1
|
Freixa A, González-Trujillo JD, Sacristán-Soriano O, Borrego CM, Sabater S. Terrestrialization of sediment bacterial assemblages when temporary rivers run dry. FEMS Microbiol Ecol 2024; 100:fiae126. [PMID: 39277783 PMCID: PMC11460285 DOI: 10.1093/femsec/fiae126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/07/2024] [Accepted: 09/13/2024] [Indexed: 09/17/2024] Open
Abstract
Bacterial communities in river sediments are shaped by a trade-off between dispersal from upstream or nearby land and selection by the local environmental conditions. In temporary rivers (i.e. those characterized by long drying periods and subsequent rewetting) seasonal hydrological dynamics shape bacterial communities by connecting or disconnecting different river habitats. In this study, we tracked and compared the temporal and spatial changes in the composition of bacterial communities in streambed sediments and floodplain habitats across both permanent and intermittent river segments. Our findings revealed that environmental selection played a key role in assembling bacterial communities in both segments. We argue that distinct environmental features act as filters at the local scale, favoring specific bacterial taxa in isolated pools and promoting some typically terrestrial taxa in dry areas. Considering the prospective extension of drying intervals due to climate change, our results suggest an emerging trend wherein bacterial assemblages in temporary streams progressively incorporate microorganisms of terrestrial origin, well-adapted to tolerate desiccation phases. This phenomenon may constitute an integral facet of the broader adaptive dynamics of temporary river ecosystems in response to the impacts of climate change.
Collapse
Affiliation(s)
- Anna Freixa
- Catalan Institute for Water Research, (ICRA-CERCA), Carrer Emili Grahit 101, 17003 Girona, Spain
| | - Juan David González-Trujillo
- Facultad de Ciencias, Departamento de Biología, Universidad Nacional de Colombia, Cra 30 45 02, Ciudad universitaria, Bogotá 111321, Colombia
| | - Oriol Sacristán-Soriano
- Catalan Institute for Water Research, (ICRA-CERCA), Carrer Emili Grahit 101, 17003 Girona, Spain
| | - Carles M Borrego
- Catalan Institute for Water Research, (ICRA-CERCA), Carrer Emili Grahit 101, 17003 Girona, Spain
- Institute of Aquatic Ecology, University of Girona,, Campus de Montilivi, Facultat de Ciències, 17071 Girona, Spain
| | - Sergi Sabater
- Catalan Institute for Water Research, (ICRA-CERCA), Carrer Emili Grahit 101, 17003 Girona, Spain
- Institute of Aquatic Ecology, University of Girona,, Campus de Montilivi, Facultat de Ciències, 17071 Girona, Spain
| |
Collapse
|
2
|
Letten AD, Yamamichi M, Richardson JA, Ke PJ. Microbial Dormancy Supports Multi-Species Coexistence Under Resource Fluctuations. Ecol Lett 2024; 27:e14507. [PMID: 39354904 DOI: 10.1111/ele.14507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 10/03/2024]
Abstract
The ability for microbes to enter dormant states is adaptive under resource fluctuations and has been linked to the maintenance of diversity. Nevertheless, the mechanism by which microbial dormancy gives rise to the density-dependent feedbacks required for stable coexistence under resource fluctuations is not well understood. Via analysis of consumer-resource models, we show that the stable coexistence of dormancy and non-dormancy strategists is a consequence of the former benefiting more from resource fluctuations while simultaneously reducing overall resource variability, which sets up the requisite negative frequency dependence. Moreover, we find that dormants can coexist alongside gleaner and opportunist strategies in a competitive-exclusion-defying case of three species coexistence on a single resource. This multi-species coexistence is typically characterised by non-simple assembly rules that cannot be predicted from pairwise competition outcomes. The diversity maintained via this three-way trade-off represents a novel phenomenon that is ripe for further theoretical and empirical inquiry.
