1
|
Ruiz Miñano M, Uller T, Pettersen AK, Nord A, Fitzpatrick LJ, While GM. Sexual color ornamentation, microhabitat choice, and thermal physiology in the common wall lizard (Podarcis muralis). JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:1041-1052. [PMID: 39101273 DOI: 10.1002/jez.2859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 08/06/2024]
Abstract
Common wall lizards (Podarcis muralis) in Italy show a striking variation in body coloration across the landscape, with highly exaggerated black and green colors in hot and dry climates and brown and white colors in cool and wet climates. Males are more intensely colored than females, and previous work has suggested that the maintenance of variation in coloration across the landscape reflects climatic effects on the strength of male-male competition, and through this sexual selection. However climatic effects on the intensity of male-male competition would need to be exceptionally strong to fully explain the geographic patterns of color variation. Thus, additional processes may contribute to the maintenance of color variation. Here we test the hypothesis that selection for green and black ornamentation in the context of male-male competition is opposed by selection against ornamentation because the genes involved in the regulation of coloration have pleiotropic effects on thermal physiology, such that ornamentation is selected against in cool climates. Field observations revealed no association between body coloration and microhabitat use or field active body temperatures. Consistent with these field data, lizards at the extreme ends of the phenotypic distribution for body coloration did not show any differences in critical minimum temperature, preferred body temperature, temperature-dependent metabolic rate, or evaporative water loss when tested in the laboratory. Combined, these results provide no evidence that genes that underlie sexual ornamentation are selected against in cool climate because of pleiotropic effects on thermal biology.
Collapse
Affiliation(s)
- Maravillas Ruiz Miñano
- Discipline of Biological Sciences, University of Tasmania, Hobart, Australia
- Department of Biology, Lund University, Lund, Sweden
| | - Tobias Uller
- Department of Biology, Lund University, Lund, Sweden
| | - Amanda K Pettersen
- Department of Biology, Lund University, Lund, Sweden
- School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | - Andreas Nord
- Department of Biology, Lund University, Lund, Sweden
| | - Luisa J Fitzpatrick
- Discipline of Biological Sciences, University of Tasmania, Hobart, Australia
| | - Geoffrey M While
- Discipline of Biological Sciences, University of Tasmania, Hobart, Australia
| |
Collapse
|
2
|
Idec J, Bybee S, Ware J, Abbott J, Ferreira RG, Suvorov A, Kohli M, Eppel L, Kuhn WR, Belitz M, Guralnick R. Interactions between sexual signaling and wing size drive ecology and evolution of wing colors in Odonata. Sci Rep 2024; 14:25034. [PMID: 39443507 PMCID: PMC11499881 DOI: 10.1038/s41598-024-73612-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/19/2024] [Indexed: 10/25/2024] Open
Abstract
Insect coloration has evolved in response to multiple pressures, and in Odonata (dragonflies and damselflies) a body of work supports a role of wing color in a variety of visual signals and potentially in thermoregulation. Previous efforts have focused primarily on melanistic coloration even though wings are often multicolored, and there has yet to be comprehensive comparative analyses of wing color across broad geographic regions and phylogenetic groups. Percher vs. flier flight-style, a trait with thermoregulatory and signaling consequences, has not yet been studied with regard to color. We used a new color clustering approach to quantify color across a dataset of over 8,000 odonate wing images representing 343 Nearctic species. We then utilized phylogenetically informed Bayesian zero-inflated mixture models to test how color varies with mean ambient temperature, body size, sex and flight-style. We found that wing coloration clustered into two groups across all specimens - light brown-yellow and black-dark brown - with black-dark brown being a much more cohesive grouping. Male perchers have a greater proportion of black-dark brown color on their wings as do species with longer wings. In colder climates, odonates were more likely to have black-dark brown color present, but we found no relationship between the proportion of black and temperature. Light brown-yellow showed similar scaling with wing length, but no relationship with temperature. Our results suggest that black-dark brown coloration may have a limited role in thermoregulation, while light brown-yellow does not have such a role. We also find that the odonate sexes are divergent in wing color in percher species only, suggesting a strong role for color in signaling in more territorial males. Our research contributes to an understanding of complex interactions driving ecological and evolutionary dynamics of color in animals.
Collapse
Affiliation(s)
- Jacob Idec
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA.
