1
|
Alonto AHD, Jamora RDG. A scoping review on the diagnosis and treatment of X-linked dystonia-parkinsonism. Parkinsonism Relat Disord 2024; 119:105949. [PMID: 38072720 DOI: 10.1016/j.parkreldis.2023.105949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/25/2023] [Accepted: 11/26/2023] [Indexed: 01/21/2024]
Abstract
INTRODUCTION X-linked dystonia-parkinsonism (XDP) is a progressive neurodegenerative disorder that has been studied well in recent years. OBJECTIVES This scoping review aimed to describe the current state of knowledge about the diagnosis and treatment of XDP, to provide clinicians with a concise and up-to-date overview. METHODS We conducted a scoping review of pertinent literature on the diagnosis and treatment of XDP using Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews guidelines. RESULTS There were 24 articles on diagnostic methods and 20 articles on therapeutic interventions for XDP, with 7 review articles describing both. The detection of the SVA retrotransposon insertion within the TAF1 gene is confirmatory for XDP. Oral medications are marginally effective. Chemodenervation with botulinum toxin is an effective treatment. Pallidal deep brain stimulation (DBS) has been shown to provide significant improvement in the dystonia and quality of life of patients with XDP for a longer time. A less invasive surgical option is the transcranial magnetic resonance-guided focused ultrasound (tcMRgFUS), which has shown promising effects with the limited number of case reports available. CONCLUSION XDP is a geneti disorder characterized by striatal symptoms and pathology on neuroimaging. No effective oral medications are available for the management of XDP. The use of botulinum toxin is limited by its cost and duration of effects. As of now, pallidal DBS is deemed to be the best option. Another promising option is the tcMRgFUS but still has limited studies on its safety and efficacy in XDP.
Collapse
Affiliation(s)
- Anisah Hayaminnah D Alonto
- Department of Neurosciences, College of Medicine and Philippine General Hospital, University of the Philippines Manila, Manila, Philippines.
| | - Roland Dominic G Jamora
- Department of Neurosciences, College of Medicine and Philippine General Hospital, University of the Philippines Manila, Manila, Philippines; Institute for Neurosciences, St. Luke's Medical Center, Quezon City & Global City, Philippines.
| |
Collapse
|
2
|
Niethammer M, Tang CC, Jamora RDG, Vo A, Nguyen N, Ma Y, Peng S, Waugh JL, Westenberger A, Eidelberg D. A Network Imaging Biomarker of X-Linked Dystonia-Parkinsonism. Ann Neurol 2023; 94:684-695. [PMID: 37376770 DOI: 10.1002/ana.26732] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/26/2023] [Accepted: 06/26/2023] [Indexed: 06/29/2023]
Abstract
OBJECTIVE The purpose of this study was to characterize a metabolic brain network associated with X-linked dystonia-parkinsonism (XDP). METHODS Thirty right-handed Filipino men with XDP (age = 44.4 ± 8.5 years) and 30 XDP-causing mutation negative healthy men from the same population (age = 37.4 ± 10.5 years) underwent [18 F]-fluorodeoxyglucose positron emission tomography. Scans were analyzed using spatial covariance mapping to identify a significant XDP-related metabolic pattern (XDPRP). Patients were rated clinically at the time of imaging according to the XDP-Movement Disorder Society of the Philippines (MDSP) scale. RESULTS We identified a significant XDPRP topography from 15 randomly selected subjects with XDP and 15 control subjects. This pattern was characterized by bilateral metabolic reductions in caudate/putamen, frontal operculum, and cingulate cortex, with relative increases in the bilateral somatosensory cortex and cerebellar vermis. Age-corrected expression of XDPRP was significantly elevated (p < 0.0001) in XDP compared to controls in the derivation set and in the remaining 15 patients (testing set). We validated the XDPRP topography by identifying a similar pattern in the original testing set (r = 0.90, p < 0.0001; voxel-wise correlation between both patterns). Significant correlations between XDPRP expression and clinical ratings for parkinsonism-but not dystonia-were observed in both XDP groups. Further network analysis revealed abnormalities of information transfer through the XDPRP space, with loss of normal connectivity and gain of abnormal functional connections linking network nodes with outside brain regions. INTERPRETATION XDP is associated with a characteristic metabolic network associated with abnormal functional connectivity among the basal ganglia, thalamus, motor regions, and cerebellum. Clinical signs may relate to faulty information transfer through the network to outside brain regions. ANN NEUROL 2023;94:684-695.
Collapse
Affiliation(s)
- Martin Niethammer
- Center for Neurosciences, The Feinstein Institutes for Medical Research, Manhasset, New York
- Department of Neurology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York
| | - Chris C Tang
- Center for Neurosciences, The Feinstein Institutes for Medical Research, Manhasset, New York
| | - Roland Dominic G Jamora
- Institute for Neurosciences, St. Luke's Medical Center, Quezon City, Philippines
- Department of Neurosciences, College of Medicine and Philippine General Hospital, University of the Philippines Manila, Manila, Philippines
| | - An Vo
- Center for Neurosciences, The Feinstein Institutes for Medical Research, Manhasset, New York
- Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York
| | - Nha Nguyen
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York
| | - Yilong Ma
- Center for Neurosciences, The Feinstein Institutes for Medical Research, Manhasset, New York
- Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York
| | - Shichun Peng
- Center for Neurosciences, The Feinstein Institutes for Medical Research, Manhasset, New York
| | - Jeff L Waugh
- Division of Pediatric Neurology, Department of Pediatrics, University of Texas Southwestern, Dallas, Texas
| | - Ana Westenberger
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - David Eidelberg
- Center for Neurosciences, The Feinstein Institutes for Medical Research, Manhasset, New York
- Department of Neurology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York
- Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York
| |
Collapse
|
3
|
Mertin R, Diesta C, Brüggemann N, Rosales RL, Hanssen H, Westenberger A, Steinhardt J, Heldmann M, Manalo HTS, Oropilla JQ, Klein C, Helmchen C, Sprenger A. Oculomotor abnormalities indicate early executive dysfunction in prodromal X-linked dystonia-parkinsonism (XDP). J Neurol 2023; 270:4262-4275. [PMID: 37191726 PMCID: PMC10421788 DOI: 10.1007/s00415-023-11761-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/17/2023]
Abstract
BACKGROUND X-Linked dystonia-parkinsonism (XDP) is a movement disorder characterized by the presence of both dystonia and parkinsonism with one or the other more prominent in the initial stages and later on manifesting with more parkinsonian features towards the latter part of the disease. XDP patients show oculomotor abnormalities indicating prefrontal and striatal impairment. This study investigated oculomotor behavior in non-manifesting mutation carriers (NMC). We hypothesized that oculomotor disorders occur before the appearance of dystonic or parkinsonian signs. This could help to functionally identify brain regions already affected in the prodromal stage of the disease. METHODS Twenty XDP patients, 13 NMC, and 28 healthy controls (HC) performed different oculomotor tasks typically affected in patients with parkinsonian signs. RESULTS The error rate for two types of volitional saccades, i.e., anti-saccades and memory-guided saccades, was increased not only in XDP patients but also in NMC compared to HC. However, the increase in error rates of both saccade types were highly correlated in XDP patients only. Hypometria of reflexive saccades was only found in XDP patients. Initial acceleration and maintenance velocity of smooth pursuit eye movements were only impaired in XDP patients. CONCLUSIONS Despite being asymptomatic, NMC already showed some oculomotor deficits reflecting fronto-striatal impairments, typically found in XDP patients. However, NMC did not show saccade hypometria and impaired smooth pursuit as seen in advanced Parkinson's disease and XDP, suggesting oculomotor state rather than trait signs in these mutation carriers. Neurodegeneration may commence in the striatum and prefrontal cortex, specifically the dorsolateral prefrontal cortex.
