1
|
Bogdziewicz M, Kelly D, Ascoli D, Caignard T, Chianucci F, Crone EE, Fleurot E, Foest JJ, Gratzer G, Hagiwara T, Han Q, Journé V, Keurinck L, Kondrat K, McClory R, LaMontagne JM, Mundo IA, Nussbaumer A, Oberklammer I, Ohno M, Pearse IS, Pesendorfer MB, Resente G, Satake A, Shibata M, Snell RS, Szymkowiak J, Touzot L, Zwolak R, Zywiec M, Hacket-Pain AJ. Evolutionary ecology of masting: mechanisms, models, and climate change. Trends Ecol Evol 2024; 39:851-862. [PMID: 38862358 DOI: 10.1016/j.tree.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 06/13/2024]
Abstract
Many perennial plants show mast seeding, characterized by synchronous and highly variable reproduction across years. We propose a general model of masting, integrating proximate factors (environmental variation, weather cues, and resource budgets) with ultimate drivers (predator satiation and pollination efficiency). This general model shows how the relationships between masting and weather shape the diverse responses of species to climate warming, ranging from no change to lower interannual variation or reproductive failure. The role of environmental prediction as a masting driver is being reassessed; future studies need to estimate prediction accuracy and the benefits acquired. Since reproduction is central to plant adaptation to climate change, understanding how masting adapts to shifting environmental conditions is now a central question.
Collapse
Affiliation(s)
- Michal Bogdziewicz
- Forest Biology Center, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland.
| | - Dave Kelly
- Centre for Integrative Ecology, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand.
| | - Davide Ascoli
- Department of Agriculture, Forest, and Food Sciences, University of Torino, Largo Paolo Braccini 2, Grugliasco, (TO), Italy
| | - Thomas Caignard
- University of Bordeaux, INRAE, BIOGECO, F-33610 Cestas, France
| | - Francesco Chianucci
- CREA - Research Centre for Forestry and Wood, viale S. Margherita 80, Arezzo, Italy
| | - Elizabeth E Crone
- Department of Evolution and Ecology, University of California, Davis, CA 95616, USA
| | - Emilie Fleurot
- Department of Agriculture, Forest, and Food Sciences, University of Torino, Largo Paolo Braccini 2, Grugliasco, (TO), Italy; Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, Université de Lyon, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Jessie J Foest
- Department of Geography and Planning, School of Environmental Sciences, University of Liverpool, Liverpool, UK
| | - Georg Gratzer
- Institute of Forest Ecology, Department of Forest and Soil Sciences, BOKU University, Vienna, Peter-Jordan-Strasse 82, A-1190 Vienna, Austria
| | - Tomika Hagiwara
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Qingmin Han
- Department of Plant Ecology, Forestry, and Forest Products Research Institute, Matsunosato 1, Tsukuba, Ibaraki 305-8687, Japan
| | - Valentin Journé
- Forest Biology Center, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland
| | - Léa Keurinck
- Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, Université de Lyon, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Katarzyna Kondrat
- Forest Biology Center, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland
| | - Ryan McClory
- School of Agriculture, Policy, and Development, University of Reading, Reading, UK
| | - Jalene M LaMontagne
- Department of Biological Sciences, DePaul University, Chicago, IL 60614, USA
| | - Ignacio A Mundo
- Laboratorio de Dendrocronología e Historia Ambiental, IANIGLA-CONICET, Mendoza, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Anita Nussbaumer
- Swiss Federal Institute for Forest, Snow, and Landscape Research WSL, Birmensdorf, Switzerland
| | - Iris Oberklammer
- Institute of Forest Ecology, Department of Forest and Soil Sciences, BOKU University, Vienna, Peter-Jordan-Strasse 82, A-1190 Vienna, Austria
| | - Misuzu Ohno
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Ian S Pearse
- US Geological Survey, Fort Collins Science Center, Fort Collins, CO 80526, USA
| | - Mario B Pesendorfer
- Institute of Forest Ecology, Department of Forest and Soil Sciences, BOKU University, Vienna, Peter-Jordan-Strasse 82, A-1190 Vienna, Austria
| | - Giulia Resente
- Department of Agriculture, Forest, and Food Sciences, University of Torino, Largo Paolo Braccini 2, Grugliasco, (TO), Italy
| | - Akiko Satake
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Mitsue Shibata
- Department of Forest Vegetation, Forestry, and Forest Products Research Institute, Matsunosato 1, Tsukuba, Ibaraki 305-8687, Japan
| | - Rebecca S Snell
- Department of Environmental and Plant Biology, Ohio University, Athens, OH, USA
| | - Jakub Szymkowiak
- Forest Biology Center, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland; Population Ecology Research Unit, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland
| | - Laura Touzot
- Institut National de Recherche Pour Agriculture (INRAE), Alimentation et Environnement (IN23-RAE), Laboratoire EcoSystemes et Societes En Montagne (LESSEM), Université Grenoble Alpes, St Martin-d'Hères, 38402, France
| | - Rafal Zwolak
- Department of Systematic Zoology, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland
| | - Magdalena Zywiec
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512 Kraków, Poland
| | - Andrew J Hacket-Pain
- Department of Geography and Planning, School of Environmental Sciences, University of Liverpool, Liverpool, UK.
| |
Collapse
|
2
|
Foest JJ, Bogdziewicz M, Pesendorfer MB, Ascoli D, Cutini A, Nussbaumer A, Verstraeten A, Beudert B, Chianucci F, Mezzavilla F, Gratzer G, Kunstler G, Meesenburg H, Wagner M, Mund M, Cools N, Vacek S, Schmidt W, Vacek Z, Hacket-Pain A. Widespread breakdown in masting in European beech due to rising summer temperatures. GLOBAL CHANGE BIOLOGY 2024; 30:e17307. [PMID: 38709196 DOI: 10.1111/gcb.17307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/10/2024] [Accepted: 04/13/2024] [Indexed: 05/07/2024]
Abstract
Climate change effects on tree reproduction are poorly understood, even though the resilience of populations relies on sufficient regeneration to balance increasing rates of mortality. Forest-forming tree species often mast, i.e. reproduce through synchronised year-to-year variation in seed production, which improves pollination and reduces seed predation. Recent observations in European beech show, however, that current climate change can dampen interannual variation and synchrony of seed production and that this masting breakdown drastically reduces the viability of seed crops. Importantly, it is unclear under which conditions masting breakdown occurs and how widespread breakdown is in this pan-European species. Here, we analysed 50 long-term datasets of population-level seed production, sampled across the distribution of European beech, and identified increasing summer temperatures as the general driver of masting breakdown. Specifically, increases in site-specific mean maximum temperatures during June and July were observed across most of the species range, while the interannual variability of population-level seed production (CVp) decreased. The declines in CVp were greatest, where temperatures increased most rapidly. Additionally, the occurrence of crop failures and low seed years has decreased during the last four decades, signalling altered starvation effects of masting on seed predators. Notably, CVp did not vary among sites according to site mean summer temperature. Instead, masting breakdown occurs in response to warming local temperatures (i.e. increasing relative temperatures), such that the risk is not restricted to populations growing in warm average conditions. As lowered CVp can reduce viable seed production despite the overall increase in seed count, our results warn that a covert mechanism is underway that may hinder the regeneration potential of European beech under climate change, with great potential to alter forest functioning and community dynamics.
