1
|
Filippatou A, Theodorou A, Stefanou MI, Tzanetakos D, Kitsos D, Moschovos C, Koutsouraki E, Tzartos JS, Giannopoulos S, Voumvourakis K, Tsivgoulis G. Optical coherence tomography and angiography in multiple sclerosis: A systematic review and meta-analysis. J Neurol Sci 2025; 470:123422. [PMID: 39954575 DOI: 10.1016/j.jns.2025.123422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 02/06/2025] [Accepted: 02/09/2025] [Indexed: 02/17/2025]
Abstract
BACKGROUND AND OBJECTIVES Anterior visual pathway involvement is common in multiple sclerosis (MS) and optical coherence tomography (OCT) can be utilized to examine the integrity of the ganglion cell axons (peri-papillary retinal nerve fiber layer; pRNFL) and cell bodies (ganglion cell & inner plexiform layer; GCIPL). OCT angiography (OCTA) can be used to investigate the retinal microvasculature. In this systematic review and meta-analysis, we synthesized OCT and OCTA findings in MS. METHODS We identified studies that performed OCT and OCTA in people with MS and included data permitting at least one of the following comparisons: 1) MS optic neuritis (MS-ON) vs healthy-control (HC) eyes; 2) MS non-ON (MS-NON) vs HC eyes; and 3) MS-ON vs MS-NON eyes. RESULTS The OCT meta-analysis included 170 studies and 8542 HC, 5529 MS-ON, and 14,822 MS-NON eyes. MS-ON and MS-NON eyes had lower pRNFL and GCIPL thickness compared to HC. There was no difference in inner nuclear layer (INL) thickness between HC and MS; INL was thicker in MS-ON compared to MS-NON eyes. The OCTA meta-analysis included 24 studies and 1344 HC, 505 MS-ON, and 1168 MS-NON eyes. MS-ON and MS-NON eyes had lower peripapillary vessel density and macular superficial vessel density compared to HC. We also summarized 12 studies evaluating the diagnostic yield of inter-eye differences in OCT measurements for detecting unilateral optic nerve involvement. CONCLUSIONS OCT allows for reliable quantification of retinal neuro-axonal damage in MS. In our review, we highlight studies demonstrating that OCT can establish robust thresholds for detecting unilateral optic nerve involvement.
Collapse
Affiliation(s)
- Angeliki Filippatou
- Second Department of Neurology, "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece; Department of Neurology, Johns Hopkins Hospital, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Aikaterini Theodorou
- Second Department of Neurology, "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria-Ioanna Stefanou
- Second Department of Neurology, "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece; Department of Neurology and Stroke, University of Tübingen, Tübingen, Germany; Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Dimitrios Tzanetakos
- Second Department of Neurology, "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios Kitsos
- Second Department of Neurology, "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Christos Moschovos
- Second Department of Neurology, "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Effrosyni Koutsouraki
- First Department of Neurology, "AHEPA" University Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - John S Tzartos
- Second Department of Neurology, "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Sotirios Giannopoulos
- Second Department of Neurology, "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Voumvourakis
- Second Department of Neurology, "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgios Tsivgoulis
- Second Department of Neurology, "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
2
|
Kalaitzidis G, Ezzedin O, Bacchetti A, Moussa H, Murphy OC, Filippatou AG, Ehrhardt H, Vasileiou E, Pellegrini N, Davis S, Douglas M, Fitzgerald KC, DuVal A, Douglas Newsome S, Sotirchos ES, Nourbakhsh B, Dewey BE, Prince J, Saidha S, Calabresi PA. Homonymous hemi-macular atrophy in multiple sclerosis. Mult Scler 2024; 30:1802-1814. [PMID: 39579046 PMCID: PMC11617262 DOI: 10.1177/13524585241297816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Abstract
BACKGROUND Retrograde trans-synaptic degeneration (TSD) following retro-chiasmal pathology, typically retro-geniculate in multiple sclerosis (MS), may manifest as homonymous hemi-macular atrophy (HHMA) of the ganglion cell/inner plexiform layer (GCIPL). OBJECTIVE To determine the frequency, association with clinical outcomes, and retinal and radiological features of HHMA in people with MS (PwMS). METHODS In this cross-sectional study, healthy controls (HC) and PwMS underwent retinal optical coherence tomography scanning. For quantitative identification of HHMA, a normalized asymmetry ratio was used, and its normative cutoffs were established from the HC. HHMA PwMS were propensity score matched 1:2 to non-HHMA PwMS. Mixed-effects linear regression models were used in analyses. RESULTS Based on normative data from 238 HC (466 eyes), 79 out of 942 PwMS exhibited HHMA (8.4%; 143 eyes). Compared to non-HHMA eyes from matched PwMS (158 PwMS; 308 eyes), HHMA eyes had lower average GCIPL (diff: -5.7 μm (95% CI -7.6 to -3.8); p < 0.001) but also inner nuclear layer (diff: -0.9 μm (95% CI -1.6 to -0.1); p = 0.02), and outer nuclear layer (diff: -1.9 μm (95% CI -3.4 to -0.4); p = 0.02) thicknesses; in further analyses, these differences were exclusive to the homonymous side of HHMA. HHMA participants also exhibited higher expanded disability status scale scores (diff: 0.5 (95% CI 0.1 to 0.9); p = 0.02), worse 100% and 2.5% visual acuity scores (diff: -3.2 (95% CI -4.1 to -1.0); p = 0.002, -5.4 (95% CI -7.5 to -3.5); p < 0.001), and higher frequency of microcystoid macular changes (10.1% vs. 3.2%; p = 0.03) compared to non-HHMA participants. CONCLUSIONS HHMA, possibly as a marker of TSD, may signify higher disability in MS.
Collapse
Affiliation(s)
- Grigorios Kalaitzidis
- Division of Neuroimmunology and Neurological Infections, Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Omar Ezzedin
- Division of Neuroimmunology and Neurological Infections, Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - Anna Bacchetti
- Division of Neuroimmunology and Neurological Infections, Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - Hussein Moussa
- Division of Neuroimmunology and Neurological Infections, Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - Olwen C Murphy
- Division of Neuroimmunology and Neurological Infections, Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - Angeliki G Filippatou
- Division of Neuroimmunology and Neurological Infections, Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - Henrik Ehrhardt
- Division of Neuroimmunology and Neurological Infections, Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - Eleni Vasileiou
- Division of Neuroimmunology and Neurological Infections, Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - Nicole Pellegrini
- Division of Neuroimmunology and Neurological Infections, Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - Simidele Davis
- Division of Neuroimmunology and Neurological Infections, Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - Morgan Douglas
- Division of Neuroimmunology and Neurological Infections, Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - Kathryn C Fitzgerald
- Division of Neuroimmunology and Neurological Infections, Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - Anna DuVal
- Division of Neuroimmunology and Neurological Infections, Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - Scott Douglas Newsome
- Division of Neuroimmunology and Neurological Infections, Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - Elias S Sotirchos
- Division of Neuroimmunology and Neurological Infections, Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - Bardia Nourbakhsh
- Division of Neuroimmunology and Neurological Infections, Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - Blake E Dewey
- Division of Neuroimmunology and Neurological Infections, Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - Jerry Prince
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Shiv Saidha
- Division of Neuroimmunology and Neurological Infections, Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - Peter A Calabresi
- Division of Neuroimmunology and Neurological Infections, Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
3
|
Saridas F, Hojjati F, Alizada S, Lazrak S, Koc ER, Turan OF. Effects of disease-modifying therapies on remyelination in multiple sclerosis; evaluation via visual evoked potential test. Mult Scler Relat Disord 2024; 91:105850. [PMID: 39232395 DOI: 10.1016/j.msard.2024.105850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/12/2024] [Accepted: 08/26/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND Assessment of the visual pathway, which is frequently affected by MS, provides the opportunity to measure the remyelination of acute and chronic MS lesions in vivo and non-invasively. VEP can be used in this context. Amplitude is a parameter of axonal loss, whereas latency is an in vivo biomarker of myelin repair. This study aimed to evaluate DMT's neuroprotective and pro-remyelinating potential by evaluating VEP latency and amplitude in MS patients. MATERIALS AND METHODS A total of 74 patients with relapsing MS who had no evidence of optic neuritis were included in the study. Patient data were retrospectively analyzed and recorded. In the VEP test, latency above 118 ms and amplitude below 5.0 μV were considered abnormal. Classified according to DMTs (injectables, teriflunomide, dimethyl fumarate, fingolimod, cladribine, and alemtuzumab). Visual evoked potential tests, clinical features, and cerebrospinal fluid examinations were evaluated by three independent neurologists (one of whom was also a clinical neurophysiologist). RESULTS The mean age at diagnosis was 29.2 ± 9.01, and the mean age at first VEP was 34.97 ± 10.64. In women, latency was lower, and amplitude was higher. The mean differences in latency and amplitude were, respectively, latency prolonged by 0.7 ms on the right and 0.5 ms on the left, and amplitude increased by 0.6 μV on the right and 0.37 μV on the left. However, these changes were not statistically significant. Latency worsening was more prominent in those with longer disease duration (p = 0.011). Those with amplitude or latency worsening had higher EDSS (p = 0.016 and 0.013, respectively). DMTs did not affect these changes. CONCLUSION Prolonged latency is associated with a long disease duration. Deterioration in both amplitude and latency is evident in high EDSS. These results may be an indirect consequence of axonal degeneration dominating remyelination. DMTs do not ameliorate impaired remyelination and neurodegeneration but seem to be sufficient for short-term maintenance of the current state.
