1
|
Hagelstam-Renshaw C, Ringelberg JJ, Sinou C, Cardinal-McTeague W, Bruneau A. Biome evolution in subfamily Cercidoideae (Leguminosae): a tropical arborescent clade with a relictual depauperate temperate lineage. REVISTA BRASILEIRA DE BOTANICA : BRAZILIAN JOURNAL OF BOTANY 2024; 48:11. [PMID: 39703368 PMCID: PMC11652589 DOI: 10.1007/s40415-024-01058-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 09/23/2024] [Accepted: 10/03/2024] [Indexed: 12/21/2024]
Abstract
Some plant lineages remain within the same biome over time (biome conservatism), whereas others seem to adapt more easily to new biomes. The c. 398 species (14 genera) of subfamily Cercidoideae (Leguminosae or Fabaceae) are found in many biomes around the world, particularly in the tropical regions of South America, Asia and Africa, and display a variety of growth forms (small trees, shrubs, lianas and herbaceous perennials). Species distribution maps derived from cleaned occurrence records were compiled and compared with existing biome maps and with the literature to assign species to biomes. Rainforest (144 species), succulent (44 species), savanna (36 species), and temperate (10 species) biomes were found to be important in describing the global distribution of Cercidoideae, with many species occurring in more than one biome. Two phylogenetically isolated species-poor temperate (Cercis) and succulent (Adenolobus) biome lineages are sister to two broadly distributed species-rich tropical clades. Ancestral state reconstructions on a time-calibrated phylogeny suggest biome shifts occurred throughout the evolutionary history of the subfamily, with shifts between the succulent and rainforest biomes, from the rainforest to savanna, from the succulent to savanna biome, and one early occurring shift into (or from) the temperate biome. Of the 26 inferred shifts in biome, three are closely associated with a shift from the ancestral tree/shrub growth form to a liana or herbaceous perennial habit. Only three of the 13 inferred transcontinental dispersal events are associated with biome shifts. Overall, we find that biome shifts tend to occur within the same continent and that dispersals to new continents tend to occur within the same biome, but that nonetheless the biome-conserved and biogeographically structured Cercidoideae have been able to adapt to different environments through time. Supplementary Information The online version contains supplementary material available at 10.1007/s40415-024-01058-z.
Collapse
Affiliation(s)
- Charlotte Hagelstam-Renshaw
- Institut de Recherche en Biologie Végétale and Département de Sciences Biologiques, Université de Montréal, Montréal, QC H1X 2B2 Canada
| | - Jens J. Ringelberg
- School of Geosciences, Old College, University of Edinburgh, South Bridge, Edinburgh, EH8 9YL UK
| | - Carole Sinou
- Institut de Recherche en Biologie Végétale and Département de Sciences Biologiques, Université de Montréal, Montréal, QC H1X 2B2 Canada
| | - Warren Cardinal-McTeague
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4 Canada
| | - Anne Bruneau
- Institut de Recherche en Biologie Végétale and Département de Sciences Biologiques, Université de Montréal, Montréal, QC H1X 2B2 Canada
| |
Collapse
|
2
|
Boom AF, Migliore J, Ojeda Alayon DI, Kaymak E, Hardy OJ. Phylogenomics of Brachystegia: Insights into the origin of African miombo woodlands. AMERICAN JOURNAL OF BOTANY 2024; 111:e16352. [PMID: 38853465 DOI: 10.1002/ajb2.16352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 06/11/2024]
Abstract
PREMISE Phylogenetic approaches can provide valuable insights on how and when a biome emerged and developed using its structuring species. In this context, Brachystegia Benth, a dominant genus of trees in miombo woodlands, appears as a key witness of the history of the largest woodland and savanna biome of Africa. METHODS We reconstructed the evolutionary history of the genus using targeted-enrichment sequencing on 60 Brachystegia specimens for a nearly complete species sampling. Phylogenomic inferences used supermatrix (RAxML-NG) and summary-method (ASTRAL-III) approaches. Conflicts between species and gene trees were assessed, and the phylogeny was time-calibrated in BEAST. Introgression between species was explored using Phylonet. RESULTS The phylogenies were globally congruent regardless of the method used. Most of the species were recovered as monophyletic, unlike previous plastid phylogenetic reconstructions where lineages were shared among geographically close individuals independently of species identity. Still, most of the individual gene trees had low levels of phylogenetic information and, when informative, were mostly in conflict with the reconstructed species trees. These results suggest incomplete lineage sorting and/or reticulate evolution, which was supported by network analyses. The BEAST analysis supported a Pliocene origin for current Brachystegia lineages, with most of the diversification events dated to the Pliocene-Pleistocene. CONCLUSIONS These results suggest a recent origin of species of the miombo, congruently with their spatial expansion documented from plastid data. Brachystegia species appear to behave potentially as a syngameon, a group of interfertile but still relatively well-delineated species, an aspect that deserves further investigations.
