The results showed that larvae interacted with each other and that these interactions influenced their food preferences. We observed that (1) larvae were able to collectively choose the optimal food, (2) their choice accuracy increased with larval density and (3) the presence of another species induced a reversal in larval preference towards rotten food. These results highlight the ubiquity of collective decision properties in gregarious insects. They also reveal an unexpected effect of interspecific association, suggesting the colonization of new resources through a developmental niche construction.
Collapse
Affiliation(s)
- Quentin Fouche
- Université de Lille, CHU Lille, EA 7367 - UTML - Unite de Taphonomie Medico-Legale, F-59000 Lille, France
| | - Valery Hedouin
- Université de Lille, CHU Lille, EA 7367 - UTML - Unite de Taphonomie Medico-Legale, F-59000 Lille, France
| | - Damien Charabidze
- UMR 8025, Centre d'Histoire Judiciaire, Université de Lille, F-59000 Lille, France.,Unit of Social Ecology (USE), Université Libre de Bruxelles (ULB), 1050 Bruxelles, Belgium
| |
Collapse
|
18
|
Dury GJ, Moczek AP, Schwab DB. Maternal and larval niche construction interact to shape development, survival, and population divergence in the dung beetle Onthophagus taurus. Evol Dev 2021; 22:358-369. [PMID: 33448595 DOI: 10.1111/ede.12348] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 05/24/2020] [Accepted: 06/26/2020] [Indexed: 12/14/2022]
Abstract
Through niche construction, organisms modify their environments in ways that can alter how selection acts on themselves and their offspring. However, the role of niche construction in shaping developmental and evolutionary trajectories, and its importance for population divergences and local adaptation, remains largely unclear. In this study, we manipulated both maternal and larval niche construction and measured the effects on fitness-relevant traits in two rapidly diverging populations of the bull-headed dung beetle, Onthophagus taurus. We find that both types of niche construction enhance adult size, peak larval mass, and pupal mass, which when compromised lead to a synergistic decrease in survival. Furthermore, for one measure, duration of larval development, we find that the two populations have diverged in their reliance on niche construction: larval niche construction appears to buffer against compromised maternal niche construction only in beetles from Western Australia, but not in beetles from the Eastern United States. We discuss our results in the context of rapid adaptation to novel conditions and the role of niche construction therein.
Collapse
Affiliation(s)
- Guillaume J Dury
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Armin P Moczek
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Daniel B Schwab
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
19
|
Buskell A. Synthesising arguments and the extended evolutionary synthesis. STUDIES IN HISTORY AND PHILOSOPHY OF BIOLOGICAL AND BIOMEDICAL SCIENCES 2020; 80:101244. [PMID: 31917083 DOI: 10.1016/j.shpsc.2019.101244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 12/18/2019] [Accepted: 12/27/2019] [Indexed: 06/10/2023]
Abstract
Synthesising arguments motivate changes to the conceptual tools, theoretical structure, and evaluatory framework employed in a given scientific domain. Recently, a broad coalition of researchers has put forward a synthesising argument in favour of an Extended Evolutionary Synthesis ('EES'). Often this synthesising argument is evaluated using a virtue-based approach, which construes the EES as a wholesale alternative to prevailing practice. Here I argue this virtue-based approach is not fit for purpose. Taking the central concept of niche construction as a case study, I show that an agenda-based approach better captures the pragmatic and epistemological goals of the EES synthesising argument and diagnoses areas of empirical disagreement with prevailing practice.
Collapse
Affiliation(s)
- Andrew Buskell
- Department of History and Philosophy of Science, Free School Lane, University of Cambridge, Cambridge, CB2 3RH, UK.