| | - Seth Bybee
- Department of Biology and Monte L. Bean Museum, Brigham Young University, Provo, UT, USA
| | - Jessica Ware
- Division of Invertebrate Zoology, American Museum of Natural History, New York, NY, 10024, USA
| | - John Abbott
- Department of Museum Research and Collections, Alabama Museum of Natural History, The University of Alabama, Tuscaloosa, AL, USA
| | - Rhainer Guillermo Ferreira
- Entomology and Experimental Biology Center, Federal University of Triangulo Mineiro, Uberaba, MG, Brazil
| | - Anton Suvorov
- Department of Biological Sciences, VirginiaTech, Blacksburg, VA, USA
| | - Manpreet Kohli
- Division of Invertebrate Zoology, American Museum of Natural History, New York, NY, 10024, USA
- Baruch College, City University of New York, New York, NY, USA
| | - Louis Eppel
- Department of Biology and Monte L. Bean Museum, Brigham Young University, Provo, UT, USA
| | | | - Michael Belitz
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
- Ecology, Evolution, and Behavior Program, Department of Integrative Biology, Michigan State University, East Lansing, MI, USA
| | - Robert Guralnick
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| |
Collapse
|
3
|
Haque MT, Khan MK, Herberstein ME. Current evidence of climate-driven colour change in insects and its impact on sexual signals. Ecol Evol 2024; 14:e11623. [PMID: 38957695 PMCID: PMC11219098 DOI: 10.1002/ece3.11623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 06/03/2024] [Accepted: 06/11/2024] [Indexed: 07/04/2024] Open
Abstract
The colours of insects function in intraspecific communication such as sexual signalling, interspecific communication such as protection from predators, and in physiological processes, such as thermoregulation. The expression of melanin-based colours is temperature-dependent and thus likely to be impacted by a changing climate. However, it is unclear how climate change drives changes in body and wing colour may impact insect physiology and their interactions with conspecifics (e.g. mates) or heterospecific (e.g. predators or prey). The aim of this review is to synthesise the current knowledge of the consequences of climate-driven colour change on insects. Here, we discuss the environmental factors that affect insect colours, and then we outline the adaptive mechanisms in terms of phenotypic plasticity and microevolutionary response. Throughout we discuss the impact of climate-related colour change on insect physiology, and interactions with con-and-heterospecifics.
Collapse
Affiliation(s)
- Md Tangigul Haque
- School of Natural SciencesMacquarie UniversitySydneyNew South WalesAustralia
| | - Md Kawsar Khan
- School of Natural SciencesMacquarie UniversitySydneyNew South WalesAustralia
- Department of Biology, Chemistry and PharmacyFree University BerlinBerlinGermany
| | | |
Collapse
|
4
|
Moore MP, Leith NT, Fowler-Finn KD, Medley KA. Human-modified habitats imperil ornamented dragonflies less than their non-ornamented counterparts at local, regional, and continental scales. Ecol Lett 2024; 27:e14455. [PMID: 38849293 DOI: 10.1111/ele.14455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 06/09/2024]
Abstract
Biologists have long wondered how sexual ornamentation influences a species' risk of extinction. Because the evolution of condition-dependent ornamentation can reduce intersexual conflict and accelerate the fixation of advantageous alleles, some theory predicts that ornamented taxa can be buffered against extinction in novel and/or stressful environments. Nevertheless, evidence from the wild remains limited. Here, we show that ornamented dragonflies are less vulnerable to extinction across multiple spatial scales. Population-occupancy models across the Western United States reveal that ornamented species have become more common relative to non-ornamented species over >100 years. Phylogenetic analyses indicate that ornamented species exhibit lower continent-wide extinction risk than non-ornamented species. Finally, spatial analyses of local dragonfly assemblages suggest that ornamented species possess advantages over non-ornamented taxa at living in habitats that have been converted to farms and cities. Together, these findings suggest that ornamented taxa are buffered against contemporary extinction at local, regional, and continental scales.
Collapse
Affiliation(s)
- Michael P Moore
- Living Earth Collaborative, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Integrative Biology, University of Colorado Denver, Denver, Colorado, USA
| | - Noah T Leith
- Department of Biology, Saint Louis University, St. Louis, Missouri, USA
| | - Kasey D Fowler-Finn
- Living Earth Collaborative, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Biology, Saint Louis University, St. Louis, Missouri, USA
| | - Kim A Medley
- Living Earth Collaborative, Washington University in St. Louis, St. Louis, Missouri, USA
- Tyson Research Center, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
5
|
Spaseni P, Sahlean TC, Gherghel I, Zamfirescu ȘR, Petreanu I, Melenciuc R, Alistar CF, Gavril VD, Strugariu A. Natrix natrix after dark: citizen science sheds light on the common grass snake's nightlife. PeerJ 2024; 12:e17168. [PMID: 38680898 PMCID: PMC11056106 DOI: 10.7717/peerj.17168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/06/2024] [Indexed: 05/01/2024] Open
Abstract
Activity patterns in animals are often species-specific, and can be generally categorized as diurnal, crepuscular, or nocturnal. Understanding these patterns provides insight into ecological adaptations and behaviors. The common grass snake (Natrix natrix), one of the most common and widespread European snake species, is traditionally considered diurnal, with scarce evidence of its crepuscular and nocturnal activity. We aimed to document the distribution, environmental conditions, and potential phenotype associations of nighttime activity in N. natrix. We used citizen science data from iNaturalist (1992-2022), Observation.org (2012-2022), together with personal field observations (2010-2023) to collect 127 crepuscular and nocturnal activity records. Most observations occurred between May and August, coinciding with the peak activity period of grass snakes across their distribution range. Statistical analyses revealed no significant difference in mean daily temperatures between crepuscular and nocturnal observations. However, striped individuals displayed nocturnal activity at higher temperatures, consistent with their distribution in warmer regions, but failed to register any difference when tested on a geographic subsample, that accounted for sympatry of the phenotypes. Surprisingly, we found no significant impact of moon presence or moonlight on nighttime activity or age class, contrary to expectations based on other snake species' responses. While our study reveals that nocturnal activity in the common grass snake is geographically widespread, further research is warranted to understand its drivers and ecological implications. This study highlights the value of citizen science platforms for biological and ecological research, offering unparalleled spatial and temporal coverage by their users. In conclusion, our work extends the knowledge of nocturnal behavior in N. natrix and underlines the critical role of citizen science in discovering behavioral aspects of common and widespread species.
