1
|
de la Fuente A, Youngentob KN, Marsh KJ, Krockenberger AK, Williams SE, Cernusak LA. Relationships between abiotic factors, foliage chemistry and herbivory in a tropical montane ecosystem. Oecologia 2024; 206:293-304. [PMID: 39453448 PMCID: PMC11599541 DOI: 10.1007/s00442-024-05630-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 10/01/2024] [Indexed: 10/26/2024]
Abstract
Herbivore-plant interactions are fundamental processes shaping ecosystems, yet their study is challenged by their complex connections within broader ecosystem processes, requiring a nuanced understanding of ecosystem dynamics. This study investigated the relationship between nutrient availability and insect herbivory in the Australian Wet Tropics. Our objectives were threefold. Firstly, to understand what factors influence nutrient availability for plants and herbivores across the landscape; secondly, to investigate how trees of different species respond to nutrient availability; and thirdly, to unravel how the relationships between resources and plant chemistry affect herbivory. We established a network of 25 study sites covering important abiotic gradients, including temperature, precipitation, and geology. Employing a hierarchical modelling approach, we assessed the influence of climate and geology on resource availability for plants, primarily in the form of soil nutrients. Then, we explored the influence of the above factors on the interaction between herbivory and foliage chemistry across three widespread rainforest tree species, comparing how these relationships emerged across genera. Our findings suggest an overarching influence of climate and geology over soil chemistry, foliar nitrogen, and insect herbivory, both directly and indirectly. However, individual constituents of soil fertility showed equivocal influences on spatial patterns of foliage chemistry once site geological origin was accounted for, suggesting a questionable relationship between individual soil nutrients and foliar composition. We have demonstrated that herbivore-plant interactions are complex dynamics regulated by an intricate web of relationships spanning different biogeochemical processes. While our results provide some support to the notion that herbivory is affected by resource availability, different species growing under the same conditions can show differing responses to the same resources, highlighting the importance of identifying specific limiting factors rather than simpler proxies of resource availability.
Collapse
Affiliation(s)
| | - Kara N Youngentob
- The Fenner School of Environment and Society, Australian National University, Canberra, ACT, Australia
| | - Karen J Marsh
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | | | - Stephen E Williams
- College of Science and Engineering, James Cook University, Townsville, QLD, Australia
| | - Lucas A Cernusak
- College of Science and Engineering, James Cook University, Cairns, QLD, Australia
| |
Collapse
|
2
|
Leong JV, Mezzomo P, Kozel P, Volfová T, de Lima Ferreira P, Seifert CL, Butterill PT, Freiberga I, Michálek J, Matos-Maraví P, Weinhold A, Engström MT, Salminen JP, Segar ST, Sedio BE, Volf M. Effects of individual traits vs. trait syndromes on assemblages of various herbivore guilds associated with central European Salix. Oecologia 2024; 205:725-737. [PMID: 38829402 DOI: 10.1007/s00442-024-05569-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 05/13/2024] [Indexed: 06/05/2024]
Abstract
Plants employ diverse anti-herbivore defences that can covary to form syndromes consisting of multiple traits. Such syndromes are hypothesized to impact herbivores more than individual defences. We studied 16 species of lowland willows occurring in central Europe and explored if their chemical and physical traits form detectable syndromes. We tested for phylogenetic trends in the syndromes and explored whether three herbivore guilds (i.e., generalist leaf-chewers, specialist leaf-chewers, and gallers) are affected more by the detected syndromes or individual traits. The recovered syndromes showed low phylogenetic signal and were mainly defined by investment in concentration, richness, or uniqueness of structurally related phenolic metabolites. Resource acquisition traits or inducible volatile organic compounds exhibited a limited correlation with the syndromes. Individual traits composing the syndromes showed various correlations to the assemblages of herbivores from the three studied guilds. In turn, we found some support for the hypothesis that defence syndromes are composed of traits that provide defence against various herbivores. However, individual traits rather than trait syndromes explained more variation for all studied herbivore assemblages. The detected negative correlations between various phenolics suggest that investment trade-offs may occur primarily among plant metabolites with shared metabolic pathways that may compete for their precursors. Moreover, several traits characterizing the recovered syndromes play additional roles in willows other than defence from herbivory. Taken together, our findings suggest that the detected syndromes did not solely evolve as an anti-herbivore defence.
Collapse
Affiliation(s)
- Jing V Leong
- Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic.