| |
Collapse
|
20
|
Hu Y, Linz DM, Parker ES, Schwab DB, Casasa S, Macagno ALM, Moczek AP. Developmental bias in horned dung beetles and its contributions to innovation, adaptation, and resilience. Evol Dev 2019; 22:165-180. [PMID: 31475451 DOI: 10.1111/ede.12310] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Developmental processes transduce diverse influences during phenotype formation, thereby biasing and structuring amount and type of phenotypic variation available for evolutionary processes to act on. The causes, extent, and consequences of this bias are subject to significant debate. Here we explore the role of developmental bias in contributing to organisms' ability to innovate, to adapt to novel or stressful conditions, and to generate well integrated, resilient phenotypes in the face of perturbations. We focus our inquiry on one taxon, the horned dung beetle genus Onthophagus, and review the role developmental bias might play across several levels of biological organization: (a) gene regulatory networks that pattern specific body regions; (b) plastic developmental mechanisms that coordinate body wide responses to changing environments and; (c) developmental symbioses and niche construction that enable organisms to build teams and to actively modify their own selective environments. We posit that across all these levels developmental bias shapes the way living systems innovate, adapt, and withstand stress, in ways that can alternately limit, bias, or facilitate developmental evolution. We conclude that the structuring contribution of developmental bias in evolution deserves further study to better understand why and how developmental evolution unfolds the way it does.
Collapse
Affiliation(s)
- Yonggang Hu
- Department of Biology, Indiana University, Bloomington, Indiana
| | - David M Linz
- Department of Biology, Indiana University, Bloomington, Indiana
| | - Erik S Parker
- Department of Biology, Indiana University, Bloomington, Indiana
| | - Daniel B Schwab
- Department of Biology, Indiana University, Bloomington, Indiana
| | - Sofia Casasa
- Department of Biology, Indiana University, Bloomington, Indiana
| | | | - Armin P Moczek
- Department of Biology, Indiana University, Bloomington, Indiana
| |
Collapse
|
21
|
Raine EH, Slade EM. Dung beetle-mammal associations: methods, research trends and future directions. Proc Biol Sci 2019; 286:20182002. [PMID: 30963853 PMCID: PMC6408906 DOI: 10.1098/rspb.2018.2002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Dung beetles are increasingly used as a study taxon—both as bioindicators of environmental change, and as a model system for exploring ecosystem functioning. The advantages of this focal taxon approach are many; dung beetles are abundant in a wide range of terrestrial ecosystems, speciose, straightforward to sample, respond to environmental gradients and can be easily manipulated to explore species-functioning relationships. However, there remain large gaps in our understanding of the relationship between dung beetles and the mammals they rely on for dung. Here we review the literature, showing that despite an increase in the study of dung beetles linked to ecosystem functioning and to habitat and land use change, there has been little research into their associations with mammals. We summarize the methods and findings from dung beetle–mammal association studies to date, revealing that although empirical field studies of dung beetles rarely include mammal data, those that do, indicate mammal species presence and composition has a large impact on dung beetle species richness and abundance. We then review the methods used to carry out diet preference and ecosystem functioning studies, finding that despite the assumption that dung beetles are generalist feeders, there are few quantitative studies that directly address this. Together this suggests that conclusions about the effects of habitat change on dung beetles are based on incomplete knowledge. We provide recommendations for future work to identify the importance of considering mammal data for dung beetle distributions, composition and their contributions to ecosystem functioning; a critical step if dung beetles are to be used as a reliable bioindicator taxon.
Collapse
Affiliation(s)
- Elizabeth H Raine
- 1 Department of Zoology, University of Oxford , South Parks Road, Oxford OX1 3PS , UK
| | - Eleanor M Slade
- 1 Department of Zoology, University of Oxford , South Parks Road, Oxford OX1 3PS , UK.,2 Lancaster Environment Centre, University of Lancaster , Lancaster LA1 AYQ , UK
| |
Collapse
|
22
|
Schwab DB, Casasa S, Moczek AP. On the Reciprocally Causal and Constructive Nature of Developmental Plasticity and Robustness. Front Genet 2019; 9:735. [PMID: 30687394 PMCID: PMC6335315 DOI: 10.3389/fgene.2018.00735] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 12/22/2018] [Indexed: 01/29/2023] Open
Abstract
Exposure to environmental variation is a characteristic feature of normal development, one that organisms can respond to during their lifetimes by actively adjusting or maintaining their phenotype in order to maximize fitness. Plasticity and robustness have historically been studied by evolutionary biologists through quantitative genetic and reaction norm approaches, while more recent efforts emerging from evolutionary developmental biology have begun to characterize the molecular and developmental genetic underpinnings of both plastic and robust trait formation. In this review, we explore how our growing mechanistic understanding of plasticity and robustness is beginning to force a revision of our perception of both phenomena, away from our conventional view of plasticity and robustness as opposites along a continuum and toward a framework that emphasizes their reciprocal, constructive, and integrative nature. We do so in three sections. Following an introduction, the first section looks inward and reviews the genetic, epigenetic, and developmental mechanisms that enable organisms to sense and respond to environmental conditions, maintaining and adjusting trait formation in the process. In the second section, we change perspective and look outward, exploring the ways in which organisms reciprocally shape their environments in ways that influence trait formation, and do so through the lens of behavioral plasticity, niche construction, and host-microbiota interactions. In the final section, we revisit established plasticity and robustness concepts in light of these findings, and highlight research opportunities to further advance our understanding of the causes, mechanisms, and consequences of these ubiquitous, and interrelated, phenomena.