Collapse
Affiliation(s)
- Petronel Spaseni
- Department of Exact and Natural Sciences, Institute of Interdisciplinary Research, Alexandru Ioan Cuza University of Iași, Iași, Iași, Romania
- Faculty of Biology, Alexandru Ioan Cuza University of Iași, Iași, Iași, Romania
| | - Tiberiu C. Sahlean
- Department of Exact and Natural Sciences, Institute of Interdisciplinary Research, Alexandru Ioan Cuza University of Iași, Iași, Iași, Romania
- Institute of Biology Bucharest, Romanian Academy, Bucharest, Bucharest, Romania
| | - Iulian Gherghel
- Department of Exact and Natural Sciences, Institute of Interdisciplinary Research, Alexandru Ioan Cuza University of Iași, Iași, Iași, Romania
- Faculty of Natural and Agricultural Sciences, Ovidius University of Constanţa, Constanța, Constanța, Romania
| | | | - Ionuț C. Petreanu
- Faculty of Biology, Alexandru Ioan Cuza University of Iași, Iași, Iași, Romania
| | - Raluca Melenciuc
- Faculty of Natural and Agricultural Sciences, Ovidius University of Constanţa, Constanța, Constanța, Romania
| | - Cristina F. Alistar
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest, Bucharest, Romania
| | - Viorel D. Gavril
- Institute of Biology Bucharest, Romanian Academy, Bucharest, Bucharest, Romania
| | - Alexandru Strugariu
- Department of Exact and Natural Sciences, Institute of Interdisciplinary Research, Alexandru Ioan Cuza University of Iași, Iași, Iași, Romania
| |
Collapse
|
6
|
Moore MP, Nalley SE, Hamadah D. An evolutionary innovation for mating facilitates ecological niche expansion and buffers species against climate change. Proc Natl Acad Sci U S A 2024; 121:e2313371121. [PMID: 38408245 PMCID: PMC10927580 DOI: 10.1073/pnas.2313371121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 01/12/2024] [Indexed: 02/28/2024] Open
Abstract
One of the drivers of life's diversification has been the emergence of "evolutionary innovations": The evolution of traits that grant access to underused ecological niches. Since ecological interactions can occur separately from mating, mating-related traits have not traditionally been considered factors in niche evolution. However, in order to persist in their environment, animals need to successfully mate just as much as they need to survive. Innovations that facilitate mating activity may therefore be an overlooked determinant of species' ecological limits. Here, we show that species' historical niches and responses to contemporary climate change are shaped by an innovation involved in mating-a waxy, ultra-violet-reflective pruinescence produced by male dragonflies. Physiological experiments in two species demonstrate that pruinescence reduces heating and water loss. Phylogenetic analyses show that pruinescence is gained after taxa begin adopting a thermohydrically stressful mating behavior. Further comparative analyses reveal that pruinose species are more likely to breed in exposed, open-canopy microhabitats. Biogeographic analyses uncover that pruinose species occupy warmer and drier regions in North America. Citizen-science observations of Pachydiplax longipennis suggest that the extent of pruinescence can be optimized to match the local conditions. Finally, temporal analyses indicate that pruinose species have been buffered against contemporary climate change. Overall, these historical and contemporary patterns show that successful mating can shape species' niche limits in the same way as growth and survival.
Collapse
Affiliation(s)
- Michael P. Moore
- Department of Integrative Biology, University of Colorado Denver, Denver, CO80217
- Living Earth Collaborative, Washington University in St. Louis, St. Louis, MO63130
| | - Sarah E. Nalley
- Department of Integrative Biology, University of Colorado Denver, Denver, CO80217
| | - Dalal Hamadah
- Department of Integrative Biology, University of Colorado Denver, Denver, CO80217
| |
Collapse
|
7
|
Gómez-Llano M, McPeek MA, Siepielski AM. Environmental variation shapes and links parasitism to sexual selection. Evol Ecol 2023. [DOI: 10.1007/s10682-023-10236-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
8
|
Leith NT, Fowler-Finn KD, Moore MP. Evolutionary interactions between thermal ecology and sexual selection. Ecol Lett 2022; 25:1919-1936. [PMID: 35831230 DOI: 10.1111/ele.14072] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/21/2022] [Accepted: 06/09/2022] [Indexed: 12/31/2022]
Abstract
Thermal ecology and mate competition are both pervasive features of ecological adaptation. A surge of recent work has uncovered the diversity of ways in which temperature affects mating interactions and sexual selection. However, the potential for thermal biology and reproductive ecology to evolve together as organisms adapt to their thermal environment has been underappreciated. Here, we develop a series of hypotheses regarding (1) not only how thermal ecology affects mating system dynamics, but also how mating dynamics can generate selection on thermal traits; and (2) how the thermal consequences of mate competition favour the reciprocal co-adaptation of thermal biology and sexual traits. We discuss our hypotheses in the context of both pre-copulatory and post-copulatory processes. We also call for future work integrating experimental and phylogenetic comparative approaches to understand evolutionary feedbacks between thermal ecology and sexual selection. Overall, studying reciprocal feedbacks between thermal ecology and sexual selection may be necessary to understand how organisms have adapted to the environments of the past and could persist in the environments of the future.