Collapse
Affiliation(s)
- Jessie J Foest
- Department of Geography and Planning, School of Environmental Sciences, University of Liverpool, Liverpool, UK
| | - Michał Bogdziewicz
- Faculty of Biology, Forest Biology Center, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Mario B Pesendorfer
- Department of Forest and Soil Sciences, Institute of Forest Ecology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Davide Ascoli
- Department of Agriculture, Forest and Food Sciences, University of Turin, Turin, Italy
| | - Andrea Cutini
- CREA - Research Centre for Forestry and Wood, Arezzo, Italy
| | - Anita Nussbaumer
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Arne Verstraeten
- Research Institute for Nature and Forest (INBO), Geraardsbergen, Belgium
| | - Burkhard Beudert
- Department of Conservation and Research, Bavarian Forest National Park, Grafenau, Germany
| | | | | | - Georg Gratzer
- Department of Forest and Soil Sciences, Institute of Forest Ecology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Georges Kunstler
- Université Grenoble Alpes, INRAE, LESSEM, Saint-Martin-d'Hères, France
| | - Henning Meesenburg
- Department of Environmental Control, Northwest German Forest Research Institute, Göttingen, Germany
| | - Markus Wagner
- Department of Environmental Control, Northwest German Forest Research Institute, Göttingen, Germany
| | - Martina Mund
- Forestry Research and Competence Centre Gotha, Gotha, Germany
| | - Nathalie Cools
- Research Institute for Nature and Forest (INBO), Geraardsbergen, Belgium
| | - Stanislav Vacek
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Wolfgang Schmidt
- Department of Silviculture and Forest Ecology of the Temperate Zones, University of Göttingen, Göttingen, Germany
| | - Zdeněk Vacek
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Andrew Hacket-Pain
- Department of Geography and Planning, School of Environmental Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|
3
|
Innes JG, Norbury G, Samaniego A, Walker S, Wilson DJ. Rodent management in Aotearoa New Zealand: approaches and challenges to landscape-scale control. Integr Zool 2024; 19:8-26. [PMID: 36920845 DOI: 10.1111/1749-4877.12719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Aotearoa-New Zealand has only four rodent species, all introduced. In order of arrival, they are Pacific rat Rattus exulans, brown rat R. norvegicus, house mouse Mus musculus, and black rat R. rattus. Rodent management in New Zealand aims mainly to conserve indigenous biodiversity rather than to protect crops or manage diseases, as is usual elsewhere. We describe four major "regimes" and one major vision for rodent control in New Zealand to meet ecological restoration objectives. Current challenges for island eradications are for large islands that are remote or populated by people. Aerial 1080 is the only large-scale (tens of thousands of hectares) option for black rat control, but its application requires adjustment to counter subsequent rapid black rat repopulation. Unfenced "ecosanctuaries" (mean 720 ha) use ground-based traps and poisons to target mainly black rats and face constant reinvasion. Ecosanctuaries with mammal-resistant fences (up to 3500 ha) limit reinvasion and target more pest species and have enabled the return of previously extirpated taxa to the main islands. Predator Free 2050 aims to eradicate the rat species (but not mice) plus some other introduced mammals from New Zealand by 2050. This vision is not attainable with current tools, but research and experimental management is exploring techniques and technologies. The large scale (to 100 000 ha) at which black rats are now targeted for control to extremely low abundance seems to be unique to New Zealand.
Collapse
Affiliation(s)
- John G Innes
- Manaaki Whenua-Landcare Research, Hamilton, New Zealand
| | - Grant Norbury
- Manaaki Whenua-Landcare Research, Alexandra, New Zealand
| | | | - Susan Walker
- Manaaki Whenua-Landcare Research, Dunedin, New Zealand
| | | |
Collapse
|
4
|
Kelly D. Mast seeding: Study of oak mechanisms carries wider lessons. Curr Biol 2023; 33:R231-R233. [PMID: 36977386 DOI: 10.1016/j.cub.2023.02.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Variable acorn crops in oaks were thought to reflect variable pollination success, but a new study shows local climates determine whether pollination or flower production drives acorn crops. This affects forest regeneration under climate change, and cautions against dichotomous summaries of biological phenomena.
Collapse
|
5
|
Carpenter JK, Monks A, Innes J, Griffiths J, Anderson D. Immigration drives ship rat population irruptions in marginal high‐elevation habitat in response to pulsed resources. Ecosphere 2023. [DOI: 10.1002/ecs2.4424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023] Open
Affiliation(s)
| | - Adrian Monks
- Manaaki Whenua – Landcare Research Dunedin New Zealand
| | - John Innes
- Manaaki Whenua – Landcare Research Hamilton New Zealand
| | | | - Dean Anderson
- Manaaki Whenua – Landcare Research Lincoln New Zealand
| |
Collapse
|
6
|
Abundance and Dynamics of Small Mammals in New Zealand: Sequential Invasions into an Island Ecosystem Like No Other. LIFE (BASEL, SWITZERLAND) 2023; 13:life13010156. [PMID: 36676105 PMCID: PMC9864110 DOI: 10.3390/life13010156] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 01/07/2023]
Abstract
New Zealand had no people or four-footed mammals of any size until it was colonised by Polynesian voyagers and Pacific rats in c. 1280 AD. Between 1769 and 1920 AD, Europeans brought three more species of commensal rats and mice, and three predatory mustelids, plus rabbits, house cats hedgehogs and Australian brushtail possums. All have in turn invaded the whole country and many offshore islands in huge abundance, at least initially. Three species are now reduced to remnant populations, but the other eight remain widely distributed. They comprise an artificial but interacting and fully functional bottom-up predator-prey system, responding at all levels to interspecific competition, habitat quality and periodic resource pulsing.