Collapse
Affiliation(s)
- Andrew D Letten
- School of the Environment, The University of Queensland, Brisbane, Queensland, Australia
| | - Masato Yamamichi
- Center for Frontier Research, National Institute of Genetics, Mishima, Japan
| | - James A Richardson
- School of the Environment, The University of Queensland, Brisbane, Queensland, Australia
| | - Po-Ju Ke
- Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
3
|
Menges V, Rohovsky M, Rojas Feilke R, Menzel F. Species-specific behavioural responses to environmental variation as a potential species coexistence mechanism in ants. Proc Biol Sci 2024; 291:20240439. [PMID: 39192762 DOI: 10.1098/rspb.2024.0439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/29/2024] [Accepted: 05/28/2024] [Indexed: 08/29/2024] Open
Abstract
A fundamental question of ecology is why species coexist in the same habitat. Coexistence can be enabled through niche differentiation, mediated by trait differentiation. Here, behaviour constitutes an often-overlooked set of traits. However, behaviours such as aggression and exploration drive intra- and interspecific competition, especially so in ants, where community structure is usually shaped by aggressive interactions. We studied behavioural variation in three ant species, which often co-occur in close proximity and occupy similar dominance ranks. We analysed how intra- and allospecific aggression, exploration and foraging activity vary under field conditions, namely with temperature and over time. Behaviours were assessed for 12 colonies per species, and four times each during several months. All behavioural traits consistently differed among colonies, but also varied over time and with temperature. These temperature-dependent and seasonal responses were highly species-specific. For example, foraging activity decreased at high temperatures in Formica rufibarbis, but not in Lasius niger; over time, it declined strongly in L. niger but much less in F. rufibarbis. Our results suggest that, owing to these species-specific responses, no species is always competitively superior. Thus, environmental and temporal variation effects a dynamic dominance hierarchy among the species, facilitating coexistence via the storage effect.
Collapse
Affiliation(s)
- Vanessa Menges
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Hanns-Dieter-Hüsch-Weg 15 , Mainz 55128, Germany
| | - Merle Rohovsky
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Hanns-Dieter-Hüsch-Weg 15 , Mainz 55128, Germany
| | - Raúl Rojas Feilke
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Hanns-Dieter-Hüsch-Weg 15 , Mainz 55128, Germany
| | - Florian Menzel
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Hanns-Dieter-Hüsch-Weg 15 , Mainz 55128, Germany
| |
Collapse
|
4
|
Gupta VVSR, Tiedje JM. Ranking environmental and edaphic attributes driving soil microbial community structure and activity with special attention to spatial and temporal scales. MLIFE 2024; 3:21-41. [PMID: 38827504 PMCID: PMC11139212 DOI: 10.1002/mlf2.12116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/05/2024] [Accepted: 02/05/2024] [Indexed: 06/04/2024]
Abstract
The incredibly complex soil microbial communities at small scales make their analysis and identification of reasons for the observed structures challenging. Microbial community structure is mainly a result of the inoculum (dispersal), the selective advantages of those organisms under the habitat-based environmental attributes, and the ability of those colonizers to sustain themselves over time. Since soil is protective, and its microbial inhabitants have long adapted to varied soil conditions, significant portions of the soil microbial community structure are likely stable. Hence, a substantial portion of the community will not correlate to often measured soil attributes. We suggest that the drivers be ranked on the basis of their importance to the fundamental needs of the microbes: (i) those that supply energy, i.e., organic carbon and electron acceptors; (ii) environmental effectors or stressors, i.e., pH, salt, drought, and toxic chemicals; (iii) macro-organism associations, i.e., plants and their seasonality, animals and their fecal matter, and soil fauna; and (iv) nutrients, in order, N, P, and probably of lesser importance, other micronutrients, and metals. The relevance of drivers also varies with spatial and time scales, for example, aggregate to field to regional, and persistent to dynamic populations to transcripts, and with the extent of phylogenetic difference, hence phenotypic differences in organismal groups. We present a summary matrix to provide guidance on which drivers are important for particular studies, with special emphasis on a wide range of spatial and temporal scales, and illustrate this with genomic and population (rRNA gene) data from selected studies.
Collapse
Affiliation(s)
| | - James M. Tiedje
- Centre for Microbial EcologyMichigan State UniversityEast LansingMichiganUSA
| |
Collapse
|
5
|
Sebastián M, Giner CR, Balagué V, Gómez-Letona M, Massana R, Logares R, Duarte CM, Gasol JM. The active free-living bathypelagic microbiome is largely dominated by rare surface taxa. ISME COMMUNICATIONS 2024; 4:ycae015. [PMID: 38456147 PMCID: PMC10919342 DOI: 10.1093/ismeco/ycae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/09/2024] [Accepted: 01/19/2024] [Indexed: 03/09/2024]
Abstract
A persistent microbial seed bank is postulated to sustain the marine biosphere, and recent findings show that prokaryotic taxa present in the ocean's surface dominate prokaryotic communities throughout the water column. Yet, environmental conditions exert a tight control on the activity of prokaryotes, and drastic changes in these conditions are known to occur from the surface to deep waters. The simultaneous characterization of the total (DNA) and active (i.e. with potential for protein synthesis, RNA) free-living communities in 13 stations distributed across the tropical and subtropical global ocean allowed us to assess their change in structure and diversity along the water column. We observed that active communities were surprisingly more similar along the vertical gradient than total communities. Looking at the vertical connectivity of the active vs. the total communities, we found that taxa detected in the surface sometimes accounted for more than 75% of the active microbiome of bathypelagic waters (50% on average). These active taxa were generally rare in the surface, representing a small fraction of all the surface taxa. Our findings show that the drastic vertical change in environmental conditions leads to the inactivation and disappearance of a large proportion of surface taxa, but some surface-rare taxa remain active (or with potential for protein synthesis) and dominate the bathypelagic active microbiome.