Collapse
Affiliation(s)
- Noah T Leith
- Department of Biology, Saint Louis University, St. Louis, Missouri, USA
| | - Kasey D Fowler-Finn
- Department of Biology, Saint Louis University, St. Louis, Missouri, USA.,Living Earth Collaborative, Washington University, St. Louis, Missouri, USA
| | - Michael P Moore
- Department of Biology, Saint Louis University, St. Louis, Missouri, USA
| |
Collapse
|
9
|
Suárez‐Tovar CM, Guillermo‐Ferreira R, Cooper IA, Cezário RR, Córdoba‐Aguilar A. Dragon colors: the nature and function of Odonata (dragonfly and damselfly) coloration. J Zool (1987) 2022. [DOI: 10.1111/jzo.12963] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- C. M. Suárez‐Tovar
- Departamento de Ecología Evolutiva Instituto de Ecología Universidad Nacional Autónoma de México Ciudad de México México
| | - R. Guillermo‐Ferreira
- Lestes Lab Federal University of Triângulo Mineiro Uberaba Brazil
- Graduate program in Entomology University of São Paulo Ribeirão Preto Brazil
| | - I. A. Cooper
- Biology Department James Madison University Harrisonburg VA USA
| | - R. R. Cezário
- Lestes Lab Federal University of Triângulo Mineiro Uberaba Brazil
- Graduate program in Entomology University of São Paulo Ribeirão Preto Brazil
| | - A. Córdoba‐Aguilar
- Departamento de Ecología Evolutiva Instituto de Ecología Universidad Nacional Autónoma de México Ciudad de México México
| |
Collapse
|
10
|
Phylogeny and secondary sexual trait evolution in Schizocosa wolf spiders (Araneae, Lycosidae) shows evidence for multiple gains and losses of ornamentation and species delimitation uncertainty. Mol Phylogenet Evol 2022; 169:107397. [PMID: 35031456 DOI: 10.1016/j.ympev.2022.107397] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/27/2021] [Accepted: 12/27/2021] [Indexed: 12/18/2022]
Abstract
Members of the Nearctic spider genus Schizocosa Chamberlin, 1904 have garnered much attention in behavioral studies and over many decades, a number of species have developed as model systems for investigating patterns of sexual selection and multimodal communication. Many of these studies have employed a comparative approach using putative, but not rigorously tested, sister species pairs that have distinctive morphological traits and attendant behaviors. Despite past emphasis on the efficacy of these presumably comparative-based studies of closely related species, generating a robust phylogenetic hypothesis for Schizocosa has been an ongoing challenge. Here, we apply a phylogenomic approach using anchored hybrid enrichment to generate a data set comprising over 400 loci representing a comprehensive taxonomic sample of 23 Nearctic Schizocosa. Our sampling also includes numerous outgroup lycosid genera that allow for a robust evaluation of genus monophyly. Based on analyses using concatenation and coalescent-based methods, we recover a well-supported phylogeny that infers the following: 1) The New World Schizocosa do not form a monophyletic group; 2) Previous hypotheses of North American species require reconsideration along with the composition of species groups; 3) Multiple longstanding model species are not genealogically exclusive and thus are not "good" species; 4) This updated phylogenetic framework establishes a new working paradigm for studying the evolution of characters associated with reproductive communication and mating. Ancestral character state reconstructions show a complex pattern of homoplasy that has likely obfuscated previous attempts to reconstruct relationships and delimit species. Important characters presumably related to sexual selection, such as foreleg pigmentation and dense bristle formation, have undergone repeated gain and loss events, many of which have led to increased morphological divergence between sister-species. Evaluation of these traits in a comparative framework illuminates how sexual selection and natural selection influence character evolution and provides a model for future studies of multimodal communication evolution and function.
Collapse
|
11
|
Miñano MR, While GM, Yang W, Burridge CP, Sacchi R, Zuffi M, Scali S, Salvi D, Uller T. Climate Shapes the Geographic Distribution and Introgressive Spread of Color Ornamentation in Common Wall Lizards. Am Nat 2021; 198:379-393. [PMID: 34403317 DOI: 10.1086/715186] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractClimate can exert an effect on the strength of sexual selection, but empirical evidence is limited. Here, we tested whether climate predicts the geographic distribution and introgressive spread of sexually selected male color ornamentation across 114 populations of the common wall lizard, Podarcis muralis. Coloration was highly structured across the landscape and did not reflect genetic differentiation. Instead, color ornamentation was consistently exaggerated in hot and dry environments, suggesting that climate-driven selection maintains geographic variation in spite of gene flow. Introgression of color ornamentation into a distantly related lineage appears to be ongoing and was particularly pronounced in warm climates with wet winters and dry summers. Combined, these results suggest that sexual ornamentation is consistently favored in climates that allow a prolonged reproductive season and high and reliable opportunities for lizard activity. This pattern corroborates theoretical predictions that such climatic conditions reduce the temporal clustering of receptive females and increase male-male competition, resulting in strong sexual selection. In summary, we provide compelling evidence for the importance of climate for the evolution of color ornamentation, and we demonstrate that geographic variation in the strength of sexual selection influences introgression of this phenotype.