- Faculty of Science, Department of Zoology, University of South Bohemia, Ceske Budejovice, Czech Republic.
| | - Priscila Mezzomo
- Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
- Faculty of Science, Department of Zoology, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Petr Kozel
- Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
- Faculty of Science, Department of Zoology, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Tereza Volfová
- Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
- Faculty of Science, Department of Zoology, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Paola de Lima Ferreira
- Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
- Department of Biology, Aarhus University, Aarhus, Denmark
| | - Carlo L Seifert
- Department of Forest Nature Conservation, Faculty of Forest Sciences and Forest Ecology, Georg-August-University of Göttingen, Göttingen, Germany
| | - Phillip T Butterill
- Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Inga Freiberga
- Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Jan Michálek
- Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
- Institute of Microbiology, Centre Algatech Czech Academy of Sciences, Trebon, Czech Republic
| | - Pável Matos-Maraví
- Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Alexander Weinhold
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| | - Marica T Engström
- Bioanalytical Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Juha-Pekka Salminen
- Natural Chemistry Research Group, Department of Chemistry, University of Turku, Turku, Finland
| | - Simon T Segar
- Agriculture and Environment Department, Harper Adams University, Newport, United Kingdom
| | - Brian E Sedio
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, United States of America
- Smithsonian Tropical Research Institute, Ancón, Panama
| | - Martin Volf
- Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
- Faculty of Science, Department of Zoology, University of South Bohemia, Ceske Budejovice, Czech Republic
| |
Collapse
|
3
|
Molleman F, Mandal M, Sokół-Łętowska A, Walczak U, Volf M, Mallick S, Moos M, Vodrážka P, Prinzing A, Mezzomo P. Simulated Herbivory Affects the Volatile Emissions of Oak Saplings, while Neighbourhood Affects Flavan-3-ols Content of Their Leaves. J Chem Ecol 2024; 50:250-261. [PMID: 38270732 DOI: 10.1007/s10886-024-01471-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 01/26/2024]
Abstract
To what extent particular plant defences against herbivorous insects are constitutive or inducible will depend on the costs and benefits in their neighbourhood. Some defensive chemicals in leaves are thought to be costly and hard to produce rapidly, while others, including volatile organic compounds that attract natural enemies, might be cheaper and can be released rapidly. When surrounding tree species are more closely related, trees can face an increased abundance of both specialist herbivores and their parasitoids, potentially increasing the benefits of constitutive and inducible defences. To test if oaks (Quercus robur) respond more to herbivore attacks with volatile emission than with changes in leaf phenolic chemistry and carbon to nitrogen ratio (C: N), and whether oaks respond to the neighbouring tree species, we performed an experiment in a forest in Poland. Oak saplings were placed in neighbourhoods dominated by oak, beech, or pine trees, and half of them were treated with the phytohormone methyl jasmonate (elicitor of anti-herbivore responses). Oaks responded to the treatment by emitting a different volatile blend within 24 h, while leaf phenolic chemistry and C: N remained largely unaffected after 16 days and multiple treatments. Leaf phenolics were subtly affected by the neighbouring trees with elevated flavan-3-ols concentrations in pine-dominated plots. Our results suggest that these oaks rely on phenols as a constitutive defence and when attacked emit volatiles to attract natural enemies. Further studies might determine if the small effect of the neighbourhood on leaf phenolics is a response to different levels of shading, or if oaks use volatile cues to assess the composition of their neighbourhood.
Collapse
Affiliation(s)
- Freerk Molleman
- Department of Systematic Zoology, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego Str. 6, Poznań, PL-61-614, Poland.
| | - Manidip Mandal
- Department of Systematic Zoology, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego Str. 6, Poznań, PL-61-614, Poland
| | - Anna Sokół-Łętowska
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Faculty of the Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Chełmońskiego Str. 37, Wrocław, 51-630, Poland
| | - Urszula Walczak
- Department of Systematic Zoology, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego Str. 6, Poznań, PL-61-614, Poland
| | - Martin Volf
- Biology Centre, Czech Academy of Sciences, Ceske Budejovice, 37005, Czech Republic
- Faculty of Science, University of South Bohemia, Branisovska 31, Ceske Budejovice, 37005, Czech Republic
| | - Soumen Mallick
- Department of Animal Ecology and Tropical Biology, Biocenter, Field Station Fabrikschleichach, University of Würzburg, Glashüttenstraße 5, 96181, Rauhenebrach, Germany
| | - Martin Moos
- Biology Centre, Czech Academy of Sciences, Ceske Budejovice, 37005, Czech Republic
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Petr Vodrážka
- Biology Centre, Czech Academy of Sciences, Ceske Budejovice, 37005, Czech Republic
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Andreas Prinzing
- Research Unit « Ecosystemes, Biodiversité, Evolution », Université de Rennes 1, Centre National de la Recherche Scientifique, Campus Beaulieu, bâtiment 14, Rennes, AF-35042, France
| | - Priscila Mezzomo