Collapse
Affiliation(s)
- Marta Sebastián
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar, CSIC. Pg Marítim de la Barceloneta 37-49, Barcelona, Catalunya E08003, Spain
| | - Caterina R Giner
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar, CSIC. Pg Marítim de la Barceloneta 37-49, Barcelona, Catalunya E08003, Spain
| | - Vanessa Balagué
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar, CSIC. Pg Marítim de la Barceloneta 37-49, Barcelona, Catalunya E08003, Spain
| | - Markel Gómez-Letona
- Instituto de Oceanografía y Cambio Global, Universidad de Las Palmas de Gran Canaria, Parque Científico Tecnológico Marino de Taliarte, s/n, Telde, Las Palmas 35214, Spain
| | - Ramon Massana
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar, CSIC. Pg Marítim de la Barceloneta 37-49, Barcelona, Catalunya E08003, Spain
| | - Ramiro Logares
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar, CSIC. Pg Marítim de la Barceloneta 37-49, Barcelona, Catalunya E08003, Spain
| | - Carlos M Duarte
- Red Sea Research Centre (RSRC), King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Josep M Gasol
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar, CSIC. Pg Marítim de la Barceloneta 37-49, Barcelona, Catalunya E08003, Spain
| |
Collapse
|
6
|
Walter JA, Reuman DC, Hall KR, Shugart HH, Shoemaker LG. Seasonality in Environment and Population Processes Alters Population Spatial Synchrony. Am Nat 2023; 202:399-412. [PMID: 37792915 DOI: 10.1086/725804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
AbstractPopulation spatial synchrony-the tendency for temporal population fluctuations to be correlated across locations-is common and important to metapopulation stability and persistence. One common cause of spatial synchrony, termed the Moran effect, occurs when populations respond to environmental fluctuations, such as weather, that are correlated over space. Although the degree of spatial synchrony in environmental fluctuations can differ between seasons and different population processes occur in different seasons, the impact on population spatial synchrony is uncertain because prior work has largely assumed that the spatial synchrony of environmental fluctuations and their effect on populations are consistent over annual sampling intervals. We used theoretical models to examine how seasonality in population processes and the spatial synchrony of environmental drivers affect population spatial synchrony. We found that population spatial synchrony can depend not only on the spatial synchrony of environmental drivers but also on the degree to which environmental fluctuations are correlated across seasons, locally, and across space. Moreover, measurements of synchrony from "snapshot" population censuses may not accurately reflect synchrony during other parts of the year. Together, these results show that neglecting seasonality in environmental conditions and population processes is consequential for understanding population spatial synchrony and its driving mechanisms.
Collapse
|
7
|
Xue Y, Abdullah Al M, Chen H, Xiao P, Zhang H, Jeppesen E, Yang J. Relic DNA obscures DNA-based profiling of multiple microbial taxonomic groups in a river-reservoir ecosystem. Mol Ecol 2023; 32:4940-4952. [PMID: 37452629 DOI: 10.1111/mec.17071] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/08/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023]
Abstract
Numerous studies have investigated the spatiotemporal variability in water microbial communities, yet the effects of relic DNA on microbial community profiles, especially microeukaryotes, remain far from fully understood. Here, total and active bacterial and microeukaryotic community compositions were characterized using propidium monoazide (PMA) treatment coupled with high-throughput sequencing in a river-reservoir ecosystem. Beta diversity analysis showed a significant difference in community composition between both the PMA untreated and treated bacteria and microeukaryotes; however, the differentiating effect was much stronger for microeukaryotes. Relic DNA only resulted in underestimation of the relative abundances of Bacteroidota and Nitrospirota, while other bacterial taxa exhibited no significant changes. As for microeukaryotes, the relative abundances of some phytoplankton (e.g. Chlorophyta, Dinoflagellata and Ochrophyta) and fungi were greater after relic DNA removal, whereas Cercozoa and Ciliophora showed the opposite trend. Moreover, relic DNA removal weakened the size and complexity of cross-trophic microbial networks and significantly changed the relationships between environmental factors and microeukaryotic community composition. However, there was no significant difference in the rates of temporal community turnover between the PMA untreated and treated samples for either bacteria or microeukaryotes. Overall, our results imply that the presence of relic DNA in waters can give misleading information of the active microbial community composition, co-occurrence networks and their relationships with environmental conditions. More studies of the abundance, decay rate and functioning of nonviable DNA in freshwater ecosystems are highly recommended in the future.