Collapse
|
12
|
Moore MP, Hersch K, Sricharoen C, Lee S, Reice C, Rice P, Kronick S, Medley KA, Fowler-Finn KD. Sex-specific ornament evolution is a consistent feature of climatic adaptation across space and time in dragonflies. Proc Natl Acad Sci U S A 2021; 118:e2101458118. [PMID: 34260398 PMCID: PMC8285952 DOI: 10.1073/pnas.2101458118] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Adaptation to different climates fuels the origins and maintenance of biodiversity. Detailing how organisms optimize fitness for their local climates is therefore an essential goal in biology. Although we increasingly understand how survival-related traits evolve as organisms adapt to climatic conditions, it is unclear whether organisms also optimize traits that coordinate mating between the sexes. Here, we show that dragonflies consistently adapt to warmer climates across space and time by evolving less male melanin ornamentation-a mating-related trait that also absorbs solar radiation and heats individuals above ambient temperatures. Continent-wide macroevolutionary analyses reveal that species inhabiting warmer climates evolve less male ornamentation. Community-science observations across 10 species indicate that populations adapt to warmer parts of species' ranges through microevolution of smaller male ornaments. Observations from 2005 to 2019 detail that contemporary selective pressures oppose male ornaments in warmer years; and our climate-warming projections predict further decreases by 2070. Conversely, our analyses show that female ornamentation responds idiosyncratically to temperature across space and time, indicating the sexes evolve in different ways to meet the demands of the local climate. Overall, these macro- and microevolutionary findings demonstrate that organisms predictably optimize their mating-related traits for the climate just as they do their survival-related traits.
Collapse
Affiliation(s)
- Michael P Moore
- Living Earth Collaborative, Washington University, St. Louis, MO 63130;
| | - Kaitlyn Hersch
- Department of Biology, Washington University, St. Louis, MO 63130
| | | | - Sarah Lee
- Department of Biology, Washington University, St. Louis, MO 63130
| | - Caitlin Reice
- Department of Biology, Washington University, St. Louis, MO 63130
| | - Paul Rice
- Department of Biology, Washington University, St. Louis, MO 63130
| | - Sophie Kronick
- Department of Earth and Planetary Sciences, Washington University, St. Louis, MO 63130
| | - Kim A Medley
- Living Earth Collaborative, Washington University, St. Louis, MO 63130
- Tyson Research Center, Washington University, Eureka, MO 63025
| | - Kasey D Fowler-Finn
- Living Earth Collaborative, Washington University, St. Louis, MO 63130
- Department of Biology, Saint Louis University, St. Louis, MO 63103
| |
Collapse
|
13
|
Leith NT, Macchiano A, Moore MP, Fowler-Finn KD. Temperature impacts all behavioral interactions during insect and arachnid reproduction. CURRENT OPINION IN INSECT SCIENCE 2021; 45:106-114. [PMID: 33831604 DOI: 10.1016/j.cois.2021.03.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/17/2021] [Accepted: 03/23/2021] [Indexed: 05/26/2023]
Abstract
Temperature shapes the processes and outcomes of behaviors that occur throughout the progression of insect and arachnid mating interactions and reproduction. Here, we highlight how temperature impacts precopulatory activity levels, competition among rivals, communication with potential mates, and the relative costs and benefits of mating. We review how both the prevailing temperature conditions during reproductive activity and the temperatures experienced early in life influence mating-related behavior. To effectively predict the consequences of global warming for insect and arachnid mating behavior, we advocate for future work that universally integrates a function-valued approach to measuring thermal sensitivity. A function-valued approach will be especially useful for understanding how fine-scale temperature variation shapes current and future selection on mating interactions.
Collapse
Affiliation(s)
- Noah T Leith
- Department of Biology, Saint Louis University, United States.
| | | | - Michael P Moore
- Living Earth Collaborative, Washington University in St. Louis, United States
| | - Kasey D Fowler-Finn
- Department of Biology, Saint Louis University, United States; Living Earth Collaborative, Washington University in St. Louis, United States
| |
Collapse
|
14
|
Moore MP. Larval habitats impose trait-dependent limits on the direction and rate of adult evolution in dragonflies. Biol Lett 2021; 17:20210023. [PMID: 34006119 DOI: 10.1098/rsbl.2021.0023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Natural selection on juveniles is often invoked as a constraint on adult evolution, but it remains unclear when such restrictions will have their greatest impact. Selection on juveniles could, for example, mainly limit the evolution of adult traits that mostly develop prior to maturity. Alternatively, selection on juveniles might primarily constrain the evolution of adult traits that experience weak or context-dependent selection in the adult stage. Using a comparative study of dragonflies, I tested these hypotheses by examining how a species' larval habitat was related to the evolution of two adult traits that differ in development and exposure to selection: adult size and male ornamentation. Whereas adult size is fixed at metamorphosis and experiences consistent positive selection in the adult stage, ornaments develop throughout adulthood and provide context-dependent fitness benefits. My results show that species that develop in less stable larval habitats have smaller adult sizes and slower rates of adult size evolution. However, these risky larval habitats do not limit ornament expression or rates of ornament evolution. Selection on juveniles may therefore primarily affect the evolution of adult traits that mostly develop prior to maturity.