Collapse
Affiliation(s)
- Furkan Saridas
- Bursa Uludağ University Medicine Faculty, Department of Neurology, Türkiye.
| | - Farid Hojjati
- Bursa Uludağ University Medicine Faculty, Department of Neurology, Türkiye.
| | - Shanay Alizada
- Bursa Uludağ University Medicine Faculty, Department of Neurology, Türkiye.
| | - Sarra Lazrak
- Bursa Uludağ University Medicine Faculty, Department of Neurology, Türkiye.
| | - Emine Rabia Koc
- Bursa Uludağ University Medicine Faculty, Department of Neurology, Türkiye.
| | - Omer Faruk Turan
- Bursa Uludağ University Medicine Faculty, Department of Neurology, Türkiye.
| |
Collapse
|
4
|
Papadopoulou A, Pfister A, Tsagkas C, Gaetano L, Sellathurai S, D'Souza M, Cerdá-Fuertes N, Gugleta K, Descoteaux M, Chakravarty MM, Fuhr P, Kappos L, Granziera C, Magon S, Sprenger T, Hardmeier M. Visual evoked potentials in multiple sclerosis: P100 latency and visual pathway damage including the lateral geniculate nucleus. Clin Neurophysiol 2024; 161:122-132. [PMID: 38461596 DOI: 10.1016/j.clinph.2024.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 02/11/2024] [Accepted: 02/13/2024] [Indexed: 03/12/2024]
Abstract
OBJECTIVE To explore associations of the main component (P100) of visual evoked potentials (VEP) to pre- and postchiasmatic damage in multiple sclerosis (MS). METHODS 31 patients (median EDSS: 2.5), 13 with previous optic neuritis (ON), and 31 healthy controls had VEP, optical coherence tomography and magnetic resonance imaging. We tested associations of P100-latency to the peripapillary retinal nerve fiber layer (pRNFL), ganglion cell/inner plexiform layers (GCIPL), lateral geniculate nucleus volume (LGN), white matter lesions of the optic radiations (OR-WML), fractional anisotropy of non-lesional optic radiations (NAOR-FA), and to the mean thickness of primary visual cortex (V1). Effect sizes are given as marginal R2 (mR2). RESULTS P100-latency, pRNFL, GCIPL and LGN in patients differed from controls. Within patients, P100-latency was significantly associated with GCIPL (mR2 = 0.26), and less strongly with OR-WML (mR2 = 0.17), NAOR-FA (mR2 = 0.13) and pRNFL (mR2 = 0.08). In multivariate analysis, GCIPL and NAOR-FA remained significantly associated with P100-latency (mR2 = 0.41). In ON-patients, P100-latency was significantly associated with LGN volume (mR2 = -0.56). CONCLUSIONS P100-latency is affected by anterior and posterior visual pathway damage. In ON-patients, damage at the synapse-level (LGN) may additionally contribute to latency delay. SIGNIFICANCE Our findings corroborate post-chiasmatic contributions to the VEP-signal, which may relate to distinct pathophysiological mechanisms in MS.
Collapse
Affiliation(s)
- Athina Papadopoulou
- Department of Neurology, University Hospital Basel, University of Basel, Basel, Switzerland; Department of Clinical Research, University of Basel, Switzerland; Translational Imaging in Neurology (ThINK) Basel, Department of Biomedical Engineering, University of Basel, Basel, Switzerland; Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Armanda Pfister
- Department of Neurology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Charidimos Tsagkas
- Department of Neurology, University Hospital Basel, University of Basel, Basel, Switzerland; Translational Imaging in Neurology (ThINK) Basel, Department of Biomedical Engineering, University of Basel, Basel, Switzerland; Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, USA
| | | | - Shaumiya Sellathurai
- Department of Neurology, University Hospital Basel, University of Basel, Basel, Switzerland; Department of Clinical Research, University of Basel, Switzerland; Translational Imaging in Neurology (ThINK) Basel, Department of Biomedical Engineering, University of Basel, Basel, Switzerland; Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Marcus D'Souza
- Department of Neurology, University Hospital Basel, University of Basel, Basel, Switzerland; Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland; Neurostatus AG, University Hospital of Basel, Basel, Switzerland
| | - Nuria Cerdá-Fuertes
- Department of Neurology, University Hospital Basel, University of Basel, Basel, Switzerland; Department of Clinical Research, University of Basel, Switzerland; Translational Imaging in Neurology (ThINK) Basel, Department of Biomedical Engineering, University of Basel, Basel, Switzerland; Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland; Neurostatus AG, University Hospital of Basel, Basel, Switzerland
| | - Konstantin Gugleta
- University Eye Clinic Basel, University Hospital Basel and University of Basel, Basel, Switzerland
| | | | - Mallar M Chakravarty
- Douglas Mental Health University Institute, Departments of Psychiatry and Biomedical Engineering (M.M.C.), McGill University, Montreal, University of Sherbrooke (M.D.), Canada
| | - Peter Fuhr
- Department of Neurology, University Hospital Basel, University of Basel, Basel, Switzerland; Department of Clinical Research, University of Basel, Switzerland
| | - Ludwig Kappos
- Department of Clinical Research, University of Basel, Switzerland; Translational Imaging in Neurology (ThINK) Basel, Department of Biomedical Engineering, University of Basel, Basel, Switzerland; Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Cristina Granziera
- Department of Neurology, University Hospital Basel, University of Basel, Basel, Switzerland; Translational Imaging in Neurology (ThINK) Basel, Department of Biomedical Engineering, University of Basel, Basel, Switzerland; Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Stefano Magon
- Pharma Research and Early Development, Neuroscience and Rare Diseases Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | | | - Martin Hardmeier
- Department of Neurology, University Hospital Basel, University of Basel, Basel, Switzerland.