Collapse
Affiliation(s)
- Yuanyuan Xue
- Aquatic Eco-Health Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Mamun Abdullah Al
- Aquatic Eco-Health Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Huihuang Chen
- Aquatic Eco-Health Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Peng Xiao
- Aquatic Eco-Health Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Hongteng Zhang
- Aquatic Eco-Health Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Erik Jeppesen
- Department of Ecoscience, Aarhus University, Aarhus, Denmark
- Sino-Danish Centre for Education and Research, Beijing, China
- Limnology Laboratory, Department of Biological Sciences and Centre for Ecosystem Research and Implementation, Middle East Technical University, Ankara, Turkey
- Institute of Marine Sciences, Middle East Technical University, Mersin, Turkey
| | - Jun Yang
- Aquatic Eco-Health Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| |
Collapse
|
8
|
Schwartz DA, Shoemaker WR, Măgălie A, Weitz JS, Lennon JT. Bacteria-phage coevolution with a seed bank. THE ISME JOURNAL 2023:10.1038/s41396-023-01449-2. [PMID: 37286738 DOI: 10.1038/s41396-023-01449-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/09/2023]
Abstract
Dormancy is an adaptation to living in fluctuating environments. It allows individuals to enter a reversible state of reduced metabolic activity when challenged by unfavorable conditions. Dormancy can also influence species interactions by providing organisms with a refuge from predators and parasites. Here we test the hypothesis that, by generating a seed bank of protected individuals, dormancy can modify the patterns and processes of antagonistic coevolution. We conducted a factorially designed experiment where we passaged a bacterial host (Bacillus subtilis) and its phage (SPO1) in the presence versus absence of a seed bank consisting of dormant endospores. Owing in part to the inability of phages to attach to spores, seed banks stabilized population dynamics and resulted in minimum host densities that were 30-fold higher compared to bacteria that were unable to engage in dormancy. By supplying a refuge to phage-sensitive strains, we show that seed banks retained phenotypic diversity that was otherwise lost to selection. Dormancy also stored genetic diversity. After characterizing allelic variation with pooled population sequencing, we found that seed banks retained twice as many host genes with mutations, whether phages were present or not. Based on mutational trajectories over the course of the experiment, we demonstrate that seed banks can dampen bacteria-phage coevolution. Not only does dormancy create structure and memory that buffers populations against environmental fluctuations, it also modifies species interactions in ways that can feed back onto the eco-evolutionary dynamics of microbial communities.
Collapse
Affiliation(s)
- Daniel A Schwartz
- Department of Biology, Indiana University, Bloomington, Indiana, IN, USA
| | - William R Shoemaker
- The Abdus Salam International Centre for Theoretical Physics (ICTP), Trieste, Italy
| | - Andreea Măgălie
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Interdisciplinary Graduate Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Joshua S Weitz
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
- Institut de Biologie, École Normale Supérieure, Paris, France
| | - Jay T Lennon
- Department of Biology, Indiana University, Bloomington, Indiana, IN, USA.
| |
Collapse
|
9
|
Zuo J, Tan F, Zhang H, Xue Y, Grossart HP, Jeppesen E, Xiao P, Chen H, Yang J. Interaction between Raphidiopsis raciborskii and rare bacterial species revealed by dilution-to-extinction experiments. HARMFUL ALGAE 2022; 120:102350. [PMID: 36470605 DOI: 10.1016/j.hal.2022.102350] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 10/31/2022] [Accepted: 11/06/2022] [Indexed: 06/17/2023]
Abstract
Interactions between heterotrophic bacteria and cyanobacteria regulate the structure and function of aquatic ecosystems and are thus crucial for the prediction and management of cyanobacterial blooms in relation to water security. Currently, abundant bacterial species are of primary concern, while the role of more diverse and copious rare species remains largely unknown. Using a dilution-to-extinction approach, rare bacterial species from reservoir water were co-cultured with the bloom-forming cyanobacterium Raphidiopsis raciborskii in the lab to explore their interactions by using Phyto-PAM and 16S rRNA gene high-throughput sequencing. We found that a ≤1000-fold bacterial dilution led to bacteria control of the growth and photosynthesis of R. raciborskii. Moreover, the bacterial community compositions in the low-dilution groups were clearly diverged from the high-dilution groups. Importantly, rare species changed dramatically in the low-dilution groups, resulting in lower phylogenetic diversity and narrower niche width. The network complexity and compositional stability of bacterial communities decreased in the low-dilution groups. Collectively, our results suggest that rare bacterial species inhibit R. raciborskii growth and photosynthesis through microbial interactions mediated by species coexistence and interaction mechanisms. Our study provides new knowledge of the ecological role of rare bacteria and offers new perspectives for understanding the outbreak and regression of R. raciborskii blooms.