Collapse
|
7
|
Carter ZT, Hanson JO, Perry GLW, Russell JC. Incorporating management action suitability in conservation plans. J Appl Ecol 2022. [DOI: 10.1111/1365-2664.14258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Zachary T. Carter
- School of Biological Sciences The University of Auckland Auckland New Zealand
| | | | | | - James C. Russell
- School of Biological Sciences The University of Auckland Auckland New Zealand
- Department of Statistics The University of Auckland Auckland New Zealand
| |
Collapse
|
8
|
McLean LRW, Nichols MM, Taylor AH, Nelson XJ. Memory retention of conditioned aversion training in New Zealand's alpine parrot, the kea. J Wildl Manage 2022. [DOI: 10.1002/jwmg.22221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Lydia R. W. McLean
- School of Biological Sciences University of Canterbury Private Bag 4800 Christchurch 8140 New Zealand
| | - Margaret M. Nichols
- Zero Invasive Predators Ltd PO Box 9267 Marion Square Wellington 6141 New Zealand
| | - Alex H. Taylor
- School of Psychology University of Auckland 23 Symonds Street Auckland 1010 New Zealand
| | - Ximena J. Nelson
- School of Biological Sciences University of Canterbury Private Bag 4800 Christchurch 8140 New Zealand
| |
Collapse
|
9
|
Carpenter JK, Monks A, Innes J, Griffiths J. Pushing the limits: ship rat (Rattus rattus) population dynamics across an elevational gradient in response to mast seeding and supplementary feeding. Biol Invasions 2022; 24:3065-3081. [PMID: 35694204 PMCID: PMC9166931 DOI: 10.1007/s10530-022-02829-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 05/11/2022] [Indexed: 11/26/2022]
Abstract
Understanding marginal habitat use by invasive species is important for predicting how distributions may change under future climates. We investigated the influence of food availability and temperature on ship rat (Rattus rattus) distribution and density across a forested elevational gradient in New Zealand by measuring ship rat demographics following a beech (Nothofagaceae) mass seeding event (‘mast’) at three elevation bands (20–80, 400–500, 800–900 m asl). We tested whether declining food availability limits rat populations at the highest elevation band post-mast by experimentally increasing food abundance above baseline food availability. When our study started 4 months post-seedfall, rats at mid- and low- elevations were at high densities (11.4–16.5 ha−1). Rats at higher elevations were barely detectable, but densities peaked (9.4 ha−1) 10 months post-seedfall, with the initial increase possibly driven by immigration from lower elevations. All populations declined sharply over the next year. Supplementary feeding at high elevation increased survival, recruitment, and density of rats through winter, 16 months post-seedfall, relative to unfed grids, suggesting food limitation. However, both fed and non-fed populations declined to zero by the following spring, perhaps due to stoat (Mustela erminea) predation. Our results suggest that low food availability plays a significant role in restricting rats from cool, high elevation environments. The variation in the timing and magnitude of ship rat responses to the pulsed resource across the gradient also highlights the importance of initial population size and spatial processes as factors modulating ship rat responses to pulsed resources across a landscape.
Collapse
Affiliation(s)
| | - Adrian Monks
- Manaaki Whenua – Landcare Research, Private Bag 1930, Dunedin, New Zealand
| | - John Innes
- Manaaki Whenua – Landcare Research, Private Bag 3127, Hamilton, New Zealand
| | - James Griffiths
- Department of Conservation, 18-32 Manners Street, PO Box 10-420, Wellington, New Zealand
| |
Collapse
|
10
|
Bastos APM, Nelson XJ, Taylor AH. From the lab to the wild: how can captive studies aid the conservation of kea (Nestor notabilis)? Curr Opin Behav Sci 2022. [DOI: 10.1016/j.cobeha.2022.101131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
11
|
Morgan S, Binks NA, Didham RK, Barnes AD. Functional group‐dependent responses of forest bird communities to invasive predator control and habitat fragmentation. DIVERS DISTRIB 2022. [DOI: 10.1111/ddi.13539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Affiliation(s)
- Shaun Morgan
- Te Aka Mātuatua – School of Science University of Waikato Hamilton New Zealand
| | - Nigel A. Binks
- Te Aka Mātuatua – School of Science University of Waikato Hamilton New Zealand
- Department of Conservation Hamilton New Zealand
| | - Raphael K. Didham
- School of Biological Sciences University of Western Australia Crawley Western Australia Australia
- Centre for Environment and Life Sciences CSIRO Health & Biosecurity Floreat Western Australia Australia
| | - Andrew D. Barnes
- Te Aka Mātuatua – School of Science University of Waikato Hamilton New Zealand
| |
Collapse
|
12
|
Invasive species and thermal squeeze: distribution of two invasive predators and drivers of ship rat (Rattus rattus) invasion in mid-elevation Fuscospora forest. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02789-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
AbstractGlobal climate change could alter the range, abundance, and interactions of species, potentially favouring invasive species and harming endemics. Ship rats (Rattus rattus) are one of the world's worst invasive predators but are typically absent from Aotearoa New Zealand's native Fuscospora cliffortioides (mountain beech) forest above 1000 m. Stoats (Mustela erminea) are another damaging invasive predator in Aotearoa New Zealand and prey on ship rats. We analyse community trapping records 2007–2020 to investigate the spatial and temporal distribution of ship rats and their key predator stoats at Craigieburn Forest Park. We document an invasion of ship rats after 2010 at Craigieburn and hypothesised two drivers of the increase in rat abundance: (1) more frequent mountain beech high-seed years providing more food for rats; and (2) warming winter temperatures allowing rats to invade areas that were previously too cold. We were unable to test a third possible driver (stoat trapping resulting in top-down meso-predator release) due to the nature of the data available. Rats were more common at low altitudes near streams, and stoats were more common at higher-altitudes on forest edges. Average winter temperature, but not seedfall, increased significantly at Craigieburn mid-elevations since 1972. The best predictor of annual rat catch was higher average winter temperatures interacting with high seedfall. This shows a key interaction between two global change drivers: warming temperatures have allowed exotic ship rats to expand into areas where they were previously absent, increasing the resultant "thermal squeeze" of predation on sensitive endemic birds at higher-altitude sites.
Collapse
|
13
|
Cook B, Mulgan N. Targeted Mop up and Robust Response Tools Can Achieve and Maintain Possum Freedom on the Mainland. Animals (Basel) 2022; 12:ani12070921. [PMID: 35405909 PMCID: PMC8997055 DOI: 10.3390/ani12070921] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/19/2022] [Accepted: 04/01/2022] [Indexed: 11/16/2022] Open
Abstract
Unfenced sites on mainland New Zealand have long been considered impossible to defend from reinvasion by possums, and are thus unsuitable for eradication. In July 2019, we began eliminating possums from 11,642 ha (including approximately 8700 ha of suitable possum habitat) in South Westland, using alpine rivers and high alpine ranges to minimise reinvasion. Two aerial 1080 (sodium fluoroacetate) applications, each with two pre-feeds, were used. Here, we detail the effort to mop up existing possums and subsequent invaders in the 13 months following the aerial operation. Possums were detected and caught using a motion-activated camera network, traps equipped with automated reporting and a possum search dog. The last probable survivor was eliminated on 29 June 2020, 11 months after the initial removal operation. Subsequently, possums entered the site at a rate of 4 per year. These were detected and removed using the same methods. The initial elimination cost NZD 163.75/ha and ongoing detection and response NZD 15.70/ha annually. We compare costs with possum eradications on islands and ongoing suppression on the mainland.
Collapse
Affiliation(s)
- Briar Cook
- Tasman District Council, Richmond 7020, New Zealand
- Correspondence:
| | - Nick Mulgan
- Zero Invasive Predators, Wellington 6012, New Zealand;
| |
Collapse
|
14
|
Detection of Southern Beech Heavy Flowering Using Sentinel-2 Imagery. REMOTE SENSING 2022. [DOI: 10.3390/rs14071573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The southern beech (genus Fuscospora and Lophozonia) forest in New Zealand periodically has “mast” years, during which very large volumes of seeds are produced. This excessive seed production results in a population explosion of rodents and mustelids, which then puts pressure on native birds. To protect the birds, extra pest controls, costing in the order of NZD 20 million, are required in masting areas. To plan pest control and keep it cost-effective, it would be helpful to have a map of the masting areas. In this study, we developed a remote sensing method for the creation of a national beech flowering map. It used a temporal sequence of Sentinel-2 satellite imagery to determine areas in which a yellow index, which was based on red and green reflectance (red-green)/(red + green), was higher than normal in spring. The method was used to produce national maps of heavy beech flowering for the years 2017 to 2021. In 2018, which was a major beech masting year, of the 4.1 million ha of beech forest in New Zealand, 27.6% was observed to flower heavily. The overall classification accuracy of the map was 90.8%. The method is fully automated and could be used to help to identify areas of potentially excessive seed fall across the whole of New Zealand, several months in advance of when pest control would be required.