Collapse
Affiliation(s)
- Renana Mertin
- Department of Neurology, University Hospital Schleswig-Holstein, University of Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Cid Diesta
- Makati Medical Center, Makati City, Philippines
- Asian Hospital and Medical Center, Manila, Philippines
| | - Norbert Brüggemann
- Department of Neurology, University Hospital Schleswig-Holstein, University of Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Raymond L Rosales
- Department of Neurology and Psychiatry, University of Santo Thomas, Manila, Philippines
| | - Henrike Hanssen
- Department of Neurology, University Hospital Schleswig-Holstein, University of Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Ana Westenberger
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Julia Steinhardt
- Department of Neurology, University Hospital Schleswig-Holstein, University of Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Marcus Heldmann
- Department of Neurology, University Hospital Schleswig-Holstein, University of Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
- Institute of Psychology II, University Lübeck, Lübeck, Germany
| | | | - Jean Q Oropilla
- Makati Medical Center, Makati City, Philippines
- Asian Hospital and Medical Center, Manila, Philippines
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Christoph Helmchen
- Department of Neurology, University Hospital Schleswig-Holstein, University of Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Andreas Sprenger
- Department of Neurology, University Hospital Schleswig-Holstein, University of Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany.
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany.
- Institute of Psychology II, University Lübeck, Lübeck, Germany.
| |
Collapse
|
4
|
X-linked dystonia parkinsonism: epidemiology, genetics, clinical features, diagnosis, and treatment. Acta Neurol Belg 2023; 123:45-55. [PMID: 36418540 DOI: 10.1007/s13760-022-02144-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/09/2022] [Indexed: 11/27/2022]
Abstract
X-linked dystonia parkinsonism (XDP) is a rare X-linked recessive degenerative movement disorder that only affects Filipino descent, predominantly males. Its underlying cause is associated with the genetic alterations in the TAF1/DYT3 multiple transcription system. SINE-VNTR-Alu (SVA) retrotransposon insertion was suggested to be the responsible genetic mutation. Clinically, it initially presents as focal dystonia and generalizes within years. Parkinsonism arises years later and coexists with dystonia. Nonmotor symptoms like cognitive impairment and mood disorders are also common among XDP patients. XDP diagnosis relies on clinical history and physical examination. On imaging, abnormalities of the striatum, such as atrophy, are widely seen and can explain the clinical presentations with a three-model pathway of the striatum. Treatments aim for symptomatic relief of dystonia and parkinsonism and to prevent complications. Oral medications, chemo-denervation, and surgery are used in XDP patients. This review summarizes the currently important information regarding XDP, providing a synoptic overview and understanding of XDP for future studies.
Collapse
|
5
|
Campion LN, Mejia Maza A, Yadav R, Penney EB, Murcar MG, Correia K, Gillis T, Fernandez-Cerado C, Velasco-Andrada MS, Legarda GP, Ganza-Bautista NG, Lagarde JBB, Acuña PJ, Multhaupt-Buell T, Aldykiewicz G, Supnet ML, De Guzman JK, Go C, Sharma N, Munoz EL, Ang MC, Diesta CCE, Bragg DC, Ozelius LJ, Wheeler VC. Tissue-specific and repeat length-dependent somatic instability of the X-linked dystonia parkinsonism-associated CCCTCT repeat. Acta Neuropathol Commun 2022; 10:49. [PMID: 35395816 PMCID: PMC8994295 DOI: 10.1186/s40478-022-01349-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/14/2022] [Indexed: 12/17/2022] Open
Abstract
X-linked dystonia-parkinsonism (XDP) is a progressive adult-onset neurodegenerative disorder caused by insertion of a SINE-VNTR-Alu (SVA) retrotransposon in the TAF1 gene. The SVA retrotransposon contains a CCCTCT hexameric repeat tract of variable length, whose length is inversely correlated with age at onset. This places XDP in a broader class of repeat expansion diseases, characterized by the instability of their causative repeat mutations. Here, we observe similar inverse correlations between CCCTCT repeat length with age at onset and age at death and no obvious correlation with disease duration. To gain insight into repeat instability in XDP we performed comprehensive quantitative analyses of somatic instability of the XDP CCCTCT repeat in blood and in seventeen brain regions from affected males. Our findings reveal repeat length-dependent and expansion-based instability of the XDP CCCTCT repeat, with greater levels of expansion in brain than in blood. The brain exhibits regional-specific patterns of instability that are broadly similar across individuals, with cerebellum exhibiting low instability and cortical regions exhibiting relatively high instability. The spectrum of somatic instability in the brain includes a high proportion of moderate repeat length changes of up to 5 repeats, as well as expansions of ~ 20- > 100 repeats and contractions of ~ 20–40 repeats at lower frequencies. Comparison with HTT CAG repeat instability in postmortem Huntington’s disease brains reveals similar brain region-specific profiles, indicating common trans-acting factors that contribute to the instability of both repeats. Analyses in XDP brains of expansion of a different SVA-associated CCCTCT located in the LIPG gene, and not known to be disease-associated, reveals repeat length-dependent expansion at overall lower levels relative to the XDP CCCTCT repeat, suggesting that expansion propensity may be modified by local chromatin structure. Together, the data support a role for repeat length-dependent somatic expansion in the process(es) driving the onset of XDP and prompt further investigation into repeat dynamics and the relationship to disease.
Collapse
|
6
|
Zeng Q, Pan H, Zhao Y, Wang Y, Xu Q, Tan J, Yan X, Li J, Tang B, Guo J. Association Study of TAF1 Variants in Parkinson’s Disease. Front Neurosci 2022; 16:846095. [PMID: 35464305 PMCID: PMC9024305 DOI: 10.3389/fnins.2022.846095] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/15/2022] [Indexed: 11/24/2022] Open
Abstract
Increasing evidence reveals sex as an important factor in the development of Parkinson’s disease (PD), but associations between genes on the sex chromosomes and PD remain unknown. TAF1 is a gene located on the X chromosome which is known to cause X-linked syndromic mental retardation-33 (MRXS33) and X-linked Dystonia-Parkinsonism (XDP). In this study, we conducted whole-exome sequencing (WES) among 1,917 patients with early-onset or familial PD and 1,652 controls in a Chinese population. We detected a hemizygous frameshift variant c.29_53dupGGA(CAG)2CTACCATCA(CTG)2C (p.A19Dfs*50) in two unrelated male patients. Further segregation analysis showed an unaffected family member carried this variant, which suggested the penetrance of the variant may be age-related and incomplete. To verify the effects of TAF1 on PD, genetic analyses were carried separately by gender. Analysis of rare variants by optimal sequence kernel association (SKAT-O) test showed a nominally significant difference in variant burden between the male PD patients and controls (2.01 vs. 1.38%, p = 0.027). In the female group, none of the variant types showed significant association with PD in this study. In conclusion, we found rare variants in TAF1 may be implicated in PD, but further genetic and functional analyses were needed.