Collapse
Affiliation(s)
- Arthur F Boom
- Royal Museum for Central Africa, Biology Department, Section Vertebrates, Tervuren, Belgium
- Université Libre de Bruxelles, Faculté des Sciences, Service Evolution Biologique et Ecologie, Bruxelles, Belgium
| | - Jérémy Migliore
- Université Libre de Bruxelles, Faculté des Sciences, Service Evolution Biologique et Ecologie, Bruxelles, Belgium
- Muséum départemental du Var, Toulon, France
| | - Dario I Ojeda Alayon
- Muséum départemental du Var, Toulon, France
- Department of Forest Biodiversity, Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Esra Kaymak
- Université Libre de Bruxelles, Faculté des Sciences, Service Evolution Biologique et Ecologie, Bruxelles, Belgium
- Institute of Science and Technology (OIST), Okinawa, Japan
| | - Olivier J Hardy
- Université Libre de Bruxelles, Faculté des Sciences, Service Evolution Biologique et Ecologie, Bruxelles, Belgium
| |
Collapse
|
3
|
Ringelberg JJ, Koenen EJ, Sauter B, Aebli A, Rando JG, Iganci JR, de Queiroz LP, Murphy DJ, Gaudeul M, Bruneau A, Luckow M, Lewis GP, Miller JT, Simon MF, Jordão LS, Morales M, Bailey CD, Nageswara-Rao M, Nicholls JA, Loiseau O, Pennington RT, Dexter KG, Zimmermann NE, Hughes CE. Precipitation is the main axis of tropical plant phylogenetic turnover across space and time. SCIENCE ADVANCES 2023; 9:eade4954. [PMID: 36800419 PMCID: PMC10957106 DOI: 10.1126/sciadv.ade4954] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Early natural historians-Comte de Buffon, von Humboldt, and De Candolle-established environment and geography as two principal axes determining the distribution of groups of organisms, laying the foundations for biogeography over the subsequent 200 years, yet the relative importance of these two axes remains unresolved. Leveraging phylogenomic and global species distribution data for Mimosoid legumes, a pantropical plant clade of c. 3500 species, we show that the water availability gradient from deserts to rain forests dictates turnover of lineages within continents across the tropics. We demonstrate that 95% of speciation occurs within a precipitation niche, showing profound phylogenetic niche conservatism, and that lineage turnover boundaries coincide with isohyets of precipitation. We reveal similar patterns on different continents, implying that evolution and dispersal follow universal processes.
Collapse
Affiliation(s)
- Jens J. Ringelberg
- Department of Systematic and Evolutionary Botany, University of Zurich, Zollikerstrasse 107, CH 8008 Zurich, Switzerland
| | - Erik J. M. Koenen
- Department of Systematic and Evolutionary Botany, University of Zurich, Zollikerstrasse 107, CH 8008 Zurich, Switzerland
| | - Benjamin Sauter
- Department of Systematic and Evolutionary Botany, University of Zurich, Zollikerstrasse 107, CH 8008 Zurich, Switzerland
| | - Anahita Aebli
- Department of Systematic and Evolutionary Botany, University of Zurich, Zollikerstrasse 107, CH 8008 Zurich, Switzerland
| | - Juliana G. Rando
- Programa de Pós Graduação em Ciências Ambientais, Centro das Ciências Biológicas e da Saúde, Universidade Federal do Oeste da Bahia, Rua Prof. José Seabra de Lemos, 316, Bairro Recanto dos Pássaros, 47808-021 Barreiras-BA, Brazil
| | - João R. Iganci
- Instituto de Biologia, Universidade Federal de Pelotas, Campus Universitário Capão do Leão, Travessa André Dreyfus s/n, 96010-900 Capão do Leão-RS, Brazil
- Programa de Pós-Graduação em Botânica, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500, 91501-970 Porto Alegre-RS, Brazil
| | - Luciano P. de Queiroz
- Departamento Ciências Biológicas, Universidade Estadual de Feira de Santana, Avenida Transnordestina s/n, Novo Horizonte, 44036-900 Feira de Santana-BA, Brazil
| | - Daniel J. Murphy
- Royal Botanic Gardens Victoria, Birdwood Ave., Melbourne, VIC 3004, Australia
- School of Biological, Earth and Environmental Sciences, Faculty of Science, University of New South Wales, Sydney, NSW 2052, Australia
- School of BioSciences, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Myriam Gaudeul
- Institut de Systématique, Evolution, Biodiversité (ISYEB), MNHN-CNRS-SU-EPHE-UA, 57 rue Cuvier, CP 39, 75231 Paris, Cedex 05, France
| | - Anne Bruneau
- Institut de Recherche en Biologie Végétale and Département de Sciences Biologiques, Université de Montréal, 4101 Sherbrooke St E, Montreal, QC H1X 2B2, Canada
| | - Melissa Luckow
- School of Integrative Plant Science, Plant Biology Section, Cornell University, 215 Garden Avenue, Roberts Hall 260, Ithaca, NY 14853, USA
| | - Gwilym P. Lewis