Collapse
|
15
|
Kemp JR, Young L, Mosen C, Bolitho L, Orr-Walker T, Yockney I, Elliott G. Irruptive dynamics of invasive carnivores and prey populations, and predator control, affect kea survivorship across the Southern Alps. NEW ZEALAND JOURNAL OF ZOOLOGY 2022. [DOI: 10.1080/03014223.2021.2021249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Joshua R. Kemp
- New Zealand Department of Conservation, Nelson, New Zealand
| | - Laura Young
- New Zealand Department of Conservation, Nelson, New Zealand
- Kea Conservation Trust, Queenstown, New Zealand
| | - Corey Mosen
- New Zealand Department of Conservation, Nelson, New Zealand
- Kea Conservation Trust, Queenstown, New Zealand
| | - Liam Bolitho
- New Zealand Department of Conservation, Nelson, New Zealand
- Kea Conservation Trust, Queenstown, New Zealand
- Southern Cross University, Lismore, Australia
| | | | - Ivor Yockney
- Manaaki Whenua Landcare Research, Christchurch, New Zealand
| | - Graeme Elliott
- New Zealand Department of Conservation, Nelson, New Zealand
| |
Collapse
|
16
|
Murphy EC, Sjoberg T, Agnew T, Sutherland M, Andrews G, Williams R, Williams J, Ross J, Clapperton BK. Body Odours as Lures for Stoats Mustela erminea: Captive and Field Trials. Animals (Basel) 2022; 12:ani12030394. [PMID: 35158715 PMCID: PMC8833509 DOI: 10.3390/ani12030394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/27/2022] [Accepted: 02/04/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The stoat (Mustela erminea) is invasive in New Zealand and has a serious impact on native biota. Trapping is the most common technique used to control stoats, but efforts to eradicate them or to improve control efficiency will require a range of different techniques. We examined the use of mustelid body odours as lures to attract stoats to traps or monitoring devices. Stoats were attracted to stoat urine, scats, and bedding, and to ferret (M. furo) bedding in captive and field trials. The use of odour lures may be particularly useful when the usual food-based lures are ineffective. Abstract Eradication and control methods to limit damage caused to native biota in New Zealand by the stoat (Mustela erminea) rely on effective lures for trapping and detection devices, such as cameras. Long-life semiochemical lures have the potential for targeting stoats in situations where food-based lures are of limited success. The attractiveness of body odours of captive stoats was tested in a series of captive animal and extensive field trials to investigate their potential as trapping and monitoring lures. Stoats approached and spent significantly more time sniffing stoat urine and scats and bedding from oestrous female stoats than a non-treatment control. The bedding odours were attractive in both the breeding and the non-breeding season. Stoats also spent significantly more time sniffing oestrous stoat bedding than female ferret bedding, but the ferret odour also produced a significant response by stoats. In the field trials, there were no significant differences between the number of stoats caught with food lures (long-life rabbit or hen eggs) compared with oestrous female or male stoat bedding lures. These results indicate the potential of both stoat bedding odour and the scent of another mustelid species as stoat trapping lures that likely act as a general odour attractant rather than a specific chemical signal of oestrus.
Collapse
Affiliation(s)
- Elaine C. Murphy
- Department of Pest Management and Conservation, P.O. Box 85084, Lincoln University, Christchurch 7647, New Zealand; (T.S.); (T.A.); (M.S.); (J.R.)
- Department of Conservation, Private Bag 4715, Christchurch 8140, New Zealand
- Correspondence:
| | - Tim Sjoberg
- Department of Pest Management and Conservation, P.O. Box 85084, Lincoln University, Christchurch 7647, New Zealand; (T.S.); (T.A.); (M.S.); (J.R.)
| | - Tom Agnew
- Department of Pest Management and Conservation, P.O. Box 85084, Lincoln University, Christchurch 7647, New Zealand; (T.S.); (T.A.); (M.S.); (J.R.)
| | - Madeline Sutherland
- Department of Pest Management and Conservation, P.O. Box 85084, Lincoln University, Christchurch 7647, New Zealand; (T.S.); (T.A.); (M.S.); (J.R.)
| | - Graeme Andrews
- Department of Conservation, P.O. Box 55, St Arnaud 7053, New Zealand;
| | - Raine Williams
- Independent researchers, P.O. Box 41, Coromandel 3543, New Zealand; (R.W.); (J.W.)
| | - Jeff Williams
- Independent researchers, P.O. Box 41, Coromandel 3543, New Zealand; (R.W.); (J.W.)
| | - James Ross
- Department of Pest Management and Conservation, P.O. Box 85084, Lincoln University, Christchurch 7647, New Zealand; (T.S.); (T.A.); (M.S.); (J.R.)
| | | |
Collapse
|
17
|
Assessing Two Different Aerial Toxin Treatments for the Management of Invasive Rats. Animals (Basel) 2022; 12:ani12030309. [PMID: 35158633 PMCID: PMC8833531 DOI: 10.3390/ani12030309] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 11/16/2022] Open
Abstract
Aotearoa–New Zealand has embarked on an ambitious goal: to completely eradicate key invasive mammals by 2050. This will require novel tools capable of eliminating pests on a large scale. In New Zealand, large-scale pest suppression is typically carried out using aerial application of the toxin sodium fluoroacetate (1080). However, as currently applied, this tool does not remove all individuals. A novel application method, dubbed ‘1080-to-zero’, aims to change this and reduce the abundances of target pests to zero or near-zero. One such target is black rats (Rattus rattus), an invasive species challenging to control using ground-based methods. This study monitored and compared the response of black rats to a 1080-to-zero operation and a standard suppression 1080 operation. No difference in the efficacy of rat removal was found between the two treatments. The 1080-to-zero operation did not achieve its goal of rat elimination or reduction to near-zero levels, with an estimated 1540 rats surviving across the 2200 ha treatment area. However, 1080 operations can produce variable responses, and the results observed here differ from the only other reported 1080-to-zero operation. We encourage further research into this tool, including how factors such as ecosystem type, mast fruiting and operational timing influence success.
Collapse
|
18
|
Hacket-Pain A, Bogdziewicz M. Climate change and plant reproduction: trends and drivers of mast seeding change. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200379. [PMID: 34657461 PMCID: PMC8520772 DOI: 10.1098/rstb.2020.0379] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2021] [Indexed: 11/12/2022] Open
Abstract
Climate change is reshaping global vegetation through its impacts on plant mortality, but recruitment creates the next generation of plants and will determine the structure and composition of future communities. Recruitment depends on mean seed production, but also on the interannual variability and among-plant synchrony in seed production, the phenomenon known as mast seeding. Thus, predicting the long-term response of global vegetation dynamics to climate change requires understanding the response of masting to changing climate. Recently, data and methods have become available allowing the first assessments of long-term changes in masting. Reviewing the literature, we evaluate evidence for a fingerprint of climate change on mast seeding and discuss the drivers and impacts of these changes. We divide our discussion into the main characteristics of mast seeding: interannual variation, synchrony, temporal autocorrelation and mast frequency. Data indicate that masting patterns are changing but the direction of that change varies, likely reflecting the diversity of proximate factors underlying masting across taxa. Experiments to understand the proximate mechanisms underlying masting, in combination with the analysis of long-term datasets, will enable us to understand this observed variability in the response of masting. This will allow us to predict future shifts in masting patterns, and consequently ecosystem impacts of climate change via its impacts on masting. This article is part of the theme issue 'The ecology and evolution of synchronized seed production in plants'.