Collapse
Affiliation(s)
- Qian Zeng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Hongxu Pan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yuwen Zhao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yige Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Qian Xu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Jieqiong Tan
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Xinxiang Yan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Jinchen Li
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Centre for Medical Genetics, Central South University, Changsha, China
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Centre for Medical Genetics, Central South University, Changsha, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Centre for Medical Genetics, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
- *Correspondence: Jifeng Guo,
| |
Collapse
|
7
|
Cirnaru MD, Creus-Muncunill J, Nelson S, Lewis TB, Watson J, Ellerby LM, Gonzalez-Alegre P, Ehrlich ME. Striatal Cholinergic Dysregulation after Neonatal Decrease in X-Linked Dystonia Parkinsonism-Related TAF1 Isoforms. Mov Disord 2021; 36:2780-2794. [PMID: 34403156 DOI: 10.1002/mds.28750] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/24/2021] [Accepted: 07/12/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND X-linked dystonia parkinsonism is a generalized, progressive dystonia followed by parkinsonism with onset in adulthood and accompanied by striatal neurodegeneration. Causative mutations are located in a noncoding region of the TATA-box binding protein-associated factor 1 (TAF1) gene and result in aberrant splicing. There are 2 major TAF1 isoforms that may be decreased in symptomatic patients, including the ubiquitously expressed canonical cTAF1 and the neuronal-specific nTAF1. OBJECTIVE The objective of this study was to determine the behavioral and transcriptomic effects of decreased cTAF1 and/or nTAF1 in vivo. METHODS We generated adeno-associated viral (AAV) vectors encoding microRNAs targeting Taf1 in a splice-isoform selective manner. We performed intracerebroventricular viral injections in newborn mice and rats and intrastriatal infusions in 3-week-old rats. The effects of Taf1 knockdown were assayed at 4 months of age with evaluation of motor function, histology, and RNA sequencing of the striatum, followed by its validation. RESULTS We report motor deficits in all cohorts, more pronounced in animals injected at P0, in which we also identified transcriptomic alterations in multiple neuronal pathways, including the cholinergic synapse. In both species, we show a reduced number of striatal cholinergic interneurons and their marker mRNAs after Taf1 knockdown in the newborn. CONCLUSION This study provides novel information regarding the requirement for TAF1 in the postnatal maintenance of striatal cholinergic neurons, the dysfunction of which is involved in other inherited forms of dystonia. © 2021 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Maria-Daniela Cirnaru
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jordi Creus-Muncunill
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Shareen Nelson
- Raymond G. Perelman Center for Cellular & Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Travis B Lewis
- Raymond G. Perelman Center for Cellular & Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Neurology, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jaime Watson
- Raymond G. Perelman Center for Cellular & Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Lisa M Ellerby
- Buck Institute for Research on Aging, Novato, California, USA
| | - Pedro Gonzalez-Alegre
- Raymond G. Perelman Center for Cellular & Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Neurology, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michelle E Ehrlich
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
8
|
Di Lazzaro G, Magrinelli F, Estevez-Fraga C, Valente EM, Pisani A, Bhatia KP. X-Linked Parkinsonism: Phenotypic and Genetic Heterogeneity. Mov Disord 2021; 36:1511-1525. [PMID: 33960519 DOI: 10.1002/mds.28565] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 02/23/2021] [Accepted: 02/26/2021] [Indexed: 02/06/2023] Open
Abstract
X-linked parkinsonism encompasses rare heterogeneous disorders mainly inherited as a recessive trait, therefore being more prevalent in males. Recent developments have revealed a complex underlying panorama, including a spectrum of disorders in which parkinsonism is variably associated with additional neurological and non-neurological signs. In particular, a childhood-onset encephalopathy with epilepsy and/or cognitive disability is the most common feature. Their genetic basis is also heterogeneous, with many causative genes and different mutation types ranging from "classical" coding variants to intronic repeat expansions. In this review, we provide an updated overview of the phenotypic and genetic spectrum of the most relevant X-linked parkinsonian syndromes, namely X-linked dystonia-parkinsonism (XDP, Lubag disease), fragile X-associated tremor/ataxia syndrome (FXTAS), beta-propeller protein-associated neurodegeneration (BPAN, NBIA/PARK-WDR45), Fabry disease, Waisman syndrome, methyl CpG-binding protein 2 (MeCP2) spectrum disorder, phosphoglycerate kinase-1 deficiency syndrome (PGK1) and X-linked parkinsonism and spasticity (XPDS). All clinical and radiological features reported in the literature have been reviewed. Epilepsy occasionally represents the symptom of onset, predating parkinsonism even by a few years; action tremor is another common feature along with akinetic-rigid parkinsonism. A focus on the genetic background and its pathophysiological implications is provided. The pathogenesis of these disorders ranges from well-defined metabolic alterations (PGK1) to non-specific lysosomal dysfunctions (XPDS) and vesicular trafficking alterations (Waisman syndrome). However, in other cases it still remains poorly defined. Recognition of the phenotypic and genetic heterogeneity of X-linked parkinsonism has important implications for diagnosis, management, and genetic counseling. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Giulia Di Lazzaro
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
- Department of Systems Medicine, Tor Vergata University of Rome, Rome, Italy
| | - Francesca Magrinelli
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Carlos Estevez-Fraga
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Enza M Valente
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- IRCCS Mondino Foundation, Pavia, Italy
| | - Antonio Pisani
- IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | | |
Collapse
|
9
|
Jamora RDG, Suratos CTR, Bautista JEC, Ramiro GMI, Westenberger A, Klein C, Ledesma LK. Neurocognitive profile of patients with X-linked dystonia-parkinsonism. J Neural Transm (Vienna) 2021; 128:671-678. [PMID: 33638704 DOI: 10.1007/s00702-021-02317-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/08/2021] [Indexed: 11/30/2022]
Abstract
X-linked dystonia-parkinsonism (XDP) is a debilitating movement disorder endemic to the Panay Island, Philippines. Most studies focus on motor symptoms, hence we reviewed the neurocognitive profile of XDP patients. Neurocognitive testing of XDP patients focused on five domains: general intellectual functioning, episodic memory, language, attention and executive function, and affect. Twenty-nine genetically confirmed patients were included. Twenty-six (89.6%) had impairments in one or more domains, while only three had no impairment in any domain. Attention and executive function was the most commonly affected domain (n = 23, 79.3%). Deficits in general intellect, episodic memory, attention and executive function and affect were seen in our subset of XDP patients. The striatal pathology affecting the frontostriatal circuitry mandating these cognitive processes is mainly implicated in these impairments. The results of our study provided further evidence on the extent of cognitive impairment in XDP using a select battery of neurocognitive tests.