Collapse
Affiliation(s)
- Michael P Moore
- Living Earth Collaborative, Washington University, St Louis, MO 63130, USA
| |
Collapse
|
15
|
Laitly A, Callaghan CT, Delhey K, Cornwell WK. Is color data from citizen science photographs reliable for biodiversity research? Ecol Evol 2021; 11:4071-4083. [PMID: 33976795 PMCID: PMC8093748 DOI: 10.1002/ece3.7307] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/09/2021] [Accepted: 01/12/2021] [Indexed: 12/31/2022] Open
Abstract
Color research continuously demands better methods and larger sample sizes. Citizen science (CS) projects are producing an ever-growing geo- and time-referenced set of photographs of organisms. These datasets have the potential to make a huge contribution to color research, but the reliability of these data need to be tested before widespread implementation.We compared the difference between color extracted from CS photographs with that of color extracted from controlled lighting conditions (i.e., the current gold standard in spectrometry) for both birds and plants. First, we tested the ability of CS photographs to quantify interspecific variability by assessing > 9,000 CS photographs of 537 Australian bird species with controlled museum spectrometry data. Second, we tested the ability of CS photographs to quantify intraspecific variability by measuring petal color data for two plant species using seven methods/sources with varying levels of control.For interspecific questions, we found that by averaging out variability through a large sample size, CS photographs capture a large proportion of across species variation in plumage color within the visual part of the spectrum (R2 = 0.68-0.71 for RGB space and 0.72-0.77 for CIE-LAB space). Between 12 and 14 photographs per species are necessary to achieve this averaging effect for interspecific studies. Unsurprisingly, the CS photographs taken with commercial cameras failed to capture information in the UV part of the spectrum. For intraspecific questions, decreasing levels of control increase the color variation but averaging larger sample sizes can partially mitigate this, aside from particular issues related to saturation and irregularities in light capture.CS photographs offer a very large sample size across space and time which offers statistical power for many color research questions. This study shows that CS photographs contain data that lines up closely with controlled measurements within the visual spectrum if the sample size is large enough, highlighting the potential of CS photographs for both interspecific and intraspecific ecological or biological questions. With regard to analyzing color in CS photographs, we suggest, as a starting point, to measure multiple random points within the ROI of each photograph for both patterned and unpatterned patches and approach the recommended sample size of 12-14 photographs per species for interspecific studies. Overall, this study provides groundwork in analyzing the reliability of a novel method, which can propel the field of studying color forward.
Collapse
Affiliation(s)
- Alexandra Laitly
- Evolution and Ecology Research CentreSchool of Biological, Earth and Environmental SciencesUniversity of New South WalesSydneyNSWAustralia
| | - Corey T. Callaghan
- Evolution and Ecology Research CentreSchool of Biological, Earth and Environmental SciencesUniversity of New South WalesSydneyNSWAustralia
| | - Kaspar Delhey
- Max Planck Institute for OrnithologySeewiesenGermany
- School of Biological SciencesMonash UniversityClaytonVic.Australia
| | - William K. Cornwell
- Evolution and Ecology Research CentreSchool of Biological, Earth and Environmental SciencesUniversity of New South WalesSydneyNSWAustralia
| |
Collapse
|
16
|
Moore MP, Martin RA. Natural Selection on Adults Has Trait-Dependent Consequences for Juvenile Evolution in Dragonflies. Am Nat 2021; 197:677-689. [PMID: 33989138 DOI: 10.1086/714048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractAlthough natural selection often fluctuates across ontogeny, it remains unclear what conditions enable selection in one life-cycle stage to shape evolution in others. Organisms that undergo metamorphosis are useful for addressing this topic because their highly specialized life-cycle stages cannot always evolve independently despite their dramatic life-history transition. Using a comparative study of dragonflies, we examined three conditions that are hypothesized to allow selection in one stage to affect evolution in others. First, we tested whether lineages with less dramatic metamorphosis (e.g., hemimetabolous insects) lack the capacity for stage-specific evolution. Rejecting this hypothesis, we found that larval body shape evolves independently from selection on adult shape. Next, we evaluated whether stage-specific evolution is limited for homologous and/or coadapted structures. Indeed, we found that selection for larger wings is associated with the evolution of coadapted larval sheaths that store developing wing tissue. Finally, we assessed whether stage-specific evolution is restricted for traits linked to a single biochemical pathway. Supporting this hypothesis, we found that species with more wing melanization in the adult stage have evolved weaker melanin immune defenses in the larval stage. Thus, our results collectively show that natural selection in one stage imposes trait-dependent constraints on evolution in others.