Collapse
Affiliation(s)
- Andrew Hacket-Pain
- Department of Geography and Planning, School of Environmental Sciences, University of Liverpool, Liverpool L69 7ZT, UK
| | - Michał Bogdziewicz
- Department of Systematic Zoology, Faculty of Biology, Adam Mickiewicz University in Poznań, Ulica Uniwersytetu Poznańskiego 6, Poznań, 61‐614 Poland
- INRAE, LESSEM, University Grenoble Alpes, 2 rue de la Papeterie, BP 76, Saint‐Martin‐d'Hères, 38400 France
| |
Collapse
|
19
|
Warburton B, Eason C, Fisher P, Hancox N, Hopkins B, Nugent G, Ogilvie S, Prowse TAA, Ross J, Cowan PE. Alternatives for mammal pest control in New Zealand in the context of concerns about 1080 toxicant (sodium fluoroacetate). NEW ZEALAND JOURNAL OF ZOOLOGY 2021. [DOI: 10.1080/03014223.2021.1977345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
| | - Charles Eason
- Lincoln University, Department of Pest Management and Conservation, Lincoln, New Zealand
| | - Penny Fisher
- Manaaki Whenua – Landcare Research, Lincoln, New Zealand
| | | | - Brian Hopkins
- Manaaki Whenua – Landcare Research, Lincoln, New Zealand
| | - Graham Nugent
- Manaaki Whenua – Landcare Research, Lincoln, New Zealand
| | - Shaun Ogilvie
- Eco Research Associates Ltd, Christchurch, New Zealand
| | | | - James Ross
- Lincoln University, Department of Pest Management and Conservation, Lincoln, New Zealand
| | - Phil E. Cowan
- Manaaki Whenua – Landcare Research, Lincoln, New Zealand
| |
Collapse
|
20
|
Bogdziewicz M, Hacket-Pain A, Ascoli D, Szymkowiak J. Environmental variation drives continental-scale synchrony of European beech reproduction. Ecology 2021; 102:e03384. [PMID: 33950521 DOI: 10.1002/ecy.3384] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 01/05/2021] [Accepted: 03/16/2021] [Indexed: 11/07/2022]
Abstract
Spatial synchrony is the tendency of spatially separated populations to display similar temporal fluctuations. Synchrony affects regional ecosystem functioning, but it remains difficult to disentangle its underlying mechanisms. We leveraged regression on distance matrices and geography of synchrony to understand the processes driving synchrony of European beech masting over the European continent. Masting in beech shows distance-decay, but significant synchrony is maintained at spatial scales of up to 1,500 km. The spatial synchrony of the weather cues that drive interannual variation in reproduction also explains the regional spatial synchrony of masting. Proximity played no apparent role in influencing beech masting synchrony after controlling for synchrony in environmental variation. Synchrony of beech reproduction shows a clear biogeographical pattern, decreasing from the northwest to southeast Europe. Synchrony networks for weather cues resemble networks for beech masting, indicating that the geographical structure of weather synchrony underlies the biogeography of masting synchrony. Our results support the hypothesis that environmental factors, the Moran effect, are key drivers of spatial synchrony in beech seed production at regional scales. The geographical patterns of regional synchronization of masting have implications for regional forest production, gene flow, carbon cycling, disease dynamics, biodiversity, and conservation.
Collapse
Affiliation(s)
- Michał Bogdziewicz
- Department of Systematic Zoology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Andrew Hacket-Pain
- Department of Geography and Planning, School of Environmental Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Davide Ascoli
- Department of Agricultural, Forestry and Food Sciences, University of Torino, Grugliasco, Italy
| | - Jakub Szymkowiak
- Population Ecology Research Unit, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
21
|
Samarth, Lee R, Kelly D, Turnbull MH, Macknight RC, Poole AM, Jameson PE. Molecular control of the floral transition in the mast seeding plant Celmisia lyallii (Asteraceae). Mol Ecol 2021; 30:1846-1863. [PMID: 33624370 DOI: 10.1111/mec.15859] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 02/06/2021] [Accepted: 02/15/2021] [Indexed: 12/21/2022]
Abstract
Mast flowering (or masting) is synchronous, highly variable flowering among years in populations of perennial plants. Despite having widespread consequences for seed consumers, endangered fauna and human health, masting is hard to predict. While observational studies show links to various weather patterns in different plant species, the mechanism(s) underpinning the regulation of masting is still not fully explained. We studied floral induction in Celmisia lyallii (Asteraceae), a mast flowering herbaceous alpine perennial, comparing gene expression in flowering and nonflowering plants. We performed translocation experiments to induce the floral transition in C. lyallii plants followed by both global and targeted expression analysis of flowering-pathway genes. Differential expression analysis showed elevated expression of ClSOC1 and ClmiR172 (promoters of flowering) in leaves of plants that subsequently flowered, in contrast to elevated expression of ClAFT and ClTOE1 (repressors of flowering) in leaves of plants that did not flower. The warm summer conditions that promoted flowering led to differential regulation of age and hormonal pathway genes, including ClmiR172 and ClGA20ox2, known to repress the expression of floral repressors and permit flowering. Upregulated expression of epigenetic modifiers of floral promoters also suggests that plants may maintain a novel "summer memory" across years to induce flowering. These results provide a basic mechanistic understanding of floral induction in masting plants and evidence of their ability to imprint various environmental cues to synchronize flowering, allowing us to better predict masting events under climate change.