Collapse
Affiliation(s)
- Roland Dominic G Jamora
- Division of Adult Neurology, Department of Neurosciences, College of Medicine-Philippine General Hospital, University of the Philippines Manila, Taft Ave., Ermita, 1000, Manila, Philippines. .,Movement Disorders Service and Section of Neurology, Institute for Neurosciences, St. Luke's Medical Center, Global City, Philippines.
| | - Cezar Thomas R Suratos
- Division of Adult Neurology, Department of Neurosciences, College of Medicine-Philippine General Hospital, University of the Philippines Manila, Taft Ave., Ermita, 1000, Manila, Philippines
| | - Jesi Ellen C Bautista
- Division of Adult Neurology, Department of Neurosciences, College of Medicine-Philippine General Hospital, University of the Philippines Manila, Taft Ave., Ermita, 1000, Manila, Philippines
| | - Gail Melissa I Ramiro
- Division of Adult Neurology, Department of Neurosciences, College of Medicine-Philippine General Hospital, University of the Philippines Manila, Taft Ave., Ermita, 1000, Manila, Philippines
| | - Ana Westenberger
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Lourdes K Ledesma
- Division of Adult Neurology, Department of Neurosciences, College of Medicine-Philippine General Hospital, University of the Philippines Manila, Taft Ave., Ermita, 1000, Manila, Philippines.,Ledesma Clinic for Neuropsychological Services, Pasig City, Philippines
| |
Collapse
|
10
|
Fernandez-Cerado C, Legarda GP, Velasco-Andrada MS, Aguil A, Ganza-Bautista NG, Lagarde JBB, Soria J, Jamora RDG, Acuña PJ, Vanderburg C, Sapp E, DiFiglia M, Murcar MG, Campion L, Ozelius LJ, Alessi AK, Singh-Bains MK, Waldvogel HJ, Faull RLM, Macalintal-Canlas R, Muñoz EL, Penney EB, Ang MA, Diesta CCE, Bragg DC, Acuña-Sunshine G. Promise and challenges of dystonia brain banking: establishing a human tissue repository for studies of X-Linked Dystonia-Parkinsonism. J Neural Transm (Vienna) 2021; 128:575-587. [PMID: 33439365 PMCID: PMC8099813 DOI: 10.1007/s00702-020-02286-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/01/2020] [Indexed: 01/20/2023]
Abstract
X-Linked Dystonia-Parkinsonism (XDP) is a neurodegenerative disease affecting individuals with ancestry to the island of Panay in the Philippines. In recent years there has been considerable progress at elucidating the genetic basis of XDP and candidate disease mechanisms in patient-derived cellular models, but the neural substrates that give rise to XDP in vivo are still poorly understood. Previous studies of limited XDP postmortem brain samples have reported a selective dropout of medium spiny neurons within the striatum, although neuroimaging of XDP patients has detected additional abnormalities in multiple brain regions beyond the basal ganglia. Given the need to fully define the CNS structures that are affected in this disease, we created a brain bank in Panay to serve as a tissue resource for detailed studies of XDP-related neuropathology. Here we describe this platform, from donor recruitment and consent to tissue collection, processing, and storage, that was assembled within a predominantly rural region of the Philippines with limited access to medical and laboratory facilities. Thirty-six brains from XDP individuals have been collected over an initial 4 years period. Tissue quality was assessed based on histologic staining of cortex, RNA integrity scores, detection of neuronal transcripts in situ by fluorescent hybridization chain reaction, and western blotting of neuronal and glial proteins. The results indicate that this pipeline preserves tissue integrity to an extent compatible with a range of morphologic, molecular, and biochemical analyses. Thus the algorithms that we developed for working in rural communities may serve as a guide for establishing similar brain banks for other rare diseases in indigenous populations.
Collapse
Affiliation(s)
| | - G Paul Legarda
- Sunshine Care Foundation, 5800, Roxas City, Capiz, Philippines
| | | | - Abegail Aguil
- Sunshine Care Foundation, 5800, Roxas City, Capiz, Philippines
| | | | | | - Jasmin Soria
- Sunshine Care Foundation, 5800, Roxas City, Capiz, Philippines
| | - Roland Dominic G Jamora
- Department of Neurosciences, College of Medicine-Philippine General Hospital, University of the Philippines Manila, Manila, Philippines
| | - Patrick J Acuña
- Sunshine Care Foundation, 5800, Roxas City, Capiz, Philippines.,Department of Neurology, The Collaborative Center for X-linked Dystonia-Parkinsonism, Massachusetts General Hospital, Boston, MA, 02129, USA
| | - Charles Vanderburg
- Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA, 02142, USA
| | - Ellen Sapp
- Department of Neurology, The Collaborative Center for X-linked Dystonia-Parkinsonism, Massachusetts General Hospital, Boston, MA, 02129, USA
| | - Marian DiFiglia
- Department of Neurology, The Collaborative Center for X-linked Dystonia-Parkinsonism, Massachusetts General Hospital, Boston, MA, 02129, USA
| | - Micaela G Murcar
- Department of Neurology, The Collaborative Center for X-linked Dystonia-Parkinsonism, Massachusetts General Hospital, Boston, MA, 02129, USA
| | - Lindsey Campion
- Department of Neurology, The Collaborative Center for X-linked Dystonia-Parkinsonism, Massachusetts General Hospital, Boston, MA, 02129, USA
| | - Laurie J Ozelius
- Department of Neurology, The Collaborative Center for X-linked Dystonia-Parkinsonism, Massachusetts General Hospital, Boston, MA, 02129, USA
| | - Amy K Alessi
- Department of Neurology, The Collaborative Center for X-linked Dystonia-Parkinsonism, Massachusetts General Hospital, Boston, MA, 02129, USA
| | - Malvindar K Singh-Bains
- Department of Anatomy with Medical Imaging, Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Henry J Waldvogel
- Department of Anatomy with Medical Imaging, Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Richard L M Faull
- Department of Anatomy with Medical Imaging, Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | | | - Edwin L Muñoz
- Department of Pathology, College of Medicine, University of the Philippines, Manila, Philippines
| | - Ellen B Penney
- Department of Neurology, The Collaborative Center for X-linked Dystonia-Parkinsonism, Massachusetts General Hospital, Boston, MA, 02129, USA
| | - Mark A Ang
- Department of Pathology, College of Medicine, University of the Philippines, Manila, Philippines
| | | | - D Cristopher Bragg
- Department of Neurology, The Collaborative Center for X-linked Dystonia-Parkinsonism, Massachusetts General Hospital, Boston, MA, 02129, USA.
| | - Geraldine Acuña-Sunshine
- Sunshine Care Foundation, 5800, Roxas City, Capiz, Philippines. .,Department of Neurology, The Collaborative Center for X-linked Dystonia-Parkinsonism, Massachusetts General Hospital, Boston, MA, 02129, USA.
| |
Collapse
|
11
|
Arasaratnam CJ, Singh-Bains MK, Waldvogel HJ, Faull RLM. Neuroimaging and neuropathology studies of X-linked dystonia parkinsonism. Neurobiol Dis 2020; 148:105186. [PMID: 33227492 DOI: 10.1016/j.nbd.2020.105186] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 11/11/2020] [Accepted: 11/16/2020] [Indexed: 01/17/2023] Open
Abstract
X-linked Dystonia Parkinsonism (XDP) is a recessive, genetically inherited neurodegenerative disorder endemic to Panay Island in the Philippines. Clinical symptoms include the initial appearance of dystonia, followed by parkinsonian traits after 10-15 years. The basal ganglia, particularly the striatum, is an area of focus in XDP neuropathology research, as the striatum shows marked atrophy that correlates with disease progression. Thus, XDP shares features of Parkinson's disease symptomatology, in addition to the genetic predisposition and presence of striatal atrophy resembling Huntington's disease. However, further research is required to reveal the detailed pathology and indicators of disease in the XDP brain. First, there are limited neuropathological studies that have investigated neuronal changes and neuroinflammation in the XDP brain. However, multiple neuroimaging studies on XDP patients provide clues to other affected brain regions. Furthermore, molecular pathological studies have elucidated that the main genetic cause of XDP is in the TAF-1 gene, but how this mutation relates to XDP neuropathology still remains to be fully investigated. Hence, we aim to provide an extensive overview of the current literature describing neuropathological changes within the XDP brain, and discuss future research avenues, which will provide a better understanding of XDP neuropathogenesis.