| |
Collapse
|
5
|
Lin T, Chien C, Kuchling J, Asseyer S, Motamedi S, Bellmann‐Strobl J, Schmitz‐Hübsch T, Ruprecht K, Brandt AU, Zimmermann HG, Paul F. Interactions of optic radiation lesions with retinal and brain atrophy in early multiple sclerosis. Ann Clin Transl Neurol 2024; 11:45-56. [PMID: 37903651 PMCID: PMC10791029 DOI: 10.1002/acn3.51931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/27/2023] [Accepted: 10/15/2023] [Indexed: 11/01/2023] Open
Abstract
OBJECTIVE Retrograde trans-synaptic neuroaxonal degeneration is considered a key pathological factor of subclinical retinal neuroaxonal damage in multiple sclerosis (MS). We aim to evaluate the longitudinal association of optic radiation (OR) lesion activity with retinal neuroaxonal damage and its role in correlations between retinal and brain atrophy in people with clinically isolated syndrome and early MS (pweMS). METHODS Eighty-five pweMS were retrospectively screened from a prospective cohort (Berlin CIS cohort). Participants underwent 3T magnetic resonance imaging (MRI) for OR lesion volume and brain atrophy measurements and optical coherence tomography (OCT) for retinal layer thickness measurements. All pweMS were followed with serial OCT and MRI over a median follow-up of 2.9 (interquartile range: 2.6-3.4) years. Eyes with a history of optic neuritis prior to study enrollment were excluded. Linear mixed models were used to analyze the association of retinal layer thinning with changes in OR lesion volume and brain atrophy. RESULTS Macular ganglion cell-inner plexiform layer (GCIPL) thinning was more pronounced in pweMS with OR lesion volume increase during follow-up compared to those without (Difference: -0.82 μm [95% CI:-1.49 to -0.15], p = 0.018). Furthermore, GCIPL thinning correlated with both OR lesion volume increase (β [95% CI] = -0.27 [-0.50 to -0.03], p = 0.028) and brain atrophy (β [95% CI] = 0.47 [0.25 to 0.70], p < 0.001). Correlations of GCIPL changes with brain atrophy did not differ between pweMS with or without OR lesion increase (η p 2 = 5.92e-7 , p = 0.762). INTERPRETATION Faster GCIPL thinning rate is associated with increased OR lesion load. Our results support the value of GCIPL as a sensitive biomarker reflecting both posterior visual pathway pathology and global brain neurodegeneration.
Collapse
Affiliation(s)
- Ting‐Yi Lin
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and the Charité – Universitätsmedizin BerlinBerlinGermany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- Max‐Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
| | - Claudia Chien
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and the Charité – Universitätsmedizin BerlinBerlinGermany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- Max‐Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
- Department of Psychiatry and PsychotherapyCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt‐Universität zu BerlinBerlinGermany
| | - Joseph Kuchling
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and the Charité – Universitätsmedizin BerlinBerlinGermany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- Max‐Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
- Department of NeurologyCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
| | - Susanna Asseyer
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and the Charité – Universitätsmedizin BerlinBerlinGermany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- Max‐Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
- Neuroscience Clinical Research CenterCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
| | - Seyedamirhosein Motamedi
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and the Charité – Universitätsmedizin BerlinBerlinGermany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- Max‐Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
- Neuroscience Clinical Research CenterCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
| | - Judith Bellmann‐Strobl
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and the Charité – Universitätsmedizin BerlinBerlinGermany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- Max‐Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
- Neuroscience Clinical Research CenterCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
| | - Tanja Schmitz‐Hübsch
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and the Charité – Universitätsmedizin BerlinBerlinGermany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- Max‐Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
- Neuroscience Clinical Research CenterCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
| | - Klemens Ruprecht
- Department of NeurologyCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
| | - Alexander U. Brandt
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and the Charité – Universitätsmedizin BerlinBerlinGermany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- Max‐Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
| | - Hanna G. Zimmermann
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and the Charité – Universitätsmedizin BerlinBerlinGermany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- Max‐Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
- Neuroscience Clinical Research CenterCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- Einstein Center Digital FutureBerlinGermany
| | - Friedemann Paul
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and the Charité – Universitätsmedizin BerlinBerlinGermany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- Max‐Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
- Department of NeurologyCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- Neuroscience Clinical Research CenterCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
| |
Collapse
|
6
|
Filippatou AG, Calabresi PA, Saidha S, Murphy OC. Spotlight on Trans-Synaptic Degeneration in the Visual Pathway in Multiple Sclerosis. Eye Brain 2023; 15:153-160. [PMID: 38169913 PMCID: PMC10759909 DOI: 10.2147/eb.s389632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 11/15/2023] [Indexed: 01/05/2024] Open
Abstract
A putative mechanism of neurodegeneration in multiple sclerosis (MS) is trans-synaptic degeneration (TSD), whereby injury to a neuron leads to degeneration of synaptically connected neurons. The visual system is commonly involved in MS and provides an ideal model to study TSD given its well-defined structure. TSD may occur in an anterograde direction (optic neuropathy causing degeneration in the posterior visual pathway including the optic radiations and occipital gray matter) and/or retrograde direction (posterior visual pathway lesions causing retinal degeneration). In the current review, we discuss evidence supporting the presence of anterograde and retrograde TSD in the visual system in MS.
Collapse
Affiliation(s)
- Angeliki G Filippatou
- Division of Neuroimmunology and Neurological Infections, Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - Peter A Calabresi
- Division of Neuroimmunology and Neurological Infections, Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - Shiv Saidha
- Division of Neuroimmunology and Neurological Infections, Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - Olwen C Murphy
- Division of Neuroimmunology and Neurological Infections, Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
7
|
Huang SC, Pisa M, Guerrieri S, Dalla Costa G, Comi G, Leocani L. Optical coherence tomography with voxel-based morphometry: a new tool to unveil focal retinal neurodegeneration in multiple sclerosis. Brain Commun 2023; 6:fcad249. [PMID: 38328398 PMCID: PMC10847824 DOI: 10.1093/braincomms/fcad249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/25/2023] [Accepted: 09/25/2023] [Indexed: 02/09/2024] Open
Abstract
Neurodegeneration is the main contributor to disability accumulation in multiple sclerosis. Previous studies in neuro-ophthalmology have revealed that neurodegeneration in multiple sclerosis also affects the neuro-retina. Optical coherence tomography has been used to measure thinning of retinal layers, which correlates with several other markers for axonal/neuronal loss in multiple sclerosis. However, the existing analytical tools have limitations in terms of sensitivity and do not provide topographical information. In this study, we aim to evaluate whether voxel-based morphometry can increase sensitivity in detecting neuroaxonal degeneration in the retina and offer topographical information. A total of 131 people with multiple sclerosis (41 clinically isolated syndrome, 53 relapsing-remitting and 37 progressive multiple sclerosis) and 50 healthy subjects were included. Only eyes with normal global peripapillary retinal nerve fibre layer thickness and no history of optic neuritis were considered. Voxel-based morphometry and voxel-wise statistical comparisons were performed on the following: (i) patients at different disease stages and 2) patients who experienced the first demyelination attack without subclinical optic neuritis, assessed by visual evoked potentials. Standard parameters failed to discern any differences; however, voxel-based morphometry-optical coherence tomography successfully detected focal macular atrophy of retinal nerve fibre layer and ganglion cell/inner plexiform layer, along with thickening of inner nuclear layer in patients who experienced the first demyelination attack (disease duration = 4.2 months). Notably, the atrophy pattern of the ganglion cell/inner plexiform layer was comparable across disease phenotypes. In contrast, the retinal nerve fibre layer atrophy spread from the optic nerve head to the fovea as the disease evolved towards the progressive phase. Furthermore, for patients who experienced the first neurological episode, the severity of retinal nerve fibre layer atrophy at entry could predict a second attack. Our results demonstrate that voxel-based morphometry-optical coherence tomography exhibits greater sensitivity than standard parameters in detecting focal retinal atrophy, even at clinical presentation, in eyes with no history of optic neuritis and with normal latency of visual evoked potentials. Thinning of the ganglion cell/inner plexiform layer primarily concentrated in nasal perifovea in all disease phenotypes, indicating selective vulnerability of retinal ganglion cells and their perifoveal axons. Conversely, the degree of retinal nerve fibre layer thinning seems to be related to the clinical course of multiple sclerosis. The findings suggest bidirectional neurodegeneration in the visual pathway. Voxel-based morphometry-optical coherence tomography shows potential as a valuable tool for monitoring neurodegeneration on a patient level and evaluating the efficacy of novel neuroprotective treatments.