- Biology Centre, Czech Academy of Sciences, Ceske Budejovice, 37005, Czech Republic
- Faculty of Science, University of South Bohemia, Branisovska 31, Ceske Budejovice, 37005, Czech Republic
| |
Collapse
|
4
|
Volf M, Fontanilla AM, Vanhakylä S, Abe T, Libra M, Kogo R, Lilip R, Kamata N, Murakami M, Novotny V, Salminen J, Segar ST. High intraspecific variability and previous experience affect polyphenol metabolism in polyphagous Lymantria mathura caterpillars. Ecol Evol 2024; 14:e10973. [PMID: 38343568 PMCID: PMC10857923 DOI: 10.1002/ece3.10973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/14/2023] [Accepted: 12/21/2023] [Indexed: 10/28/2024] Open
Abstract
Polyphagous insect herbivores feed on multiple host-plant species and face a highly variable chemical landscape. Comparative studies of polyphagous herbivore metabolism across a range of plants is an ideal approach for exploring how intra- and interspecific chemical variation shapes species interactions. We used polyphagous caterpillars of Lymantria mathura (Erebidae, Lepidoptera) to explore mechanisms that may contribute to its ability to feed on various hosts. We focused on intraspecific variation in polyphenol metabolism, the fates of individual polyphenols, and the role of previous feeding experience on polyphenol metabolism and leaf consumption. We collected the caterpillars from Acer amoenum (Sapindaceae), Carpinus cordata (Betulaceae), and Quercus crispula (Fagaceae). We first fed the larvae with the leaves of their original host and characterized the polyphenol profiles in leaves and frass. We then transferred a subset of larvae to a different host species and quantified how host shifting affected their leaf consumption and polyphenol metabolism. There was high intraspecific variation in frass composition, even among caterpillars fed with one host. While polyphenols had various fates when ingested by the caterpillars, most of them were passively excreted. When we transferred the caterpillars to a new host, their previous experience influenced how they metabolized polyphenols. The one-host larvae metabolized a larger quantity of ingested polyphenols than two-host caterpillars. Some of these metabolites could have been sequestered, others were probably activated in the gut. One-host caterpillars retained more of the ingested leaf biomass than transferred caterpillars. The pronounced intraspecific variation in polyphenol metabolism, an ability to excrete ingested metabolites and potential dietary habituation are factors that may contribute to the ability of L. mathura to feed across multiple hosts. Further comparative studies can help identify if these mechanisms are related to differential host-choice and response to host-plant traits in specialist and generalist insect herbivores.
Collapse
Affiliation(s)
- Martin Volf
- Biology CentreCzech Academy of SciencesCeske BudejoviceCzech Republic
- Faculty of ScienceUniversity of South BohemiaCeske BudejoviceCzech Republic
| | - Alyssa M. Fontanilla
- Biology CentreCzech Academy of SciencesCeske BudejoviceCzech Republic
- Faculty of ScienceUniversity of South BohemiaCeske BudejoviceCzech Republic
| | | | | | - Martin Libra
- Biology CentreCzech Academy of SciencesCeske BudejoviceCzech Republic
- Faculty of ScienceUniversity of South BohemiaCeske BudejoviceCzech Republic
| | | | - Roll Lilip
- New Guinea Binatang Research CenterMadangPapua New Guinea
| | - Naoto Kamata
- Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | | | - Vojtech Novotny
- Biology CentreCzech Academy of SciencesCeske BudejoviceCzech Republic
- Faculty of ScienceUniversity of South BohemiaCeske BudejoviceCzech Republic
| | | | - Simon T. Segar
- Agriculture and Environment DepartmentHarper Adams UniversityNewportUK
| |
Collapse
|
5
|
Mallick S, Molleman F, Yguel B, Bailey R, Müller J, Jean F, Prinzing A. Ectophagous folivores do not profit from rich resources on phylogenetically isolated trees. Oecologia 2023; 201:1-18. [PMID: 36165922 DOI: 10.1007/s00442-022-05260-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/06/2022] [Indexed: 01/07/2023]
Abstract
Resource use by consumers across patches is often proportional to the quantity or quality of the resource within these patches. In folivores, such proportional use of resources is likely to be more efficient when plants are spatially proximate, such as trees forming a forest canopy. However, resources provided by forest-trees are often not used proportionally. We hypothesised that proportional use of resources is reduced when host trees are isolated among phylogenetically distant neighbours that mask olfactory and visual search cues, and reduce folivore movement between trees. Such phylogenetically distant neighbourhoods might sort out species that are specialists, poor dispersers, or have poor access to information about leaf quality. We studied individual oaks, their leaf size and quality, their folivory and abundance of folivores (mostly Lepidopteran ectophages, gallers and miners), and parasitism of folivores. We found that leaf consumption by ectophages hardly increased with increasing leaf size when host trees were phylogenetically isolated. We found a similar effect on host use by parasitoids in 1 year. In contrast, we found no consistent effects in other folivore guilds. Relative abundances of specialists and species with wingless females declined with phylogenetic isolation. However, resource use within each of these groups was inconsistently affected by phylogenetic isolation. We suggest that phylogenetic isolation prevents ectophages from effectively choosing trees with abundant resources, and also sorts out species likely to recruit in situ on their host tree. Trees in phylogenetically distant neighbourhoods may be selected for larger leaves and greater reliance on induced defences.