Collapse
Affiliation(s)
- Christine J Arasaratnam
- Centre for Brain Research and Department of Anatomy and Medical Imaging, New Zealand; University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Malvindar K Singh-Bains
- Centre for Brain Research and Department of Anatomy and Medical Imaging, New Zealand; University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Henry J Waldvogel
- Centre for Brain Research and Department of Anatomy and Medical Imaging, New Zealand; University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Richard L M Faull
- Centre for Brain Research and Department of Anatomy and Medical Imaging, New Zealand; University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|
12
|
Al Ali J, Vaine CA, Shah S, Campion L, Hakoum A, Supnet ML, Acuña P, Aldykiewicz G, Multhaupt-Buell T, Ganza NGM, Lagarde JBB, De Guzman JK, Go C, Currall B, Trombetta B, Webb PK, Talkowski M, Arnold SE, Cheah PS, Ito N, Sharma N, Bragg DC, Ozelius L, Breakefield XO. TAF1 Transcripts and Neurofilament Light Chain as Biomarkers for X-linked Dystonia-Parkinsonism. Mov Disord 2020; 36:206-215. [PMID: 32975318 PMCID: PMC7891430 DOI: 10.1002/mds.28305] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/24/2020] [Accepted: 09/02/2020] [Indexed: 02/06/2023] Open
Abstract
Background X‐linked dystonia‐parkinsonism is a rare neurological disease endemic to the Philippines. Dystonic symptoms appear in males at the mean age of 40 years and progress to parkinsonism with degenerative pathology in the striatum. A retrotransposon inserted in intron 32 of the TAF1 gene leads to alternative splicing in the region and a reduction of the full‐length mRNA transcript. Objectives The objective of this study was to discover cell‐based and biofluid‐based biomarkers for X‐linked dystonia‐parkinsonism. Methods RNA from patient‐derived neural progenitor cells and their secreted extracellular vesicles were used to screen for dysregulation of TAF1 expression. Droplet‐digital polymerase chain reaction was used to quantify the expression of TAF1 mRNA fragments 5′ and 3′ to the retrotransposon insertion and the disease‐specific splice variant TAF1‐32i in whole‐blood RNA. Plasma levels of neurofilament light chain were measured using single‐molecule array. Results In neural progenitor cells and their extracellular vesicles, we confirmed that the TAF1‐3′/5′ ratio was lower in patient samples, whereas TAF1‐32i expression is higher relative to controls. In whole‐blood RNA, both TAF1‐3′/5′ ratio and TAF1‐32i expression can differentiate patient (n = 44) from control samples (n = 18) with high accuracy. Neurofilament light chain plasma levels were significantly elevated in patients (n = 43) compared with both carriers (n = 16) and controls (n = 21), with area under the curve of 0.79. Conclusions TAF1 dysregulation in blood serves as a disease‐specific biomarker that could be used as a readout for monitoring therapies targeting TAF1 splicing. Neurofilament light chain could be used in monitoring neurodegeneration and disease progression in patients. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Jamal Al Ali
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurology, The Collaborative Center for X-linked Dystonia-Parkinsonism, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Christine A Vaine
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurology, The Collaborative Center for X-linked Dystonia-Parkinsonism, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Shivangi Shah
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurology, The Collaborative Center for X-linked Dystonia-Parkinsonism, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Lindsey Campion
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurology, The Collaborative Center for X-linked Dystonia-Parkinsonism, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Ahmad Hakoum
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Melanie L Supnet
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurology, The Collaborative Center for X-linked Dystonia-Parkinsonism, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Patrick Acuña
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurology, The Collaborative Center for X-linked Dystonia-Parkinsonism, Massachusetts General Hospital, Charlestown, Massachusetts, USA.,Sunshine Care Foundation, Roxas City, Philippines
| | - Gabrielle Aldykiewicz
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurology, The Collaborative Center for X-linked Dystonia-Parkinsonism, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Trisha Multhaupt-Buell
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurology, The Collaborative Center for X-linked Dystonia-Parkinsonism, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | | | | | - Jan K De Guzman
- Sunshine Care Foundation, Roxas City, Philippines.,Department of Neurology, Jose R. Reyes Memorial Medical Center, Metro Manila, Philippines
| | - Criscely Go
- Department of Neurology, Jose R. Reyes Memorial Medical Center, Metro Manila, Philippines
| | - Benjamin Currall
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Center for Genomic Medicine, Mass General Research Institute, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Bianca Trombetta
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurology, Alzheimer's Clinical & Translational Research Unit, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Pia K Webb
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurology, Alzheimer's Clinical & Translational Research Unit, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Michael Talkowski
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurology, The Collaborative Center for X-linked Dystonia-Parkinsonism, Massachusetts General Hospital, Charlestown, Massachusetts, USA.,Center for Genomic Medicine, Mass General Research Institute, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Steven E Arnold
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurology, Alzheimer's Clinical & Translational Research Unit, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Pike S Cheah
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Naoto Ito
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurology, The Collaborative Center for X-linked Dystonia-Parkinsonism, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Nutan Sharma
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurology, The Collaborative Center for X-linked Dystonia-Parkinsonism, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - D Cristopher Bragg
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurology, The Collaborative Center for X-linked Dystonia-Parkinsonism, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Laurie Ozelius
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurology, The Collaborative Center for X-linked Dystonia-Parkinsonism, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Xandra O Breakefield
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurology, The Collaborative Center for X-linked Dystonia-Parkinsonism, Massachusetts General Hospital, Charlestown, Massachusetts, USA.,Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| |
Collapse
|
13
|
Aliling NB, Rivera AS, Jamora RDG. Translation, Cultural Adaptation, and Validation of the Hiligaynon Montreal Cognitive Assessment Tool (MoCA-Hil) Among Patients With X-Linked Dystonia Parkinsonism (XDP). Front Neurol 2019; 10:1249. [PMID: 31849816 PMCID: PMC6892978 DOI: 10.3389/fneur.2019.01249] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 11/11/2019] [Indexed: 11/29/2022] Open
Abstract
Background: X-linked dystonia parkinsonism (XDP) is a neurodegenerative disease endemic to Filipinos with maternal lineage from Panay Island, Philippines. Patients present with dystonia concurrent with or followed by parkinsonism. Non-motor symptoms also predominate, affecting behavior and cognition. We aimed to translate and do cross-cultural adaptation and validation of the Montreal Cognitive Assessment Tool (MoCA) into Hiligaynon (MoCA-Hil), the language spoken in Panay Island, to perform baseline cognitive screening of XDP patients. Methods: Forward translation to Hiligaynon was done by two translators, then back translation of a single version was adapted and approved by a committee. A pilot testing was done yielding the final translated version, which was then tested on 46 XDP patients. The test-retest reliability was measured for 11 patients. The XDP-MDSP (Movement Disorder Society of the Philippines) rating scale was used to assess disease severity. Results: The MoCA-Hil showed an acceptable test-retest reliability [intraclass correlation (ICC) 0.74] and internal consistency (Cronbach's alpha 0.86 at baseline, 0.81 at 12 weeks). The two subscales with low ICC at 0.09 and 0.21 were delayed recall and orientation, respectively. Conclusion: Translation, cultural adaptation and validation of the MoCA to Hiligaynon was successfully done. This tool may now be used in clinical practice and in research for Hiligaynon-speaking subjects.