Collapse
Affiliation(s)
- Su-Chun Huang
- Experimental Neurophysiology Unit, Institute of Experimental Neurology-INSPE, San Raffaele Scientific Institute, Milan 20132, Italy
| | - Marco Pisa
- Experimental Neurophysiology Unit, Institute of Experimental Neurology-INSPE, San Raffaele Scientific Institute, Milan 20132, Italy
| | - Simone Guerrieri
- Experimental Neurophysiology Unit, Institute of Experimental Neurology-INSPE, San Raffaele Scientific Institute, Milan 20132, Italy
| | - Gloria Dalla Costa
- Experimental Neurophysiology Unit, Institute of Experimental Neurology-INSPE, San Raffaele Scientific Institute, Milan 20132, Italy
| | - Giancarlo Comi
- Faculty of Medicine, Vita-Salute San Raffaele University, Milan 20132, Italy
- Department of Neurorehabilitation Science, Casa di Cura Igea, Milan 20144, Italy
| | - Letizia Leocani
- Experimental Neurophysiology Unit, Institute of Experimental Neurology-INSPE, San Raffaele Scientific Institute, Milan 20132, Italy
- Faculty of Medicine, Vita-Salute San Raffaele University, Milan 20132, Italy
| |
Collapse
|
8
|
Miante S, Margoni M, Moretto M, Pengo M, Carmisciano L, Spolettini P, Silvestri E, Danieletto M, Franciotta S, Miscioscia A, Bertoldo A, Puthenparampil M, Gallo P. Trans-synaptic degeneration in the optic pathway: Exploring the role of lateral geniculate nucleus in early stages of relapsing-remitting multiple sclerosis. Mult Scler Relat Disord 2023; 77:104877. [PMID: 37454566 DOI: 10.1016/j.msard.2023.104877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/07/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Optic pathway is considered an ideal model to study the interaction between inflammation and neurodegeneration in multiple sclerosis (MS). METHODS Optical Coherence Tomography (OCT) and 3.0 T magnetic resonance imaging (MRI) were acquired in 92 relapsing remitting (RR) MS at clinical onset. Peripapillary RNFL (pRNFL) and macular layers were measured. White matter (WM) and gray matter (GM) lesion volumes (LV), lateral geniculate nucleus (LGN) volume, optic radiations (OR) WM LV, thickness of pericalcarine cortex were evaluated. OCT and MRI control groups (healthy controls [HC]-OCT and HC-MRI) were included. RESULTS A significant thinning of temporal pRNFL and papillo-macular bundle (PMB) was observed (p<0.001) in 16 (17%) patients presented with monocular optic neuritis (MSON+), compared to 76 MSON- and 30 HC (-15 μm). In MSON-, PMB was reduced (-3 μm) compared to HC OCT (p<0.05). INL total volume was increased both in MSON+ (p<0.001) and MSON- (p = 0.033). Inner retinal layers volumes (macular RNFL, GCL and IPL) were significantly decreased in MSON+ compared to HC (p<0.001) and MSON- (p<0.001). Reduced GCL volume in the parafoveal ring was observed in MSON- compared to HCOCT (p < 0.05). LGN volume was significantly reduced only in MSON+ patients compared to HC-MRI (p<0.001) and MSON- (p<0.007). GCL, IPL and GCIP volumes associated with ipsilateral LGN volume in MSON+ and MSON-. Finally, LGN volume associated with visual cortex thickness with no significant difference between MSON+ and MSON-. CONCLUSIONS Anterograde trans-synaptic degeneration is early detectable in RRMS presenting with optic neuritis but does not involve LGN.
Collapse
Affiliation(s)
- Silvia Miante
- Multiple Sclerosis Centre, Neurology Clinic, Department of Neuroscience, University of Padua, Padua, Italy.
| | - Monica Margoni
- Multiple Sclerosis Centre, Neurology Clinic, Department of Neuroscience, University of Padua, Padua, Italy; Padova Neuroscience Centre (PNC), University of Padua, Padua, Italy
| | - Manuela Moretto
- Padova Neuroscience Centre (PNC), University of Padua, Padua, Italy; Department of Information Engineering, University of Padua, Padua, Italy
| | - Marta Pengo
- Multiple Sclerosis Centre, Neurology Clinic, Department of Neuroscience, University of Padua, Padua, Italy
| | - Luca Carmisciano
- DISSAL, Department of Health Science, University of Genoa, Genoa, Italy
| | - Pietro Spolettini
- Multiple Sclerosis Centre, Neurology Clinic, Department of Neuroscience, University of Padua, Padua, Italy
| | - Erica Silvestri
- Padova Neuroscience Centre (PNC), University of Padua, Padua, Italy; Department of Information Engineering, University of Padua, Padua, Italy
| | - Matteo Danieletto
- Institute for Next Generation Healthcare, Icahn School of Medicine at Mount Sinai, NY
| | - Silvia Franciotta
- Multiple Sclerosis Centre, Neurology Clinic, Department of Neuroscience, University of Padua, Padua, Italy
| | - Alessandro Miscioscia
- Multiple Sclerosis Centre, Neurology Clinic, Department of Neuroscience, University of Padua, Padua, Italy
| | - Alessandra Bertoldo
- Padova Neuroscience Centre (PNC), University of Padua, Padua, Italy; Department of Information Engineering, University of Padua, Padua, Italy
| | - Marco Puthenparampil
- Multiple Sclerosis Centre, Neurology Clinic, Department of Neuroscience, University of Padua, Padua, Italy
| | - Paolo Gallo
- Multiple Sclerosis Centre, Neurology Clinic, Department of Neuroscience, University of Padua, Padua, Italy
| |
Collapse
|
9
|
Huang L, Wang Y, Zhang R. Retina thickness in clinically affected and unaffected eyes in patients with aquaporin-4 immunoglobulin G antibody seropositive neuromyelitis optica spectrum disorders: a systematic review and meta-analysis. J Neurol 2023; 270:759-768. [PMID: 36355186 DOI: 10.1007/s00415-022-11482-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND AND PURPOSE Retina thickness has been studied in patients with neuromyelitis optica spectrum disorders (NMOSD) without distinguishing serostatus and limited data are available in unaffected eyes. We aimed to investigate retina thickness in eyes of aquaporin-4 immunoglobulin G antibody seropositive (AQP4-IgG+) NMOSD patients with optic neuritis (AQP4-ON) and without (AQP4-NON). METHODS Eligible studies were identified by searching PubMed and Embase. Mean difference (MD, μm) with corresponding 95% confidence interval (CI) was pooled with random-effect models. The primary measures were average thickness of peripapillar retinal nerve fiber layer (pRNFL) centered on optic disc and the combination of ganglion cell layer and inner plexiform layer (GCIPL) at macula. RESULTS We included 21 studies enrolling 787 AQP4-IgG+ NMOSD patients. Compared with healthy control, pRNFL was thinner in eyes of AQP4-ON (- 32.78, 95% CI [- 36.24, - 29.33]) and AQP4-NON (- 2.76, 95% CI [- 3.94, - 1.58]), so was GICPL in AQP4-ON (-21.38, 95% CI [- 24.01, - 18.74]) and AQP4-NON (95% CI - 2.96, [- 3.91, - 2.00]). Compared with multiple sclerosis with ON, AQP4-ON had thinner pRNFL (- 13.56, 95%CI [- 16.51, - 10.60]) and GCIPL (- 9.12, 95% CI [- 11.88, - 6.36]). AQP4-ON and myelin oligodendrocyte glycoprotein antibody-associated demyelination with ON (MOG-ON) had similar pRNFL (0.59, 95% CI [- 6.61, 7.79]) and GCIPL thickness (- 0.55, 95% CI [- 2.92, 1.82]). AQP4-NON had similar pRNFL and GCIPL thickness to MOG-NON and multiple sclerosis without ON. CONCLUSIONS The average thickness of pRNFL and GICPL decreased both in AQP4-ON and AQP4-NON eyes. AQP4-ON eyes had a similar level of pRNFL and GICPL thinning to MOG-ON eyes, so did AQP4-NON to MOG-NON eyes.