Collapse
Affiliation(s)
- Jun Zuo
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Fengjiao Tan
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongteng Zhang
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanyuan Xue
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Hans-Peter Grossart
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Stechlin 16775, Germany; University of Potsdam, Institute of Biochemistry and Biology, Potsdam 14469, Germany
| | - Erik Jeppesen
- Department of Ecoscience, Aarhus University, Aarhus 8000, Denmark; Sino-Danish Centre for Education and Research, Beijing 100049, China; Limnology Laboratory, Department of Biological Sciences and Centre for Ecosystem Research and Implementation, Middle East Technical University, Ankara 06800, Turkey; Institute of Marine Sciences, Middle East Technical University, Mersin 33731, Turkey
| | - Peng Xiao
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Huihuang Chen
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Yang
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
10
|
Smith TP, Mombrikotb S, Ransome E, Kontopoulos DG, Pawar S, Bell T. Latent functional diversity may accelerate microbial community responses to temperature fluctuations. eLife 2022; 11:e80867. [PMID: 36444646 PMCID: PMC9708066 DOI: 10.7554/elife.80867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/26/2022] [Indexed: 11/30/2022] Open
Abstract
How complex microbial communities respond to climatic fluctuations remains an open question. Due to their relatively short generation times and high functional diversity, microbial populations harbor great potential to respond as a community through a combination of strain-level phenotypic plasticity, adaptation, and species sorting. However, the relative importance of these mechanisms remains unclear. We conducted a laboratory experiment to investigate the degree to which bacterial communities can respond to changes in environmental temperature through a combination of phenotypic plasticity and species sorting alone. We grew replicate soil communities from a single location at six temperatures between 4°C and 50°C. We found that phylogenetically and functionally distinct communities emerge at each of these temperatures, with K-strategist taxa favored under cooler conditions and r-strategist taxa under warmer conditions. We show that this dynamic emergence of distinct communities across a wide range of temperatures (in essence, community-level adaptation) is driven by the resuscitation of latent functional diversity: the parent community harbors multiple strains pre-adapted to different temperatures that are able to 'switch on' at their preferred temperature without immigration or adaptation. Our findings suggest that microbial community function in nature is likely to respond rapidly to climatic temperature fluctuations through shifts in species composition by resuscitation of latent functional diversity.
Collapse
Affiliation(s)
- Thomas P Smith
- The Georgina Mace Centre for the Living Planet, Imperial College LondonAscotUnited Kingdom
| | - Shorok Mombrikotb
- The Georgina Mace Centre for the Living Planet, Imperial College LondonAscotUnited Kingdom
| | - Emma Ransome
- The Georgina Mace Centre for the Living Planet, Imperial College LondonAscotUnited Kingdom
| | | | - Samraat Pawar
- The Georgina Mace Centre for the Living Planet, Imperial College LondonAscotUnited Kingdom
| | - Thomas Bell
- The Georgina Mace Centre for the Living Planet, Imperial College LondonAscotUnited Kingdom
| |
Collapse
|
11
|
Response of Prokaryotic Communities to Freshwater Salinization. Appl Microbiol 2022. [DOI: 10.3390/applmicrobiol2020025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Each year, millions of tons of sodium chloride are dumped on roads, contributing to the salinization of freshwater environments. Thus, we sought to understand the effect of sodium chloride (NaCl) on freshwater lake prokaryotic communities, an important and understudied component of food webs. Using mesocosms with 0.01–2.74 ppt NaCl (0.27–1110.86 mg/L Cl−), we evaluated the effect generated on the diversity and absolute abundance of prokaryotic populations after three and six weeks. A positive relationship between Cl− values and absolute bacterial abundance was found after three weeks. The influence of eukaryotic diversity variation was observed as well. Significant differentiation of bacterial communities starting at 420 mg/L Cl− was observed after three weeks, levels lower than the Canadian and US recommendations for acute chloride exposure. The partial recovery of a “pre-disturbance” community was observed following a drop in salinity at the threshold level of 420 mg/L Cl−. A gradual transition of dominance from Betaproteobacteria and Actinobacteria to Bacteroidia and Alphaproteobacteria was observed and is overall similar to the natural transition observed in estuaries.
Collapse
|