Collapse
|
17
|
Rich C, Reilly SB, Sinervo B. Relaxed predation selection on rare morphs of Ensatina salamanders (Caudata: Plethodontidae) promotes a polymorphic population in a novel dune sand habitat. Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blaa211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
The ring species Ensatina represents a classic example of locally adapted lineages. The Monterey ensatina (Ensatina eschscholtzii eschscholtzii) is a cryptic subspecies with brown coloration, although a recently discovered polymorphic population within a wind-blown sand region also contains leucistic (pink) and xanthistic (orange) morphs. In the present study, the frequency of leucism/xanthism was mapped across the subspecies’ range, revealing that these morphs are generally rare or absent except within regions containing light-coloured substrate. Attack rates were estimated using clay models of the three morphs, deployed only at the crepuscular period and during the night, on both light and dark substrates at a site within the dune sand region. Model selection found that the interaction between morph and substrate colour best predicted attack rates. Typical morphs had equal attack rates on both substrates while xanthistic and leucistic morphs incurred significantly fewer attacks on light vs. dark substrate, and there was no significant difference in attack rates among morphs on light substrates. These results support the idea that xanthistic and leucistic morphs are poorly adapted for dark substrates compared to typical morphs, but they are more or less equally adapted for light substrates. We suggest that this microgeographic island of relaxed selection on light-coloured morphs helps to explain the existence of this polymorphic population.
Collapse
Affiliation(s)
- Caitlyn Rich
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
| | - Sean B Reilly
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
| | - Barry Sinervo
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
| |
Collapse
|
18
|
Abstract
Climate change affects organisms worldwide with profound ecological and evolutionary consequences, often increasing population extinction risk. Climatic factors can increase the strength, variability, or direction of natural selection on phenotypic traits, potentially driving adaptive evolution. Phenotypic plasticity in relation to temperature can allow organisms to maintain fitness in response to increasing temperatures, thereby "buying time" for subsequent genetic adaptation and promoting evolutionary rescue. Although many studies have shown that organisms respond plastically to increasing temperatures, it is unclear if such thermal plasticity is adaptive. Moreover, we know little about how natural and sexual selection operate on thermal reaction norms, reflecting such plasticity. Here, we investigate how natural and sexual selection shape phenotypic plasticity in two congeneric and phenotypically similar sympatric insect species. We show that the thermal optima for longevity and mating success differ, suggesting temperature-dependent trade-offs between survival and reproduction in both sexes. Males in these species have similar thermal reaction norm slopes but have diverged in baseline body temperature (intercepts), being higher for the more northern species. Natural selection favored reduced thermal reaction norm slopes at high ambient temperatures, suggesting that the current level of thermal plasticity is maladaptive in the context of anthropogenic climate change and that selection now promotes thermal canalization and robustness. Our results show that ectothermic animals also at high latitudes can suffer from overheating and challenge the common view of phenotypic plasticity as being beneficial in harsh and novel environments.
Collapse
|
19
|
|
20
|
Schreiner GD, Duffy LA, Brown JM. Thermal response of two sexually dimorphic Calopteryx (Odonata) over an ambient temperature range. Ecol Evol 2020; 10:12341-12347. [PMID: 33209292 PMCID: PMC7663058 DOI: 10.1002/ece3.6864] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/28/2020] [Accepted: 09/09/2020] [Indexed: 11/18/2022] Open
Abstract
Organisms may internally or behaviorally regulate their body temperatures or conform to the ambient air temperatures. Previous evidence is mixed on whether wing pigmentation influences thermoregulation in various odonates.We investigated the thermal response of sympatric North American Calopteryx aequabilis and Calopteryx maculata with a thermal imaging study across a 25°C ambient temperature range.We found that regressions of thorax temperature on ambient temperature standardized by species had similar slopes for male and female C. maculata, but females were consistently 1.5°C warmer than males. In contrast, the sexes of C. aequabilis differed in slope, with C. aequabilis females having a slope less than 1.0 and males having a slope greater than 1.0.We found that regressions of thorax temperature on ambient temperature standardized by sex had similar slopes for males and females of both species, but C. maculata females were consistently 2.1°C warmer than C. aequabilis females.Given that C. aequabilis is strongly sexually dimorphic in pigment, but C. maculata is not, our findings suggest that wing pigmentation may influence thermal response rate in sympatric populations of both species.
Collapse
|
21
|
García-Roa R, Garcia-Gonzalez F, Noble DWA, Carazo P. Temperature as a modulator of sexual selection. Biol Rev Camb Philos Soc 2020; 95:1607-1629. [PMID: 32691483 DOI: 10.1111/brv.12632] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 06/10/2020] [Accepted: 06/12/2020] [Indexed: 12/25/2022]
Abstract
A central question in ecology and evolution is to understand why sexual selection varies so much in strength across taxa; it has long been known that ecological factors are crucial to this. Temperature is a particularly salient abiotic ecological factor that modulates a wide range of physiological, morphological and behavioural traits, impacting individuals and populations at a global taxonomic scale. Furthermore, temperature exhibits substantial temporal variation (e.g. daily, seasonally and inter-seasonally), and hence for most species in the wild sexual selection will regularly unfold in a dynamic thermal environment. Unfortunately, studies have so far almost completely neglected the role of temperature as a modulator of sexual selection. Here, we outline the main pathways through which temperature can affect the intensity and form (i.e. mechanisms) of sexual selection, via: (i) direct effects on secondary sexual traits and preferences (i.e. trait variance, opportunity for selection and trait-fitness covariance), and (ii) indirect effects on key mating parameters, sex-specific reproductive costs/benefits, trade-offs, demography and correlated abiotic factors. Building upon this framework, we show that, by focusing exclusively on the first-order effects that environmental temperature has on traits linked with individual fitness and population viability, current global warming studies may be ignoring eco-evolutionary feedbacks mediated by sexual selection. Finally, we tested the general prediction that temperature modulates sexual selection by conducting a meta-analysis of available studies experimentally manipulating temperature and reporting effects on the variance of male/female reproductive success and/or traits under sexual selection. Our results show a clear association between temperature and sexual selection measures in both sexes. In short, we suggest that studying the feedback between temperature and sexual selection processes may be vital to developing a better understanding of variation in the strength of sexual selection in nature, and its consequences for population viability in response to environmental change (e.g. global warming).