Collapse
|
23
|
Ledón-Rettig CC, Moczek AP, Ragsdale EJ. Diplogastrellus nematodes are sexually transmitted mutualists that alter the bacterial and fungal communities of their beetle host. Proc Natl Acad Sci U S A 2018; 115:10696-10701. [PMID: 30275294 PMCID: PMC6196496 DOI: 10.1073/pnas.1809606115] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
A recent accumulation of studies has demonstrated that nongenetic, maternally transmitted factors are often critical to the health and development of offspring and can therefore play a role in ecological and evolutionary processes. In particular, microorganisms such as bacteria have been championed as heritable, symbiotic partners capable of conferring fitness benefits to their hosts. At the same time, parents may also pass various nonmicrobial organisms to their offspring, yet the roles of such organisms in shaping the developmental environment of their hosts remain largely unexplored. Here, we show that the nematode Diplogastrellus monhysteroides is transgenerationally inherited and sexually transmitted by the dung beetle Onthophagus taurus By manipulating artificial chambers in which beetle offspring develop, we demonstrate that the presence of D. monhysteroides nematodes enhances the growth of beetle offspring, empirically challenging the paradigm that nematodes are merely commensal or even detrimental to their insect hosts. Finally, our research presents a compelling mechanism whereby the nematodes influence the health of beetle larvae: D. monhysteroides nematodes engineer the bacterial and fungal communities that also inhabit the beetle developmental chambers, including specific taxa known to be involved in biomass degradation, possibly allowing larval beetles better access to their otherwise recalcitrant, plant-based diet. Thus, our findings illustrate that nongenetic inheritance can include intermediately sized organisms that live and proliferate in close association with, and in certain cases enhance, the development of their hosts' offspring.
Collapse
Affiliation(s)
| | - Armin P Moczek
- Department of Biology, Indiana University, Bloomington, IN 47405
| | - Erik J Ragsdale
- Department of Biology, Indiana University, Bloomington, IN 47405
| |
Collapse
|
24
|
Hooper AK, Bonduriansky R. Effects of larval diet quality on the growth and development of immature stages of Telostylinus angusticollis (Diptera : Neriidae). AUST J ZOOL 2018. [DOI: 10.1071/zo19021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Nutrient abundance during development has profound effects on adult morphology, life history and behaviour in many insects, but effects of nutrition on juvenile development are less well known. We investigated how larval diet quality affects patterns of growth, development and survival of larvae and pupae in the neriid fly Telostylinus angusticollis (Enderlein). We reared flies on two larval diets varying in nutrient concentration (‘rich’ versus ‘poor’) that have been shown previously to affect a wide range of adult traits in this species. We found that nutrient concentration affected larval growth trajectories, with individuals reared on the rich diet exhibiting greatly accelerated growth and reaching a larger body size. By contrast, we found no evidence that diet affected timing of development at the pupal stage, suggesting that developmental constraints may prevent variation in pupal development rate. Although overall mortality during the immature stages was not affected by larval diet, we found some evidence that individuals reared on a poor diet might experience higher larval mortality, whereas individuals reared on a rich diet might experience higher mortality during emergence from the puparium. Our results enhance understanding of the effects of nutrition on growth, development, and life history.
Collapse
|