Collapse
Affiliation(s)
- Samarth
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Robyn Lee
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Dave Kelly
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Matthew H Turnbull
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | | | - Anthony M Poole
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand.,Bioinformatics Institute, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Paula E Jameson
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
22
|
Fea N, Linklater W, Hartley S. Responses of New Zealand forest birds to management of introduced mammals. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2021; 35:35-49. [PMID: 31893568 PMCID: PMC7984369 DOI: 10.1111/cobi.13456] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 12/18/2019] [Accepted: 12/24/2019] [Indexed: 06/10/2023]
Abstract
Over the past 1000 years New Zealand has lost 40-50% of its bird species, and over half of these extinctions are attributable to predation by introduced mammals. Populations of many extant forest bird species continue to be depredated by mammals, especially rats, possums, and mustelids. The management history of New Zealand's forests over the past 50 years presents a unique opportunity because a varied program of mammalian predator control has created a replicated management experiment. We conducted a meta-analysis of population-level responses of forest birds to different levels of mammal control recorded across New Zealand. We collected data from 32 uniquely treated sites and 20 extant bird species representing a total of 247 population responses to 3 intensities of invasive mammal control (zero, low, and high). The treatments varied from eradication of invasive mammals via ground-based techniques to periodic suppression of mammals via aerially sown toxin. We modeled population-level responses of birds according to key life history attributes to determine the biological processes that influence species' responses to management. Large endemic species, such as the Kaka (Nestor meridionalis) and New Zealand Pigeon (Hemiphaga novaeseelandiae), responded positively at the population level to mammal control in 61 of 77 cases for species ≥20 g compared with 31 positive responses from 78 cases for species <20 g. The Fantail (Rhipidura fuliginosa) and Grey Warbler (Gerygone igata), both shallow endemic species, and 4 nonendemic species (Blackbird [Turdus merula], Chaffinch [Fringilla coelebs], Dunnock [Prunella modularis], and Silvereye [Zosterops lateralis]) that arrived in New Zealand in the last 200 years tended to have slight negative or neutral responses to mammal control (59 of 77 cases). Our results suggest that large, deeply endemic forest birds, especially cavity nesters, are most at risk of further decline in the absence of mammal control and, conversely suggest that 6 species apparently tolerate the presence of invasive mammals and may be sensitive to competition from larger endemic birds.
Collapse
Affiliation(s)
- Nyree Fea
- Centre for Biodiversity and Restoration Ecology, School of Biological SciencesVictoria University of WellingtonP.O. Box 600Wellington6140New Zealand
| | - Wayne Linklater
- California State UniversitySacramento 6000 J StreetSacramentoCA95819U.S.A
| | - Stephen Hartley
- Centre for Biodiversity and Restoration Ecology, School of Biological SciencesVictoria University of WellingtonP.O. Box 600Wellington6140New Zealand
| |
Collapse
|
23
|
Binny RN, Innes J, Fitzgerald N, Pech R, James A, Price R, Gillies C, Byrom AE. Long‐term biodiversity trajectories for pest‐managed ecological restorations: eradication vs. suppression. ECOL MONOGR 2021. [DOI: 10.1002/ecm.1439] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Rachelle N. Binny
- Manaaki Whenua‐Landcare Research Lincoln New Zealand
- Te Pūnaha Matatini New Zealand
| | - John Innes
- Manaaki Whenua‐Landcare Research Hamilton New Zealand
| | | | - Roger Pech
- Manaaki Whenua‐Landcare Research Lincoln New Zealand
| | - Alex James
- Te Pūnaha Matatini New Zealand
- School of Mathematics and Statistics University of Canterbury Christchurch New Zealand
| | - Robbie Price
- Manaaki Whenua‐Landcare Research Hamilton New Zealand
| | - Craig Gillies
- Department of Conservation, Biodiversity Group Hamilton New Zealand
| | - Andrea E. Byrom
- Manaaki Whenua‐Landcare Research Lincoln New Zealand
- NZ Biological Heritage National Science Challenge New Zealand
| |
Collapse
|
24
|
García-Díaz P, Binny RN, Anderson DP. How important is individual foraging specialisation in invasive predators for native-prey population viability? Oecologia 2021; 195:261-272. [PMID: 33416960 DOI: 10.1007/s00442-020-04814-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 12/03/2020] [Indexed: 10/22/2022]
Abstract
Predation by invasive species is a major threat to the persistence of naïve prey. Typically, this negative effect is addressed by suppressing the population size of the invasive predator to a point where the predation pressure does not hinder the viability of the prey. However, this type of intervention may not be effective whenever a few specialised predators are the cause of the decline. We investigated the effects of varying levels of specialised invasive stoats (Mustela erminea) abundance on the long-term viability of simulated kiwi (Apteryx spp.) populations. We explored four scenarios with different proportions of highly specialised stoats, which were those that had a ≥ 0.75 probability of predating kiwi eggs and chicks if they were within their home range: (i) a stoat population composed mostly of generalists (mean: 0.5 probability of predation across the population); (ii) 5% of highly specialised stoats and the remaining being generalists; (iii) 10% of highly specialised stoats and the remaining being generalists; and, (iv) half highly specialised stoats and half generalists. We found that stoat home range sizes, rather than stoat density or the density of highly specialised stoats, was the main driver of kiwi population trends. Stoats with large home ranges were more likely to predate kiwi eggs and chicks as these were more likely to fall within a large home range. More broadly, our findings show how the daily individual ranging and foraging behaviour of an invasive predator can scale-up to shape population trends of naïve prey.
Collapse
Affiliation(s)
- Pablo García-Díaz
- Manaaki Whenua - Landcare Research, P.O. Box 69040, Lincoln, 7640, New Zealand. .,School of Biological Sciences, Zoology Building, University of Aberdeen, Aberdeen, AB24 2TZ, UK.
| | - Rachelle N Binny
- Manaaki Whenua - Landcare Research, P.O. Box 69040, Lincoln, 7640, New Zealand.,Te Pūnaha Matatini, Auckland, New Zealand
| | - Dean P Anderson
- Manaaki Whenua - Landcare Research, P.O. Box 69040, Lincoln, 7640, New Zealand
| |
Collapse
|
25
|
MacDonald EA, Edwards E, Balanovic J, Medvecky F. Underlying beliefs linked to public opinion about gene drive and pest-specific toxin for pest control. WILDLIFE RESEARCH 2021. [DOI: 10.1071/wr19149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract
ContextDeveloping a new tool for wide-scale rat eradication is necessary for significant biodiversity gains. Underlying beliefs linked to public opinion can help guide policy makers to understand public concern and inform an effective discourse.
AimsWe investigated underlying beliefs linked to levels of support for a potentially disruptive tool, gene drive, compared with a traditional stepwise tool, aerial distribution of a new pest-specific toxin.
MethodsUsing the theory of planned behaviour, we surveyed (n=1200) a representative sample of New Zealanders to assess the level of support for the tool related to attitude, normative and control beliefs.
Key resultsAttitude (e.g. gene drive is good/bad and gene drive is risky/safe) and two norms (e.g. people like me and people in my household) were key contributors to level of support for gene drive. Behavioural beliefs (if scientific evidence can prove it works, concern there are unknown consequences, a humane way to rid New Zealand of rats, and gene drive goes against natural way of life) were also significant. For aerial distribution of a new pest-specific toxin, the same attitudes and normative beliefs identified for gene drive also contributed significantly to the model. Four behavioural beliefs, namely, aerial delivery could affect areas outside the target zones, if there is scientific evidence, and it is impossible to make a pest-specific toxin that would not harm our native wildlife were also significant. The impact either tool may have on biodiversity was not significant in either model.
ConclusionsDecision making about both gene drive (a disruptive technology) and aerial distribution of a pest-specific toxin (a stepwise technology) is primarily influenced by attitudes, with a few beliefs also influencing decision making. Novelty of the tool does not affect the underlying beliefs that are influencing levels of support.
ImplicationsPublic engagement that acknowledges and responds to these underlying beliefs, rather than a traditional campaign based on biodiversity and environmental gains, may be more effective at creating a constructive dialogue about if and how these tools should be used, and to avoid replicating the polarised debate about 1080.