Collapse
Affiliation(s)
- Lele Huang
- Department of Ophthalmology, The First Hospital of China Medical University, 155 Nanjingbei Street, Heping District, Shenyang, 110001, People's Republic of China
| | - Yujie Wang
- Department of Neurology, People's Hospital, China Medical University, 33 Wenyi Road, Shenhe District, Shenyang, 110016, People's Republic of China
| | - Ruijun Zhang
- Department of Ophthalmology, The First Hospital of China Medical University, 155 Nanjingbei Street, Heping District, Shenyang, 110001, People's Republic of China.
| |
Collapse
|
10
|
Krijnen EA, Ngamsombat C, George IC, Yu FF, Fan Q, Tian Q, Huang SY, Klawiter EC. Axonal and myelin changes and their inter-relationship in the optic radiations in people with multiple sclerosis. Mult Scler J Exp Transl Clin 2023; 9:20552173221147620. [PMID: 36814811 PMCID: PMC9940187 DOI: 10.1177/20552173221147620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023] Open
Abstract
Background The imaging g-ratio, estimated from axonal volume fraction (AVF) and myelin volume fraction (MVF), is a novel biomarker of microstructural tissue integrity in multiple sclerosis (MS). Objective To assess axonal and myelin changes and their inter-relationship as measured by g-ratio in the optic radiations (OR) in people with MS (pwMS) with and without previous optic neuritis (ON) compared to healthy controls (HC). Methods Thirty pwMS and 17 HCs were scanned on a 3Tesla Connectom scanner. AVF and MVF, derived from a multi-shell diffusion protocol and macromolecular tissue volume, respectively, were measured in normal-appearing white matter (NAWM) and lesions within the OR and used to calculate imaging g-ratio. Results OR AVF and MVF were decreased in pwMS compared to HC, and in OR lesions compared to NAWM, whereas the g-ratio was not different. Compared to pwMS with previous ON, AVF and g-ratio tended to be higher in pwMS without prior ON. AVF and MVF, particularly in NAWM, were positively correlated with retinal thickness, which was more pronounced in pwMS with prior ON. Conclusion Axonal measures reflect microstructural tissue damage in the OR, particularly in the setting of remote ON, and correlate with established metrics of visual health in MS.
Collapse
Affiliation(s)
- Eva A Krijnen
- MS Center Amsterdam, Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Chanon Ngamsombat
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
- Department of Radiology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Ilena C George
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Fang F Yu
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Qiuyun Fan
- Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, China
| | - Qiyuan Tian
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
| | - Susie Y Huang
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
| | - Eric C Klawiter
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
11
|
Biousse V, Danesh-Meyer HV, Saindane AM, Lamirel C, Newman NJ. Imaging of the optic nerve: technological advances and future prospects. Lancet Neurol 2022; 21:1135-1150. [DOI: 10.1016/s1474-4422(22)00173-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 04/06/2022] [Accepted: 04/13/2022] [Indexed: 01/02/2023]
|
12
|
Optical Coherence Tomography and Optical Coherence Tomography with Angiography in Multiple Sclerosis. Healthcare (Basel) 2022; 10:healthcare10081386. [PMID: 35893208 PMCID: PMC9394264 DOI: 10.3390/healthcare10081386] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/14/2022] [Accepted: 07/22/2022] [Indexed: 11/27/2022] Open
Abstract
Multiple sclerosis (MS) is an inflammatory and neurodegenerative, potentially disabling disease of the central nervous system. OCT (Optical Coherence Tomography) and OCT-A (Optical Coherence Tomography with Angiography) are imaging techniques for the retina and choroid that are used in the diagnosis and monitoring of ophthalmological conditions. Their use has recently expanded the study of several autoimmune disorders, including MS. Although their application in MS remains unclear, the results seem promising. This review aimed to provide insight into the most recent OCT and OCT-A findings in MS and may function as a reference point for future research. According to the current literature, the retinal nerve fibre layer (RNFL) and ganglion cell-inner plexiform complex (GC-IPL) are significantly reduced in people with MS and are inversely correlated with disease duration. The use of OCT might help distinguish between MS and neuromyelitis optica spectrum disorders (NMOSD), as the latter presents with more pronounced thinning in both the RNFL and GC-IPL. The OCT-A findings in MS include reduced vessel density in the macula, peripapillary area, or both, and the enlargement of the foveal avascular zone (FAZ) in the setting of optic neuritis. Additionally, OCT-A might be able to detect damage in the very early stages of the disease as well as disease progression in severe cases.
Collapse
|
13
|
Berek K, Hegen H, Hocher J, Auer M, Di Pauli F, Krajnc N, Angermann R, Barket R, Zinganell A, Riedl K, Deisenhammer F, Berger T, Bsteh G. Retinal layer thinning as a biomarker of long-term disability progression in multiple sclerosis. Mult Scler 2022; 28:1871-1880. [PMID: 35652366 DOI: 10.1177/13524585221097566] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Peripapillary retinal nerve fibre layer and macular ganglion cell plus inner plexiform layer thinning are markers of neuroaxonal degeneration in multiple sclerosis. OBJECTIVE We aimed to investigate the value of peripapillary retinal nerve fibre layer and ganglion cell plus inner plexiform layer thinning for prediction of long-term disability. METHODS This is a 6-year prospective longitudinal study on 93 multiple sclerosis patients. Optical coherence tomography scans were performed at baseline, after 1, 2 and 6 years. Primary endpoint was disability progression after 6 years, defined as expanded disability status scale worsening and/or cognitive deterioration. Univariate and multivariate analysis was used to investigate the value of peripapillary retinal nerve fibre layer and ganglion cell plus inner plexiform layer to predict the primary endpoint. RESULTS A total of 57 (61.3%) patients had disability worsening, 40 (43.0%) expanded disability status scale worsening and 34 (36.6%) cognitive deterioration. Mean peripapillary retinal nerve fibre layer and ganglion cell plus inner plexiform layer baseline thickness were 93.0 and 75.2 µm, and mean annualised peripapillary retinal nerve fibre layer and ganglion cell plus inner plexiform layer thinning rates over 6 years were 1.3 and 1.6 µm, respectively. Univariate and multivariate analysis revealed lower peripapillary retinal nerve fibre layer and ganglion cell plus inner plexiform layer baseline thickness and higher annualised thinning rates in patients with disability progression after 6 years. Effects were more pronounced for ganglion cell plus inner plexiform layer and expanded disability status scale worsening than for peripapillary retinal nerve fibre layer models and cognitive deterioration. CONCLUSION Ganglion cell plus inner plexiform layer and peripapillary retinal nerve fibre layer measurements depict neurodegeneration and predict disability progression in multiple sclerosis.