Collapse
Affiliation(s)
- Nicole B Aliling
- Department of Neurosciences, Philippine General Hospital, University of the Philippines Manila, Manila, Philippines
| | - Adovich S Rivera
- Feinberg School of Medicine, Northwestern University, Evanston, IL, United States
| | - Roland Dominic G Jamora
- Department of Neurosciences, College of Medicine-Philippine General Hospital, University of the Philippines Manila, Manila, Philippines.,Movement Disorder Service, St. Luke's Medical Center, Institute for Neurosciences, Quezon City, Philippines
| |
Collapse
|
14
|
Tsuboi T, Wong JK, Okun MS, Ramirez-Zamora A. Quality of life outcomes after deep brain stimulation in dystonia: A systematic review. Parkinsonism Relat Disord 2019; 70:82-93. [PMID: 31767450 DOI: 10.1016/j.parkreldis.2019.11.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/07/2019] [Accepted: 11/15/2019] [Indexed: 12/16/2022]
Abstract
Dystonia is an incurable movement disorder which can cause not only physical but also mental problems, leading to impaired health-related quality of life (HRQoL). For patients with dystonia refractory to medical treatment, deep brain stimulation (DBS) is a well-established surgical treatment. The objective of this systematic review is to provide a better understanding of HRQoL outcomes after DBS for dystonia. A search of the literature was conducted using Medline (PubMed), Embase, and Cochrane Library databases in May 2019. HRQoL outcomes after DBS along with motor outcomes were reported in a total of 36 articles involving 610 patients: 21 articles on inherited or idiopathic isolated dystonia, 5 on tardive dystonia, 3 on cerebral palsy, 2 on myoclonus-dystonia, 1 on X-linked dystonia-parkinsonism, and 3 on mixed cohorts of different dystonia subtypes. DBS improved motor symptoms in various subtypes of dystonia. Most studies on patients with inherited or idiopathic isolated dystonia showed significant improvement in physical QoL, whereas gains in mental QoL were less robust and likely related to the complexity of associated neuropsychiatric problems. HRQoL outcomes beyond 5 years remain scarce. Although the studies on patients with other subtypes of dystonia also demonstrated improvement in HRQoL after DBS, the interpretation is difficult because of a limited number of articles with small cohorts. Most articles employed generic measures (e.g. Short Form Health Survey-36) and this highlights the critical need to develop and to utilize sensitive and disease-specific HRQoL measures. Finally, long-term HRQoL outcomes and predictors of HRQoL should also be clarified.
Collapse
Affiliation(s)
- Takashi Tsuboi
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA; Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Joshua K Wong
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Michael S Okun
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Adolfo Ramirez-Zamora
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| |
Collapse
|
15
|
Hanssen H, Prasuhn J, Heldmann M, Diesta CC, Domingo A, Göttlich M, Blood AJ, Rosales RL, Jamora RDG, Münte TF, Klein C, Brüggemann N. Imaging gradual neurodegeneration in a basal ganglia model disease. Ann Neurol 2019; 86:517-526. [DOI: 10.1002/ana.25566] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 07/29/2019] [Accepted: 07/29/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Henrike Hanssen
- Department of NeurologyUniversity Medical Center Schleswig‐Holstein, Campus Lübeck Lübeck Germany
- Institute of NeurogeneticsUniversity of Lübeck Lübeck Germany
| | - Jannik Prasuhn
- Department of NeurologyUniversity Medical Center Schleswig‐Holstein, Campus Lübeck Lübeck Germany
- Institute of NeurogeneticsUniversity of Lübeck Lübeck Germany
| | - Marcus Heldmann
- Department of NeurologyUniversity Medical Center Schleswig‐Holstein, Campus Lübeck Lübeck Germany
| | - Cid C. Diesta
- Asian Hospital and Medical Center, Filinvest Corporate City, Alabang Muntinlupa City the Philippines
| | - Aloysius Domingo
- Institute of NeurogeneticsUniversity of Lübeck Lübeck Germany
- Department of NeurologyMassachusetts General Hospital Boston MA
| | - Martin Göttlich
- Department of NeurologyUniversity Medical Center Schleswig‐Holstein, Campus Lübeck Lübeck Germany
| | - Anne J. Blood
- Mood and Motor Control LaboratoryMassachusetts General Hospital Charlestown MA
- Laboratory of Neuroimaging and GeneticsMassachusetts General Hospital Charlestown MA
- Department of Neurology and PsychiatryMassachusetts General Hospital Boston MA
- Martinos Center for Biomedical Imaging, Department of RadiologyMassachusetts General Hospital Charlestown MA
- Division of Child NeurologyBoston Children's Hospital Boston MA
| | - Raymond L. Rosales
- Department of Neurology and Psychiatry, Faculty of Medicine and SurgeryUniversity of Santo Tomas Manila the Philippines
| | - Roland D. G. Jamora
- Department of Neurosciences, College of Medicine–Philippine General HospitalUniversity of the Philippines Manila Manila the Philippines
| | - Thomas F. Münte
- Department of NeurologyUniversity Medical Center Schleswig‐Holstein, Campus Lübeck Lübeck Germany
| | - Christine Klein
- Institute of NeurogeneticsUniversity of Lübeck Lübeck Germany
| | - Norbert Brüggemann
- Department of NeurologyUniversity Medical Center Schleswig‐Holstein, Campus Lübeck Lübeck Germany
- Institute of NeurogeneticsUniversity of Lübeck Lübeck Germany
| |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW Our understanding of X-Linked Dystonia-Parkinsonism (XDP) has advanced considerably in recent years because of a wealth of new data describing its genetic basis, cellular phenotypes, neuroimaging features, and response to deep brain stimulation (DBS). This review provides a concise summary of these studies. RECENT FINDINGS XDP is associated with a SINE-VNTR-Alu (SVA)-type retrotransposon insertion within the TAF1 gene. This element includes a hexameric DNA repeat expansion, (CCCTCT)n, the length of which varies among patients and is inversely correlated to age of disease onset. In cell models, the SVA alters TAF1 splicing and reduces levels of full-length transcript. Neuroimaging data have confirmed previous neuropathology studies that XDP involves a progressive striatal atrophy, while further detecting functional alterations in additional brain regions. In patients exhibiting features of both dystonia and parkinsonism, pallidal DBS has resulted in rapid improvement of hyperkinetic movements, but effects on hypokinetic features have been inconsistent. SUMMARY The discovery that XDP is linked to a polymorphic hexameric sequence suggests that it could share mechanisms with other DNA repeat disorders, whereas the transcriptional defect in cell models raises the possibility that strategies to correct TAF1 splicing could provide therapeutic benefit.