Collapse
|
26
|
Hill SD, Pawley MDM, Bishop CD. Annual variation in bird numbers across Kaipatiki, Auckland. NEW ZEALAND JOURNAL OF ZOOLOGY 2020. [DOI: 10.1080/03014223.2020.1833948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Samuel D. Hill
- Research, Investigations and Monitoring Unit, Auckland Council, Auckland, New Zealand
| | - Matthew D. M. Pawley
- School of Natural and Computational Sciences, Massey University, Auckland, New Zealand
| | - Craig D. Bishop
- School of Science, Auckland University of Technology, Auckland, New Zealand
| |
Collapse
|
27
|
|
28
|
Nottingham CM, Glen AS, Stanley MC. Relative efficacy of chew card and camera trap indices for use in hedgehog and rat monitoring. NEW ZEALAND JOURNAL OF ZOOLOGY 2020. [DOI: 10.1080/03014223.2020.1784241] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Catherine M. Nottingham
- School of Biological Sciences, Centre for Biodiversity and Biosecurity, University of Auckland, Auckland, New Zealand
| | | | - Margaret C. Stanley
- School of Biological Sciences, Centre for Biodiversity and Biosecurity, University of Auckland, Auckland, New Zealand
| |
Collapse
|
29
|
Köhnke MC, Binny RN, Holland EP, James A. The necessity of tailored control of irrupting pest populations driven by pulsed resources. THEOR ECOL-NETH 2020. [DOI: 10.1007/s12080-020-00449-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
AbstractResource pulses are widespread phenomena in diverse ecosystems. Irruptions of generalist consumers and corresponding generalist predators often follow such resource pulses. This can have severe implications on the ecosystem and also on the spread of diseases or on regional famines. Suitable management strategies are necessary to deal with these systems. In this study, we develop a general model to investigate optimal control for such a system and apply this to a case study from New Zealand. In particular, we consider the dynamics of beech masting (episodic synchronous seed production) leading to rodent outbreaks and subsequent stoat (Mustela erminea) irruptions. Here, stoat control happens via secondary poisoning. The results show that the main driver of the optimal control timing (June) is the population density of the control vector. Intermediate control levels are superior to higher levels if the generalist consumer is necessary as a control vector. Finally, we extend the model to a two-patch metapopulation model, which indicates that, as a consequence of the strong vector dependence, a strategy of alternating control patches yields better results than static control. This highlights that besides control level, also the design impacts the control success. The results presented in this study reveal important insights for proper pest management in the New Zealand case study. However, they also generally indicate the necessity of tailored control in such systems.
Collapse
|
30
|
Bogdziewicz M, Kelly D, Thomas PA, Lageard JGA, Hacket-Pain A. Climate warming disrupts mast seeding and its fitness benefits in European beech. NATURE PLANTS 2020; 6:88-94. [PMID: 32042155 DOI: 10.1038/s41477-020-0592-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 12/28/2019] [Indexed: 06/10/2023]
Abstract
Many plants benefit from synchronous year-to-year variation in seed production, called masting. Masting benefits plants because it increases the efficiency of pollination and satiates predators, which reduces seed loss. Here, using a 39-year-long dataset, we show that climate warming over recent decades has increased seed production of European beech but decreased the year-to-year variability of seed production and the reproductive synchrony among individuals. Consequently, the benefit that the plants gained from masting has declined. While climate warming was associated with increased reproductive effort, we demonstrate that less effective pollination and greater losses of seeds to predators offset any benefits to the plants. This shows that an apparently simple benefit of climate warming unravels because of complex ecological interactions. Our results indicate that in masting systems, the main beneficiaries of climate-driven increases in seed production are seed predators, not plants.
Collapse
Affiliation(s)
- Michał Bogdziewicz
- Department of Systematic Zoology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland.
| | - Dave Kelly
- Centre for Integrative Ecology, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Peter A Thomas
- School of Life Sciences, Keele University, Staffordshire, UK
| | - Jonathan G A Lageard
- Department of Natural Sciences, Manchester Metropolitan University, Manchester, UK
| | - Andrew Hacket-Pain
- Department of Geography and Planning, School of Environmental Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|
31
|
Peltzer DA, Bellingham PJ, Dickie IA, Houliston G, Hulme PE, Lyver PO, McGlone M, Richardson SJ, Wood J. Scale and complexity implications of making New Zealand predator-free by 2050. J R Soc N Z 2019. [DOI: 10.1080/03036758.2019.1653940] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
| | | | - Ian A. Dickie
- Bio-Protection Research Centre, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | | | - Philip E. Hulme
- Bio-Protection Research Centre, Lincoln University, Lincoln, New Zealand
| | | | | | | | | |
Collapse
|
32
|
Mapping Physiognomic Types of Indigenous Forest using Space-Borne SAR, Optical Imagery and Air-borne LiDAR. REMOTE SENSING 2019. [DOI: 10.3390/rs11161911] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Indigenous forests cover 24% of New Zealand and provide valuable ecosystem services. However, a national map of forest types, that is, physiognomic types, which would benefit conservation management, does not currently exist at an appropriate level of detail. While traditional forest classification approaches from remote sensing data are based on spectral information alone, the joint use of space-based optical imagery and structural information from synthetic aperture radar (SAR) and canopy metrics from air-borne Light Detection and Ranging (LiDAR) facilitates more detailed and accurate classifications of forest structure. We present a support vector machine (SVM) classification using data from the European Space Agency (ESA) Sentinel-1 and 2 missions, Advanced Land Orbiting Satellite (ALOS) PALSAR, and airborne LiDAR to produce a regional map of physiognomic types of indigenous forest. A five-fold cross-validation (repeated 100 times) of ground data showed that the highest classification accuracy of 80.5% is achieved for bands 2, 3, 4, 8, 11, and 12 from Sentinel-2, the ratio of bands VH (vertical transmit and horizontal receive) and VV (vertical transmit and vertical receive) from Sentinel-1, and mean canopy height and 97th percentile canopy height from LiDAR. The classification based on optical bands alone was 72.7% accurate and the addition of structural metrics from SAR and LiDAR increased accuracy by 7.4%. The classification accuracy is sufficient for many management applications for indigenous forest, including biodiversity management, carbon inventory, pest control, ungulate management, and disease management.
Collapse
|
33
|
Innes J, Fitzgerald N, Binny R, Byrom A, Pech R, Watts C, Gillies C, Maitland M, Campbell-Hunt C, Burns B. New Zealand ecosanctuaries: types, attributes and outcomes. J R Soc N Z 2019. [DOI: 10.1080/03036758.2019.1620297] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- John Innes
- Manaaki Whenua - Landcare Research, Hamilton, New Zealand
| | | | - Rachelle Binny
- Manaaki Whenua - Landcare Research, Lincoln, New Zealand
| | - Andrea Byrom
- Manaaki Whenua - Landcare Research, Lincoln, New Zealand
| | - Roger Pech
- Manaaki Whenua - Landcare Research, Lincoln, New Zealand
| | - Corinne Watts
- Manaaki Whenua - Landcare Research, Hamilton, New Zealand
| | - Craig Gillies
- Department of Conservation, Biodiversity Group, Hamilton, New Zealand
| | | | | | - Bruce Burns
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
34
|
García-Díaz P, Prowse TAA, Anderson DP, Lurgi M, Binny RN, Cassey P. A concise guide to developing and using quantitative models in conservation management. CONSERVATION SCIENCE AND PRACTICE 2019; 1:e11. [PMID: 31915752 PMCID: PMC6949132 DOI: 10.1002/csp2.11] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Quantitative models are powerful tools for informing conservation
management and decision-making. As applied modeling is increasingly used to
address conservation problems, guidelines are required to clarify the scope of
modeling applications and to facilitate the impact and acceptance of models by
practitioners. We identify three key roles for quantitative models in
conservation management: (a) to assess the extent of a conservation problem; (b)
to provide insights into the dynamics of complex social and ecological systems;
and, (c) to evaluate the efficacy of proposed conservation interventions. We
describe 10 recommendations to facilitate the acceptance of quantitative models
in conservation management, providing a basis for good practice to guide their
development and evaluation in conservation applications. We structure these
recommendations within four established phases of model construction, enabling
their integration within existing workflows: (a) design (two recommendations);
(b) specification (two); (c) evaluation (one); and (d) inference (five).