Collapse
Affiliation(s)
- Klaus Berek
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Harald Hegen
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Jakob Hocher
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Michael Auer
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Franziska Di Pauli
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Nik Krajnc
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Reinhard Angermann
- Department of Ophthalmology and Optometry, Medical University of Innsbruck, Innsbruck, Austria
| | - Robert Barket
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Anne Zinganell
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Katharina Riedl
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | | | - Thomas Berger
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Gabriel Bsteh
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
14
|
Klistorner A, Graham SL. Role of Multifocal Visually Evoked Potential as a Biomarker of Demyelination, Spontaneous Remyelination, and Myelin Repair in Multiple Sclerosis. Front Neurosci 2021; 15:725187. [PMID: 34776840 PMCID: PMC8586643 DOI: 10.3389/fnins.2021.725187] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 10/01/2021] [Indexed: 11/21/2022] Open
Abstract
Multiple sclerosis (MS) is a complex disease of the central nervous system (CNS), characterized by inflammation, demyelination, neuro-axonal loss, and gliosis. Inflammatory demyelinating lesions are a hallmark of the disease. Spontaneous remyelination, however, is often incomplete and strategies that promote remyelination are needed. As a result, accurate and sensitive in vivo measures of remyelination are necessary. The visual pathway provides a unique opportunity for in vivo assessment of myelin damage and repair in the MS-affected brain since it is highly susceptible to damage in MS and is a very frequent site of MS lesions. The visually evoked potential (VEP), an event-related potential generated by the striate cortex in response to visual stimulation, is uniquely placed to serve as a biomarker of the myelination along the visual pathway. The multifocal VEP (mfVEP) represents a most recent addition to the array of VEP stimulations. This article provides a current view on the role of mfVEP as a biomarker of demyelination, spontaneous remyelination, and myelin repair in MS.
Collapse
Affiliation(s)
- Alexandr Klistorner
- Department of Ophthalmology, The University of Sydney, Darlington, NSW, Australia
- Department of Ophthalmology, Macquarie University, Sydney, NSW, Australia
| | - Stuart L. Graham
- Department of Ophthalmology, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
15
|
Hargrave A, Sredar N, Khushzad F, Yarp J, Tomczak A, Han M, Kipp L, Dubra A, Moss HE. Novel Foveal Features Associated With Vision Impairment in Multiple Sclerosis. Invest Ophthalmol Vis Sci 2021; 62:27. [PMID: 34581726 PMCID: PMC8479576 DOI: 10.1167/iovs.62.12.27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 08/23/2021] [Indexed: 11/24/2022] Open
Abstract
Purpose To characterize scattering and hyperreflective features in the foveal avascular zone of people with multiple sclerosis (MS) using adaptive optics scanning laser ophthalmoscopy (AOSLO) and to evaluate their relationship with visual function and MS disease characteristics. Methods Twenty subjects with MS underwent confocal reflectance and non-confocal split-detection AOSLO foveal imaging. Peripapillary retinal nerve fiber layer thickness was measured using optic nerve optical coherence tomography. Blood pressure, intraocular pressure (IOP), and best-corrected high-contrast visual acuity (HCVA) and low-contrast visual acuity (LCVA) were measured. AOSLO images were graded to determine the presence and characteristics of distinct structures. Results Two distinct structures were seen in the avascular zone of the foveal pit. Hyperreflective puncta, present in 74% of eyes, were associated with IOP and blood pressure. Scattering features, observed in 58% of eyes, were associated with decreased HCVA and LCVA, as well as increased MS duration and disability, but were not associated with retinal nerve fiber layer thickness. Hyperreflective puncta and scattering features were simultaneously present in 53% of eyes. Conclusions Hyperreflective puncta were associated with parameters affecting ophthalmic perfusion, but they were not associated with MS disease parameters. Scattering features were associated with parameters corresponding to advanced MS, suggesting that they may be related to disease progression. Scattering features were also correlated with reduced visual function independent from ganglion cell injury, suggesting the possibility of a novel ganglion cell-independent mechanism of impaired vision in people with MS.
Collapse
Affiliation(s)
- Aubrey Hargrave
- Department of Ophthalmology, Stanford University, Palo Alto, California, United States
| | - Nripun Sredar
- Department of Ophthalmology, Stanford University, Palo Alto, California, United States
| | - Fareshta Khushzad
- Department of Ophthalmology, Stanford University, Palo Alto, California, United States
| | - Jennifer Yarp
- Department of Ophthalmology, Stanford University, Palo Alto, California, United States
| | - Anna Tomczak
- Department of Neurology & Neurological Sciences, Stanford University, Palo Alto, California, United States
| | - May Han
- Department of Neurology & Neurological Sciences, Stanford University, Palo Alto, California, United States
| | - Lucas Kipp
- Department of Neurology & Neurological Sciences, Stanford University, Palo Alto, California, United States
| | - Alfredo Dubra
- Department of Ophthalmology, Stanford University, Palo Alto, California, United States
| | - Heather E. Moss
- Department of Ophthalmology, Stanford University, Palo Alto, California, United States
- Department of Neurology & Neurological Sciences, Stanford University, Palo Alto, California, United States
| |
Collapse
|
16
|
Pisa M, Croese T, Dalla Costa G, Guerrieri S, Huang SC, Finardi A, Fabbella L, Sangalli F, Colombo B, Moiola L, Martinelli V, Comi G, Furlan R, Leocani L. Subclinical anterior optic pathway involvement in early multiple sclerosis and clinically isolated syndromes. Brain 2021; 144:848-862. [PMID: 33829250 DOI: 10.1093/brain/awaa458] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 10/09/2020] [Accepted: 10/23/2020] [Indexed: 11/12/2022] Open
Abstract
Optical coherence tomography (OCT) is gaining increasing relevance in the assessment of patients with multiple sclerosis. Converging evidence point to the view that neuro-retinal changes, in eyes without acute optic neuritis, reflect inflammatory and neurodegenerative processes taking place throughout the CNS. The present study aims at exploring the usefulness of OCT as a marker of inflammation and disease burden in the earliest phases of the disease. Thus, a cohort of 150 consecutive patients underwent clinical, neurophysiological and brain MRI assessment as well as lumbar puncture as part of their diagnostic workup for a neurological episode suggestive of inflammatory CNS disorder; among those 32 patients had another previous misdiagnosed episode. For the present study, patients also received a visual pathway assessment (OCT, visual evoked potentials, visual acuity), measurement of CSF inflammatory markers (17 cytokines-chemokines, extracellular vesicles of myeloid origin), and dosage of plasma neurofilaments. Subclinical optic nerve involvement is frequently found in clinically isolated syndromes by visual evoked potentials (19.2%). OCT reveals ganglion cell layer asymmetries in 6.8% of patients; retinal fibre layer asymmetries, despite being more frequent (17.8%), display poor specificity. The presence of subclinical involvement is associated with a greater disease burden. Second, ganglion cell layer thinning reflects the severity of disease involvement even beyond the anterior optic pathway. In fact, the ganglion cell layer in eyes without evidence of subclinical optic involvement is correlated with Expanded Disability Status Scale, low contrast visual acuity, disease duration, brain lesion load, presence of gadolinium enhancing lesions, abnormalities along motor and somatosensory evoked potentials, and frequency of CSF-specific oligoclonal bands. Third, the inner nuclear layer thickens in a post-acute (1.1-3.7 months) phase after a relapse, and this phenomenon is counteracted by steroid treatment. Likewise, a longitudinal analysis on 65 patients shows that this swelling is transient and returns to normal values after 1 year follow-up. Notwithstanding, the clinical, MRI, serological and CSF markers of disease activity considered in the study are strictly associated with one another, but none of them are associated with the inner nuclear layer. Our findings challenge the current hypothesis that the inner nuclear layer is an acute phase marker of inflammatory activity. The present study suggests that instrumental evidence of subclinical optic nerve involvement is associated with a greater disease burden in clinically isolated syndrome. Neuro-retinal changes are present since the earliest phases of the disease and yield important information regarding the neurodegenerative and inflammatory processes occurring in the CNS.