Collapse
Affiliation(s)
- Soumen Mallick
- Centre National de la Recherche Scientifique, Université de Rennes 1, Research Unit UMR 6553, Ecosystèmes Biodiversité Evolution (ECOBIO), Campus de Beaulieu, 35042, Rennes, France.
| | - Freerk Molleman
- Department of Systematic Zoology, Institute of Environmental Biology, Faculty of Biology, A. Mickiewicz University, Ul. Uniwersytetu Poznańskiego 6, 61-614, Poznan, Poland
| | - Benjamin Yguel
- Centre National de la Recherche Scientifique, Université de Rennes 1, Research Unit UMR 6553, Ecosystèmes Biodiversité Evolution (ECOBIO), Campus de Beaulieu, 35042, Rennes, France.,Centre d'Ecologie et des Sciences de la Conservation (CESCO-UMR 7204), Sorbonne Universités-MNHN-CNRS-UPMC, CP51, 55-61rue Buffon, 75005, Paris, France
| | - Richard Bailey
- Centre National de la Recherche Scientifique, Université de Rennes 1, Research Unit UMR 6553, Ecosystèmes Biodiversité Evolution (ECOBIO), Campus de Beaulieu, 35042, Rennes, France.,Department of Ecology and Vertebrate Zoology, Faculty of Biology and Environmental Protection, University of Łódź, Lodz, Poland
| | - Jörg Müller
- Field Station Fabrikschleichach, Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Glashüttenstraße 5, 96181, Rauhenebrach, Germany.,Bavarian Forest National Park, Freyunger Str. 2, 94481, Grafenau, Germany
| | - Frédéric Jean
- Centre National de la Recherche Scientifique, Université de Rennes 1, Research Unit UMR 6553, Ecosystèmes Biodiversité Evolution (ECOBIO), Campus de Beaulieu, 35042, Rennes, France
| | - Andreas Prinzing
- Centre National de la Recherche Scientifique, Université de Rennes 1, Research Unit UMR 6553, Ecosystèmes Biodiversité Evolution (ECOBIO), Campus de Beaulieu, 35042, Rennes, France
| |
Collapse
|
6
|
Forde AJ, Feller IC, Parker JD, Gruner DS. Insectivorous birds reduce herbivory but do not increase mangrove growth across productivity zones. Ecology 2022; 103:e3768. [PMID: 35608609 PMCID: PMC9786852 DOI: 10.1002/ecy.3768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 02/24/2022] [Accepted: 04/19/2022] [Indexed: 12/30/2022]
Abstract
Top-down effects of predators and bottom-up effects of resources are important drivers of community structure and function in a wide array of ecosystems. Fertilization experiments impose variation in resource availability that can mediate the strength of predator impacts, but the prevalence of such interactions across natural productivity gradients is less clear. We studied the joint impacts of top-down and bottom-up factors in a tropical mangrove forest system, leveraging fine-grained patchiness in resource availability and primary productivity on coastal cays of Belize. We excluded birds from canopies of red mangrove (Rhizophoraceae: Rhizophora mangle) for 13 months in zones of phosphorus-limited, stunted dwarf mangroves, and in adjacent zones of vigorous mangroves that receive detrital subsidies. Birds decreased total arthropod densities by 62%, herbivore densities more than fivefold, and reduced rates of leaf and bud herbivory by 45% and 52%, respectively. Despite similar arthropod densities across both zones of productivity, leaf and bud damage were 2.0 and 4.3 times greater in productive stands. Detrital subsidies strongly impacted a suite of plant traits in productive stands, potentially making leaves more nutritious and vulnerable to damage. Despite consistently strong impacts on herbivory, we did not detect top-down forcing that impacted mangrove growth, which was similar with and without birds. Our results indicated that both top-down and bottom-up forces drive arthropod community dynamics, but attenuation at the plant-herbivore interface weakens top-down control by avian insectivores.
Collapse
Affiliation(s)
| | - Ilka C. Feller
- Smithsonian Environmental Research CenterEdgewaterMarylandUSA
| | - John D. Parker
- Smithsonian Environmental Research CenterEdgewaterMarylandUSA
| | | |
Collapse
|