Quantitative modeling can support effective conservation management provided
that both managers and modelers understand and agree on the place for models in
conservation. Our concise review and recommendations will assist conservation
managers and modelers to collaborate in the development of quantitative models
that are fit-for-purpose, and to trust and use these models appropriately while
understanding key drivers of uncertainty.
Collapse
Affiliation(s)
| | - Thomas A A Prowse
- School of Mathematical Sciences, The University of Adelaide, North Terrace, South Australia, Australia
| | | | - Miguel Lurgi
- Centre for Biodiversity Theory and Modelling, Theoretical and Experimental Ecology Station, CNRS-Paul Sabatier University, Moulis, France
| | - Rachelle N Binny
- Manaaki Whenua - Landcare Research, Lincoln, New Zealand.,Te Pūnaha Matatini, Centre of Research Excellence for Complex Systems and Networks, Auckland, New Zealand
| | - Phillip Cassey
- School of Biological Sciences, The University of Adelaide, North Terrace, South Australia, Australia
| |
Collapse
|
35
|
García‐Díaz P, Prowse TA, Anderson DP, Lurgi M, Binny RN, Cassey P. A concise guide to developing and using quantitative models in conservation management. CONSERVATION SCIENCE AND PRACTICE 2019. [DOI: 10.1111/csp2.11] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Affiliation(s)
| | - Thomas A.A. Prowse
- School of Mathematical SciencesThe University of Adelaide North Terrace South Australia Australia
| | | | - Miguel Lurgi
- Centre for Biodiversity Theory and Modelling, Theoretical and Experimental Ecology StationCNRS‐Paul Sabatier University Moulis France
| | - Rachelle N. Binny
- Manaaki Whenua ‐ Landcare Research Lincoln New Zealand
- Te Pūnaha MatatiniCentre of Research Excellence for Complex Systems and Networks Auckland New Zealand
| | - Phillip Cassey
- School of Biological SciencesThe University of Adelaide North Terrace South Australia Australia
| |
Collapse
|
36
|
Pepin KM, Wolfson DW, Miller RS, Tabak MA, Snow NP, VerCauteren KC, Davis AJ. Accounting for heterogeneous invasion rates reveals management impacts on the spatial expansion of an invasive species. Ecosphere 2019. [DOI: 10.1002/ecs2.2657] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Kim M. Pepin
- National Wildlife Research Center USDA‐APHIS Wildlife Services 4101 Laporte Avenue Fort Collins Colorado 80521 USA
| | - David W. Wolfson
- Centers for Epidemiology and Animal Health USDA‐APHIS Veterinary Services 2150 Centre Avenue Fort Collins Colorado 80526 USA
| | - Ryan S. Miller
- Centers for Epidemiology and Animal Health USDA‐APHIS Veterinary Services 2150 Centre Avenue Fort Collins Colorado 80526 USA
| | - Michael A. Tabak
- Centers for Epidemiology and Animal Health USDA‐APHIS Veterinary Services 2150 Centre Avenue Fort Collins Colorado 80526 USA
| | - Nathan P. Snow
- National Wildlife Research Center USDA‐APHIS Wildlife Services 4101 Laporte Avenue Fort Collins Colorado 80521 USA
| | - Kurt C. VerCauteren
- National Wildlife Research Center USDA‐APHIS Wildlife Services 4101 Laporte Avenue Fort Collins Colorado 80521 USA
| | - Amy J. Davis
- National Wildlife Research Center USDA‐APHIS Wildlife Services 4101 Laporte Avenue Fort Collins Colorado 80521 USA
| |
Collapse
|
37
|
Walker S, Kemp JR, Elliott GP, Mosen CC, Innes JG. Spatial patterns and drivers of invasive rodent dynamics in New Zealand forests. Biol Invasions 2019. [DOI: 10.1007/s10530-019-01922-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
38
|
Holland EP, Binny RN, James A. Optimal control of irrupting pest populations in a climate-driven ecosystem. PeerJ 2019; 6:e6146. [PMID: 30595990 PMCID: PMC6304269 DOI: 10.7717/peerj.6146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/21/2018] [Indexed: 11/20/2022] Open
Abstract
Irruptions of small consumer populations, driven by pulsed resources, can lead to adverse effects including the decline of indigenous species or increased disease spread. Broad-scale pest management to combat such effects benefits from forecasting of irruptions and an assessment of the optimal control conditions for minimising consumer abundance. We use a climate-based consumer-resource model to predict irruptions of a pest species (Mus musculus) population in response to masting (episodic synchronous seed production) and extend this model to account for broad-scale pest control of mice using toxic bait. The extended model is used to forecast the magnitude and frequency of pest irruptions under low, moderate and high control levels, and for different timings of control operations. In particular, we assess the optimal control timing required to minimise the frequency with which pests reach 'plague' levels, whilst avoiding excessive toxin use. Model predictions suggest the optimal timing for mouse control in beech forest, with respect to minimising plague time, is mid-September. Of the control regimes considered, a seedfall driven biannual-biennial regime gave the greatest reduction in plague time and plague years for low and moderate control levels. Although inspired by a model validated using house mouse populations in New Zealand forests, our modelling approach is easily adapted for application to other climate-driven systems where broad-scale control is conducted on irrupting pest populations.
Collapse
Affiliation(s)
| | | | - Alex James
- Biomathematics Research Centre, University of Canterbury, Christchurch, New Zealand.,Te Pūnaha Matatini, New Zealand
| |
Collapse
|
39
|
Cooper A, Kelly CL, King CM, Miller SD, Patty B. Do rats mind getting their feet dirty? Observing the behaviour of ship rats (Rattus rattus) towards footprint tracking tunnels. NEW ZEALAND JOURNAL OF ZOOLOGY 2017. [DOI: 10.1080/03014223.2017.1361455] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- A. Cooper
- School of Science, University of Waikato, Hamilton, New Zealand
| | - C. L. Kelly
- School of Science, University of Waikato, Hamilton, New Zealand
| | - C. M. King
- School of Science, University of Waikato, Hamilton, New Zealand
| | - S. D. Miller
- School of Science, University of Waikato, Hamilton, New Zealand
| | - B. Patty
- School of Science, University of Waikato, Hamilton, New Zealand
| |
Collapse
|