Collapse
Affiliation(s)
- Marco Pisa
- Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE), San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Tommaso Croese
- Clinical Neuroimmunology Unit, Institute of Experimental Neurology (INSPE), San Raffaele Scientific Institute, Milan, Italy
| | - Gloria Dalla Costa
- Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE), San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Simone Guerrieri
- Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE), San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Su-Chun Huang
- Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE), San Raffaele Scientific Institute, Milan, Italy
| | - Annamaria Finardi
- Clinical Neuroimmunology Unit, Institute of Experimental Neurology (INSPE), San Raffaele Scientific Institute, Milan, Italy
| | - Lorena Fabbella
- Clinical Neuroimmunology Unit, Institute of Experimental Neurology (INSPE), San Raffaele Scientific Institute, Milan, Italy
| | - Francesca Sangalli
- Inflammatory CNS Disorders Unit, Institute of Experimental Neurology (INSPE), San Raffaele Scientific Institute, Milan, Italy
| | - Bruno Colombo
- Inflammatory CNS Disorders Unit, Institute of Experimental Neurology (INSPE), San Raffaele Scientific Institute, Milan, Italy
| | - Lucia Moiola
- Inflammatory CNS Disorders Unit, Institute of Experimental Neurology (INSPE), San Raffaele Scientific Institute, Milan, Italy
| | - Vittorio Martinelli
- Inflammatory CNS Disorders Unit, Institute of Experimental Neurology (INSPE), San Raffaele Scientific Institute, Milan, Italy
| | | | - Roberto Furlan
- Clinical Neuroimmunology Unit, Institute of Experimental Neurology (INSPE), San Raffaele Scientific Institute, Milan, Italy
| | - Letizia Leocani
- Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE), San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
17
|
Trans-synaptic degeneration in the visual pathway: Neural connectivity, pathophysiology, and clinical implications in neurodegenerative disorders. Surv Ophthalmol 2021; 67:411-426. [PMID: 34146577 DOI: 10.1016/j.survophthal.2021.06.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 06/06/2021] [Accepted: 06/07/2021] [Indexed: 12/13/2022]
Abstract
There is a strong interrelationship between eye and brain diseases. It has been shown that neurodegenerative changes can spread bidirectionally in the visual pathway along neuronal projections. For example, damage to retinal ganglion cells in the retina leads to degeneration of the visual cortex (anterograde degeneration) and vice versa (retrograde degeneration). The underlying mechanisms of this process, known as trans-synaptic degeneration (TSD), are unknown, but TSD contributes to the progression of numerous neurodegenerative disorders, leading to clinical and functional deterioration. The hierarchical structure of the visual system comprises of a strong topographic connectivity between the retina and the visual cortex and therefore serves as an ideal model to study the cellular effect, clinical manifestations, and deterioration extent of TSD. With this review we provide comprehensive information about the neural connectivity, synapse function, molecular changes, and pathophysiology of TSD in visual pathways. We then discuss its bidirectional nature and clinical implications in neurodegenerative diseases. A thorough understanding of TSD in the visual pathway can provide insights into progression of neurodegenerative disorders and its potential as a therapeutic target.
Collapse
|
18
|
Montolío A, Martín-Gallego A, Cegoñino J, Orduna E, Vilades E, Garcia-Martin E, Palomar APD. Machine learning in diagnosis and disability prediction of multiple sclerosis using optical coherence tomography. Comput Biol Med 2021; 133:104416. [PMID: 33946022 DOI: 10.1016/j.compbiomed.2021.104416] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 03/25/2021] [Accepted: 04/16/2021] [Indexed: 01/02/2023]
Abstract
BACKGROUND Multiple sclerosis (MS) is a neurodegenerative disease that affects the central nervous system, especially the brain, spinal cord, and optic nerve. Diagnosis of this disease is a very complex process and generally requires a lot of time. In addition, treatments are applied without any information on the disability course in each MS patient. For these two reasons, the objective of this study was to improve the MS diagnosis and predict the long-term course of disability in MS patients based on clinical data and retinal nerve fiber layer (RNFL) thickness, measured by optical coherence tomography (OCT). MATERIAL AND METHODS A total of 104 healthy controls and 108 MS patients, 82 of whom had a 10-year follow-up, were enrolled. Classification algorithms such as multiple linear regression (MLR), support vector machines (SVM), decision tree (DT), k-nearest neighbours (k-NN), Naïve Bayes (NB), ensemble classifier (EC) and long short-term memory (LSTM) recurrent neural network were tested to develop two predictive models: MS diagnosis model and MS disability course prediction model. RESULTS For MS diagnosis, the best result was obtained using EC (accuracy: 87.7%; sensitivity: 87.0%; specificity: 88.5%; precision: 88.7%; AUC: 0.8775). In line with this good performance, the accuracy was 85.4% using k-NN and 84.4% using SVM. And, for long-term prediction of MS disability course, LSTM recurrent neural network was the most appropriate classifier (accuracy: 81.7%; sensitivity: 81.1%; specificity: 82.2%; precision: 78.9%; AUC: 0.8165). The use of MLR, SVM and k-NN also showed a good performance (AUC ≥ 0.8). CONCLUSIONS This study demonstrated that machine learning techniques, using clinical and OCT data, can help establish an early diagnosis and predict the course of MS. This advance could help clinicians select more specific treatments for each MS patient. Therefore, our findings underscore the potential of RNFL thickness as a reliable MS biomarker.
Collapse
Affiliation(s)
- Alberto Montolío
- Group of Biomaterials, Aragon Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain; Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain
| | - Alejandro Martín-Gallego
- Group of Biomaterials, Aragon Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain; Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain
| | - José Cegoñino
- Group of Biomaterials, Aragon Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain; Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain
| | - Elvira Orduna
- Ophthalmology Department, Miguel Servet University Hospital, Zaragoza, Spain; GIMSO Research and Innovative Group, Aragon Institute for Health Research (IIS Aragon), Zaragoza, Spain
| | - Elisa Vilades
- Ophthalmology Department, Miguel Servet University Hospital, Zaragoza, Spain; GIMSO Research and Innovative Group, Aragon Institute for Health Research (IIS Aragon), Zaragoza, Spain
| | - Elena Garcia-Martin
- Ophthalmology Department, Miguel Servet University Hospital, Zaragoza, Spain; GIMSO Research and Innovative Group, Aragon Institute for Health Research (IIS Aragon), Zaragoza, Spain
| | - Amaya Pérez Del Palomar
- Group of Biomaterials, Aragon Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain; Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain.
| |
Collapse
|
19
|
Daqqaq TS. Identification of posterior visual pathway lesions and MRI burden in people with Multiple Sclerosis. ACTA ACUST UNITED AC 2021; 26:120-127. [PMID: 33814364 PMCID: PMC8024140 DOI: 10.17712/nsj.2021.2.20200048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/01/2021] [Indexed: 11/20/2022]
Abstract
OBJECTIVES This review systematically identifies posterior visual pathway lesions and MRI burden in people with multiple sclerosis (MS). METHODS The articles were searched through Web of Science, Medline, and Embase databases on January 2020, for English language articles from 2000 to 2019. RESULTS This review presents summary measures if related to MRI assessment to an overall measure of MS and visual pathway lesions. A total of 44 articles fulfilled all inclusion criteria, covering the period 2000-2019. Different atypical outcomes reveal a low risk for subsequent clinically predefined MS development, specifically in the presence of normal brain MRI. Several impairments related to quality of life have been identified as a result of the effect of retinal nerve fiber layer, ganglion cell layer, and inner plexiform layer. CONCLUSION The afferent visual system in MS offers unique accessibility and structure-related functions with further understanding offered by electrophysiology, considering vision as a useful framework for examining new multiple sclerosis therapies.