- Accelerated Taxonomy Department, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE, UK
| | - Joseph T. Miller
- Global Biodiversity Information Facility, Universitetsparken 15, DK-2100 Copenhagen Ø, Denmark
| | - Marcelo F. Simon
- Embrapa Recursos Genéticos e Biotecnologia, 70770-901 Brasília-DF, Brazil
| | - Lucas S. B. Jordão
- Programa de Pós-Graduação em Botânica, Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, 22460-030 Rua Pacheco Leão-RJ, Brazil
| | - Matías Morales
- Instituto de Recursos Biológicos, CIRN-CNIA, Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham 1686, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1425FQB Ciudad Autónoma de Buenos Aires, Argentina
- Facultad de Agronomía y Ciencias Agroalimentarias, Universidad de Morón, B1708JPD Morón, Buenos Aires, Argentina
| | - C. Donovan Bailey
- Department of Biology, New Mexico State University, Las Cruces, NM 88001, USA
| | - Madhugiri Nageswara-Rao
- United States Department of Agriculture - Agricultural Research Service, Subtropical Horticulture Research Station, 13601 Old Cutler Road, Miami, FL 33158, USA
| | - James A. Nicholls
- Australian National Insect Collection, CSIRO, Clunies Ross Street, Acton, ACT 2601, Australia
| | - Oriane Loiseau
- School of Geosciences, University of Edinburgh, Old College, South Bridge, Edinburgh EH8 9YL, UK
| | - R. Toby Pennington
- Department of Geography, University of Exeter, Laver Building, North Park Road, Exeter EX4 4QE, UK
- Tropical Diversity Section, Royal Botanic Garden Edinburgh, Edinburgh EH3 5LR, UK
| | - Kyle G. Dexter
- School of Geosciences, University of Edinburgh, Old College, South Bridge, Edinburgh EH8 9YL, UK
- Tropical Diversity Section, Royal Botanic Garden Edinburgh, Edinburgh EH3 5LR, UK
| | - Niklaus E. Zimmermann
- Department of Environmental System Science, ETH Zürich, Universitätstrasse 16, 8092 Zürich, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Colin E. Hughes
- Department of Systematic and Evolutionary Botany, University of Zurich, Zollikerstrasse 107, CH 8008 Zurich, Switzerland
| |
Collapse
|
4
|
Xian X, Zhao H, Wang R, Zhang H, Chen B, Liu W, Wan F. Evidence of the niche expansion of crofton weed following invasion in China. Ecol Evol 2023; 13:e9708. [PMID: 36620415 PMCID: PMC9817199 DOI: 10.1002/ece3.9708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 01/09/2023] Open
Abstract
Niche dynamics of invasive alien plants (IAPs) play pivotal roles in biological invasion. Ageratina adenophora-one of the most aggressive IAPs in China and some parts of the world-poses severe ecological and socioeconomic threats. However, the spatiotemporal niche dynamics of A. adenophora in China remain unknown, which we aimed to elucidate in the present study. China, Mexico; using a unifying framework, we reconstructed the climate niche dynamics of A. adenophora and applied the optimal MaxEnt model to predict its potential geographical distribution in China. Furthermore, we compared the heterogeneity of A. adenophora niche between Mexico (native) and China (invasive). We observed a low niche overlap between Mexico (native) and China (invasive). Specifically, the niche of A. adenophora in China has distinctly expanded compared to that in Mexico, enhancing the invasion risk of this IAP in the former country. In fact, the climatic niche of A. adenophora in Mexico is a subset of that in China. The potential geographical distribution of A. adenophora is concentrated in the tropical and subtropical zones of Southwest China, and its geographical distribution pattern in China is shaped by the combination of precipitation and temperature variables. The niche dynamics of A. adenophora follow the hypothesis of niche shift and conservatism. The present work provides a unifying framework for studies on the niche dynamics of other IAPs worldwide.
Collapse
Affiliation(s)
- Xiaoqing Xian
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural ScienceBeijingChina
| | - Haoxiang Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural ScienceBeijingChina
| | - Rui Wang
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural ScienceBeijingChina
| | - Hongbin Zhang
- Rural Energy and Environment AgencyMinistry of Agriculture and Rural AffairsBeijingChina
| | - Baoxiong Chen
- Rural Energy and Environment AgencyMinistry of Agriculture and Rural AffairsBeijingChina
| | - Wanxue Liu
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural ScienceBeijingChina
| | - Fanghao Wan
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural ScienceBeijingChina
| |
Collapse
|