Collapse
Affiliation(s)
- D. Cristopher Bragg
- The Collaborative Center for X-linked Dystonia Parkinsonism, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129 USA
| | - Nutan Sharma
- The Collaborative Center for X-linked Dystonia Parkinsonism, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129 USA
| | - Laurie J. Ozelius
- The Collaborative Center for X-linked Dystonia Parkinsonism, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129 USA
| |
Collapse
|
17
|
Burnett SB, Vaughn LS, Strom JM, Francois A, Patel RC. A truncated PACT protein resulting from a frameshift mutation reported in movement disorder DYT16 triggers caspase activation and apoptosis. J Cell Biochem 2019; 120:19004-19018. [PMID: 31246344 DOI: 10.1002/jcb.29223] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 06/04/2019] [Indexed: 01/21/2023]
Abstract
Protein Activator (PACT) activates the interferon (IFN)-induced double-stranded (ds) RNA-activated protein kinase (PKR) in response to stress signals. Oxidative stress and endoplasmic reticulum (ER) stress causes PACT-mediated PKR activation, which leads to phosphorylation of translation initiation factor eIF2α, inhibition of protein synthesis, and apoptosis. A dominantly inherited form of early-onset dystonia 16 (DYT16) has been identified to arise due to a frameshift (FS) mutation in PACT. To examine the effect of the resulting truncated mutant PACT protein on the PKR pathway, we examined the biochemical properties of the mutant protein and its effect on mammalian cells. Our results indicate that the FS mutant protein loses its ability to bind dsRNA as well as its ability to interact with PKR while surprisingly retaining the ability to interact with PACT and PKR-inhibitory protein TRBP. The truncated FS mutant protein, when expressed as a fusion protein with a N-terminal fluorescent mCherry tag aggregates in mammalian cells to induce apoptosis via activation of caspases both in a PKR- and PACT-dependent as well as independent manner. Our results indicate that interaction of FS mutant protein with PKR inhibitor TRBP can dissociate PACT from the TRBP-PACT complex resulting in PKR activation and consequent apoptosis. These findings are relevant to diseases resulting from protein aggregation especially since the PKR activation is a characteristic of several neurodegenerative conditions.
Collapse
Affiliation(s)
- Samuel B Burnett
- Department of Biological Sciences University of South Carolina, University of South Carolina, Columbia, South Carolina
| | - Lauren S Vaughn
- Department of Biological Sciences University of South Carolina, University of South Carolina, Columbia, South Carolina
| | - Joelle M Strom
- Department of Biological Sciences University of South Carolina, University of South Carolina, Columbia, South Carolina
| | - Ashley Francois
- Department of Biological Sciences University of South Carolina, University of South Carolina, Columbia, South Carolina
| | - Rekha C Patel
- Department of Biological Sciences University of South Carolina, University of South Carolina, Columbia, South Carolina
| |
Collapse
|
18
|
Westenberger A, Reyes CJ, Saranza G, Dobricic V, Hanssen H, Domingo A, Laabs B, Schaake S, Pozojevic J, Rakovic A, Grütz K, Begemann K, Walter U, Dressler D, Bauer P, Rolfs A, Münchau A, Kaiser FJ, Ozelius LJ, Jamora RD, Rosales RL, Diesta CCE, Lohmann K, König IR, Brüggemann N, Klein C. A hexanucleotide repeat modifies expressivity of X‐linked dystonia parkinsonism. Ann Neurol 2019; 85:812-822. [DOI: 10.1002/ana.25488] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 04/08/2019] [Accepted: 04/10/2019] [Indexed: 02/02/2023]
Affiliation(s)
| | | | - Gerard Saranza
- Department of NeurosciencesCollege of Medicine‐Philippine General Hospital, University of the Philippines Manila Philippines
| | - Valerija Dobricic
- Institute of NeurogeneticsUniversity of Lübeck Lübeck Germany
- Lübeck Interdisciplinary Platform for Genome AnalyticsInstitutes of Neurogenetics and Cardiogenetics, University of Lübeck Lübeck Germany
| | - Henrike Hanssen
- Institute of NeurogeneticsUniversity of Lübeck Lübeck Germany
- Department of NeurologyUniversity of Lübeck Lübeck Germany
| | - Aloysius Domingo
- Institute of NeurogeneticsUniversity of Lübeck Lübeck Germany
- Center for Genomic MedicineMassachusetts General Hospital Boston MA
| | - Björn‐Hergen Laabs
- Institute of Medical Biometry and StatisticsUniversity of Lübeck Lübeck Germany
| | - Susen Schaake
- Institute of NeurogeneticsUniversity of Lübeck Lübeck Germany
| | - Jelena Pozojevic
- Section for Functional GeneticsInstitute for Human Genetics, University of Lübeck Lübeck Germany
| | | | - Karen Grütz
- Institute of NeurogeneticsUniversity of Lübeck Lübeck Germany
| | | | - Uwe Walter
- Department of NeurologyUniversity of Rostock Rostock Germany
| | - Dirk Dressler
- Movement Disorders Section, Department of NeurologyHannover Medical School Hannover Germany
| | | | | | | | - Frank J. Kaiser
- Section for Functional GeneticsInstitute for Human Genetics, University of Lübeck Lübeck Germany
| | - Laurie J. Ozelius
- Department of NeurologyMassachusetts General Hospital and Harvard Medical School Boston MA
| | - Roland Dominic Jamora
- Department of NeurosciencesCollege of Medicine‐Philippine General Hospital, University of the Philippines Manila Philippines
| | | | - Cid Czarina E. Diesta
- Department of Neurosciences, Movement Disorders ClinicMakati Medical Center Makati City Philippines
| | - Katja Lohmann
- Institute of NeurogeneticsUniversity of Lübeck Lübeck Germany
| | - Inke R. König
- Institute of Medical Biometry and StatisticsUniversity of Lübeck Lübeck Germany
| | - Norbert Brüggemann
- Institute of NeurogeneticsUniversity of Lübeck Lübeck Germany
- Department of NeurologyUniversity of Lübeck Lübeck Germany
| | - Christine Klein
- Institute of NeurogeneticsUniversity of Lübeck Lübeck Germany
| |
Collapse
|
19
|
Sprenger A, Hanssen H, Hagedorn I, Prasuhn J, Rosales RL, Jamora RDG, Diesta CC, Domingo A, Klein C, Brüggemann N, Helmchen C. Eye movement deficits in X-linked dystonia-parkinsonism are related to striatal degeneration. Parkinsonism Relat Disord 2019; 61:170-178. [DOI: 10.1016/j.parkreldis.2018.10.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 09/14/2018] [Accepted: 10/14/2018] [Indexed: 11/16/2022]
|
20
|
Schapira AHV. Progress in neurology 2017-2018. Eur J Neurol 2018; 25:1389-1397. [DOI: 10.1111/ene.13846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- A. H. V. Schapira
- Department of Clinical and Movement Neurosciences; UCL Queen Square Institute of Neurology; London UK
| |
Collapse
|
21
|
Hanssen H, Heldmann M, Prasuhn J, Tronnier V, Rasche D, Diesta CC, Domingo A, Rosales RL, Jamora RD, Klein C, Münte TF, Brüggemann N. Basal ganglia and cerebellar pathology in X-linked dystonia-parkinsonism. Brain 2018; 141:2995-3008. [DOI: 10.1093/brain/awy222] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 07/06/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
- Henrike Hanssen
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
- Department of Neurology, University of Lübeck, Lübeck, Germany
| | - Marcus Heldmann
- Department of Neurology, University of Lübeck, Lübeck, Germany
| | - Jannik Prasuhn
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
- Department of Neurology, University of Lübeck, Lübeck, Germany
| | - Volker Tronnier
- Department of Neurosurgery, University of Lübeck, Lübeck, Germany
| | - Dirk Rasche
- Department of Neurosurgery, University of Lübeck, Lübeck, Germany
| | - Cid C Diesta
- Asian Hospital and Medical Center, Filinvest Corporate City, Alabang, Muntinlupa City, Philippines