Collapse
Affiliation(s)
- Roberto García-Roa
- Behaviour and Evolution, Ethology Lab, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, C/Catedrático José Beltrán 2, Paterna, Valencia, 46980, Spain
| | - Francisco Garcia-Gonzalez
- Doñana Biological Station, Spanish Research Council CSIC, c/Americo Vespucio, 26, Isla de la Cartuja, Sevilla, 41092, Spain.,Centre for Evolutionary Biology, School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia, 6009, Australia
| | - Daniel W A Noble
- Ecology and Evolution Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, 2052, Australia.,Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, 2061, Australia
| | - Pau Carazo
- Behaviour and Evolution, Ethology Lab, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, C/Catedrático José Beltrán 2, Paterna, Valencia, 46980, Spain
| |
Collapse
|
22
|
Sánchez-Herrera M, Beatty CD, Nunes R, Salazar C, Ware JL. An exploration of the complex biogeographical history of the Neotropical banner-wing damselflies (Odonata: Polythoridae). BMC Evol Biol 2020; 20:74. [PMID: 32580705 PMCID: PMC7315476 DOI: 10.1186/s12862-020-01638-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 06/15/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The New World Tropics has experienced a dynamic landscape across evolutionary history and harbors a high diversity of flora and fauna. While there are some studies addressing diversification in Neotropical vertebrates and plants, there is still a lack of knowledge in arthropods. Here we examine temporal and spatial diversification patterns in the damselfly family Polythoridae, which comprises seven genera with a total of 58 species distributed across much of Central and South America. RESULTS Our time-calibrated phylogeny for 48 species suggests that this family radiated during the late Eocene (~ 33 Ma), diversifying during the Miocene. As with other neotropical groups, the Most Recent Common Ancestor (MRCA) of most of the Polythoridae genera has a primary origin in the Northern Andes though the MRCA of at least one genus may have appeared in the Amazon Basin. Our molecular clock suggests correlations with some major geographical events, and our biogeographical modeling (with BioGeoBEARS and RASP) found a significant influence of the formation of the Pebas and Acre systems on the early diversification of these damselflies, though evidence for the influence of the rise of the different Andean ranges was mixed. Diversification rates have been uniform in all genera except one-Polythore-where a significant increase in the late Pliocene (~ 3 mya) may have been influenced by recent Andean uplift. CONCLUSION The biogeographical models implemented here suggest that the Pebas and Acre Systems were significant geological events associated with the diversification of this damselfly family; while diversification in the tree shows some correlation with mountain building events, it is possible that other abiotic and biotic changes during our study period have influenced diversification as well. The high diversification rate observed in Polythore could be explained by the late uplift of the Northern Andes. However, it is possible that other intrinsic factors like sexual and natural selection acting on color patterns could be involved in the diversification of this genus.
Collapse
Affiliation(s)
- Melissa Sánchez-Herrera
- Department of Biology, Faculty of Natural Sciences, Universidad del Rosario, Bogota, DC, Colombia. .,Federated Department of Biological Sciences. Rutgers, The State University of New Jersey, Newark, NJ, USA.
| | - Christopher D Beatty
- Department of Ecology & Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - Renato Nunes
- Federated Department of Biological Sciences. Rutgers, The State University of New Jersey, Newark, NJ, USA.,Departament of Biology, The City University of New York, New York, NY, USA
| | - Camilo Salazar
- Department of Biology, Faculty of Natural Sciences, Universidad del Rosario, Bogota, DC, Colombia
| | - Jessica L Ware
- Federated Department of Biological Sciences. Rutgers, The State University of New Jersey, Newark, NJ, USA.,American Museum of Natural History, New York, NY, USA
| |
Collapse
|
23
|
McKeon S, Weber L, Adams AJ, Fleischner TL. Human Dimensions: Natural History as the Innate Foundation of Ecology. ACTA ACUST UNITED AC 2019. [DOI: 10.1002/bes2.1656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Seabird McKeon
- National Center for Integrated Coastal ResearchUniversity of Central Florida 364 Research 14353 Scorpius Drive Orlando Florida 32816‐2368 USA
| | - Louise Weber
- University of Saint Francis 2701 Spring Street Fort Wayne Indiana 46808 USA
| | - Andrea J. Adams
- University of California, Santa Barbara 6832 Ellison Hall Santa Barbara California 93106‐3060 USA
| | | |
Collapse
|