| | - Aloysius Domingo
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Raymond L Rosales
- Department of Neurology and Psychiatry, University of Santo Tomas Hospital, Manila, Philippines
| | - Roland D Jamora
- Department of Neurosciences, College of Medicine-Philippine General Hospital, University of the Philippines Manila, Manila, Philippines
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Thomas F Münte
- Department of Neurology, University of Lübeck, Lübeck, Germany
| | - Norbert Brüggemann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
- Department of Neurology, University of Lübeck, Lübeck, Germany
| |
Collapse
|
22
|
Molecular hypotheses to explain the shared pathways and underlying pathobiological causes in catatonia and in catatonic presentations in neuropsychiatric disorders. Med Hypotheses 2018. [DOI: 10.1016/j.mehy.2018.02.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
23
|
Matarazzo M, Wile D, Mackenzie M, Stoessl AJ. PET Molecular Imaging in Familial Parkinson's Disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2018; 142:177-223. [DOI: 10.1016/bs.irn.2018.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
24
|
Blood AJ, Waugh JL, Münte TF, Heldmann M, Domingo A, Klein C, Breiter HC, Lee LV, Rosales RL, Brüggemann N. Increased insula-putamen connectivity in X-linked dystonia-parkinsonism. NEUROIMAGE-CLINICAL 2017. [PMID: 29527488 PMCID: PMC5842648 DOI: 10.1016/j.nicl.2017.10.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Preliminary evidence from postmortem studies of X-linked dystonia-parkinsonism (XDP) suggests tissue loss may occur first and/or most severely in the striatal striosome compartment, followed later by cell loss in the matrix compartment. However, little is known about how this relates to pathogenesis and pathophysiology. While MRI cannot visualize these striatal compartments directly in humans, differences in relative gradients of afferent cortical connectivity across compartments (weighted toward paralimbic versus sensorimotor cortex, respectively) can be used to infer potential selective loss in vivo. In the current study we evaluated relative connectivity of paralimbic versus sensorimotor cortex with the caudate and putamen in 17 individuals with XDP and 17 matched controls. Although caudate and putamen volumes were reduced in XDP, there were no significant reductions in either “matrix-weighted”, or “striosome-weighted” connectivity. In fact, paralimbic connectivity with the putamen was elevated, rather than reduced, in XDP. This was driven most strongly by elevated putamen connectivity with the anterior insula. There was no relationship of these findings to disease duration or striatal volume, suggesting insula and/or paralimbic connectivity in XDP may develop abnormally and/or increase in the years before symptom onset. Previous work suggested striosomes might degenerate preferentially in early XDP. We developed a DTI tractography method to assess striosome and matrix integrity. Striosomal afferents to putamen were elevated in XDP, despite reduced putamen volume. Connectivity was particularly elevated from the insula (two to three-fold). Striosome connectivity strength was not associated with disease duration.
Collapse
Affiliation(s)
- Anne J Blood
- Mood and Motor Control Laboratory, Massachusetts General Hospital (MGH), Charlestown, MA, USA; Laboratory of Neuroimaging and Genetics, MGH, Charlestown, MA, USA; Depts. of Neurology, MGH, Boston, MA, USA; Psychiatry, MGH, Boston, MA, USA; Martinos Center for Biomedical Imaging, Dept. of Radiology, MGH, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA.
| | - Jeff L Waugh
- Mood and Motor Control Laboratory, Massachusetts General Hospital (MGH), Charlestown, MA, USA; Depts. of Neurology, MGH, Boston, MA, USA; Martinos Center for Biomedical Imaging, Dept. of Radiology, MGH, Charlestown, MA, USA; Division of Child Neurology, Boston Children's Hospital, USA; Harvard Medical School, Boston, MA, USA
| | - Thomas F Münte
- Department of Neurology, University of Lübeck, Lübeck, Germany
| | - Marcus Heldmann
- Department of Neurology, University of Lübeck, Lübeck, Germany
| | - Aloysius Domingo
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Hans C Breiter
- Mood and Motor Control Laboratory, Massachusetts General Hospital (MGH), Charlestown, MA, USA; Laboratory of Neuroimaging and Genetics, MGH, Charlestown, MA, USA; Psychiatry, MGH, Boston, MA, USA; Warren Wright Adolescent Center, Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Lillian V Lee
- XDP Study Group, Philippine Children's Medical Center, Quezon City, Philippines
| | - Raymond L Rosales
- XDP Study Group, Philippine Children's Medical Center, Quezon City, Philippines; Department of Neurology and Psychiatry, Faculty of Medicine and Surgery, University of Santo Tomas, Manila, Philippines
| | - Norbert Brüggemann
- Department of Neurology, University of Lübeck, Lübeck, Germany; Institute of Neurogenetics, University of Lübeck, Lübeck, Germany.
| |
Collapse
|
25
|
Kawarai T, Morigaki R, Kaji R, Goto S. Clinicopathological Phenotype and Genetics of X-Linked Dystonia-Parkinsonism (XDP; DYT3; Lubag). Brain Sci 2017; 7:brainsci7070072. [PMID: 28672841 PMCID: PMC5532585 DOI: 10.3390/brainsci7070072] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 06/22/2017] [Accepted: 06/23/2017] [Indexed: 12/17/2022] Open
Abstract
X-linked dystonia–parkinsonism (XDP; OMIM314250), also referred to as DYT3 dystonia or “Lubag” disease, was first described as an endemic disease in the Philippine island of Panay. XDP is an adult-onset movement disorder characterized by progressive and severe dystonia followed by overt parkinsonism in the later years of life. Among the primary monogenic dystonias, XDP has been identified as a transcriptional dysregulation syndrome with impaired expression of the TAF1 (TATA box-binding protein associated factor 1) gene, which is a critical component of the cellular transcription machinery. The major neuropathology of XDP is progressive neuronal loss in the neostriatum (i.e., the caudate nucleus and putamen). XDP may be used as a human disease model to elucidate the pathomechanisms by which striatal neurodegeneration leads to dystonia symptoms. In this article, we introduce recent advances in the understanding of the interplay between pathophysiology and genetics in XDP.
Collapse
Affiliation(s)
- Toshitaka Kawarai
- Department of Clinical Neuroscience, Institute of Biomedical Sciences, Graduate School of Medical Sciences, Tokushima University, Tokushima 770-8503, Japan.
| | - Ryoma Morigaki
- Parkinson's Disease and Dystonia Research Center, Tokushima University Hospital, Tokushima 770-8503, Japan.
- Department of Neurodegenerative Disorders Research, Institute of Biomedical Sciences, Graduate School of Medical Sciences, Tokushima University, Tokushima 770-8503, Japan.
- Department of Neurosurgery, Institute of Biomedical Sciences, Graduate School of Medical Sciences, Tokushima University, Tokushima 770-8503, Japan.
| | - Ryuji Kaji
- Department of Clinical Neuroscience, Institute of Biomedical Sciences, Graduate School of Medical Sciences, Tokushima University, Tokushima 770-8503, Japan.
- Parkinson's Disease and Dystonia Research Center, Tokushima University Hospital, Tokushima 770-8503, Japan.
| | - Satoshi Goto
- Parkinson's Disease and Dystonia Research Center, Tokushima University Hospital, Tokushima 770-8503, Japan.
- Department of Neurodegenerative Disorders Research, Institute of Biomedical Sciences, Graduate School of Medical Sciences, Tokushima University, Tokushima 770-8503, Japan.
| |
Collapse
|