Collapse
Affiliation(s)
- Tareef S Daqqaq
- From the Department of Radiology, College of Medicine, Taibah University, Madinah, Kingdom of Saudi Arabia
| |
Collapse
|
20
|
Srinivasan S, Efron N. Optical coherence tomography in the investigation of systemic neurologic disease. Clin Exp Optom 2021; 102:309-319. [DOI: 10.1111/cxo.12858] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 10/21/2018] [Accepted: 10/28/2018] [Indexed: 11/30/2022] Open
Affiliation(s)
- Sangeetha Srinivasan
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia,
| | - Nathan Efron
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia,
| |
Collapse
|
21
|
Al-Nosairy KO, Horbrügger M, Schippling S, Wagner M, Haghikia A, Pawlitzki M, Hoffmann MB. Structure-Function Relationship of Retinal Ganglion Cells in Multiple Sclerosis. Int J Mol Sci 2021; 22:3419. [PMID: 33810342 PMCID: PMC8037992 DOI: 10.3390/ijms22073419] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 11/16/2022] Open
Abstract
The retinal ganglion cells (RGC) may be considered an easily accessible pathophysiological site of degenerative processes in neurological diseases, such as the RGC damage detectable in multiple sclerosis (MS) patients with (HON) and without a history of optic neuritis (NON). We aimed to assess and interrelate RGC functional and structural damage in different retinal layers and retinal sites. We included 12 NON patients, 11 HON patients and 14 healthy controls for cross-sectional multifocal pattern electroretinography (mfPERG) and optical coherence tomography (OCT) measurements. Amplitude and peak times of the mfPERG were assessed. Macula and disc OCT scans were acquired to determine macular retinal layer and peripapillary retinal nerve fiber layer (pRNFL) thickness. In both HON and NON patients the foveal N2 amplitude of the mfPERG was reduced compared to controls. The parafoveal P1 peak time was significantly reduced in HON only. For OCT, parafoveal (pfGCL) and perifoveal (pGCL) ganglion cell layer thicknesses were decreased in HON vs. controls, while pRNFL in the papillomacular bundle sector (PMB) showed reductions in both NON and HON. As the mfPERG derived N2 originates from RGC axons, these findings suggest foveal axonal dysfunction not only in HON, but also in NON patients.
Collapse
Affiliation(s)
- Khaldoon O. Al-Nosairy
- Department of Ophthalmology, University Hospital Magdeburg, 39120 Magdeburg, Germany; (K.O.A.-N.); (M.W.)
| | - Marc Horbrügger
- Department of Dermatology, University Hospital Magdeburg, 39120 Magdeburg, Germany;
| | - Sven Schippling
- Multimodal Imaging in Neuro-Immunological Diseases (MINDS), University of Zurich, 8057 Zurich, Switzerland;
- Center for Neuroscience Zurich (ZNZ), ETH Zurich, 8057 Zurich, Switzerland
| | - Markus Wagner
- Department of Ophthalmology, University Hospital Magdeburg, 39120 Magdeburg, Germany; (K.O.A.-N.); (M.W.)
| | - Aiden Haghikia
- Department of Neurology, University Hospital Magdeburg, 39120 Magdeburg, Germany;
| | - Marc Pawlitzki
- Department of Neurology, Institute of Translational Neurology, University Hospital Münster, 48149 Münster, Germany;
| | - Michael B. Hoffmann
- Department of Ophthalmology, University Hospital Magdeburg, 39120 Magdeburg, Germany; (K.O.A.-N.); (M.W.)
- Center for Behavioral Brain Sciences, 39120 Magdeburg, Germany
| |
Collapse
|
22
|
You Y, Barnett MH, Yiannikas C, Parratt JDE, Matthews JG, Graham SL, Klistorner A. Interferon-β Is Less Effective Than Other Drugs in Controlling the Rate of Retinal Ganglion Cell Loss in MS. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2021; 8:8/3/e971. [PMID: 33597189 PMCID: PMC8105907 DOI: 10.1212/nxi.0000000000000971] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 12/21/2020] [Indexed: 11/19/2022]
Abstract
Objective To investigate the association between disease-modifying therapies (DMTs) and the rate of progressive retinal ganglion cell (RGC) and nerve fiber loss in MS. Methods One hundred five relapsing-remitting patients with MS were followed annually for a median of 4.0 years using optical coherence tomography. Twenty-five healthy subjects were also included as normal controls. The rates of global peripapillary retinal nerve fiber layer (pRNFL), temporal RNFL (tRNFL), and ganglion cell inner plexiform layer (GCIPL) thinning were analyzed according to DMT type using a linear mixed-effects model. Optic radiation lesion volume was measured on brain MRI and included as a covariate to minimize the effects of retrograde transsynaptic degeneration. Results The annual rates of RNFL and GCIPL thinning were higher in patients treated with “platform” therapies (interferon-β and glatiramer acetate) compared with DMTs of higher clinical efficacy (including fingolimod, dimethyl fumarate, natalizumab, alemtuzumab, rituximab, and ocrelizumab) (difference = −0.22 μm/y, p = 0.02 for pRNFL; difference = −0.34 μm/y, p = 0.009 for tRNFL; and difference = −0.16 μm/y, p = 0.005 for GCIPL). Based on an analysis of individual treatments (interferon-β, glatiramer acetate, fingolimod, and natalizumab), interferon-β was associated with inferior RGC preservation, relative to the other drugs. No effect difference was found between glatiramer acetate, fingolimod, and natalizumab. Conclusions Progressive loss of RGCs in patients with MS is more pronounced in patients treated with interferon-β than other DMTs. This finding may have implications for DMT selection in MS. Classification of Evidence This study provides Class IV evidence that for patients with MS, treatment with interferon-β compared with other DMTs leads to a more pronounced rate of retinal ganglion cell loss.
Collapse
Affiliation(s)
- Yuyi You
- From the Department of Clinical Medicine (Y.Y., S.L.G., A.K.), Macquarie University, NSW, Australia; Save Sight Institute (Y.Y., A.K.), The University of Sydney, NSW, Australia; Brain and Mind Centre (M.H.B.), The University of Sydney, NSW, Australia; Sydney Neuroimaging Analysis Centre (M.H.B.), NSW, Australia; Department of Neurology (C.Y., J.D.E.P.), Royal North Shore Hospital, NSW, Australia; and Sydney Informatics and Data Science Hub (J.G.M.), The University of Sydney, NSW, Australia.
| | - Michael H Barnett
- From the Department of Clinical Medicine (Y.Y., S.L.G., A.K.), Macquarie University, NSW, Australia; Save Sight Institute (Y.Y., A.K.), The University of Sydney, NSW, Australia; Brain and Mind Centre (M.H.B.), The University of Sydney, NSW, Australia; Sydney Neuroimaging Analysis Centre (M.H.B.), NSW, Australia; Department of Neurology (C.Y., J.D.E.P.), Royal North Shore Hospital, NSW, Australia; and Sydney Informatics and Data Science Hub (J.G.M.), The University of Sydney, NSW, Australia
| | - Con Yiannikas
- From the Department of Clinical Medicine (Y.Y., S.L.G., A.K.), Macquarie University, NSW, Australia; Save Sight Institute (Y.Y., A.K.), The University of Sydney, NSW, Australia; Brain and Mind Centre (M.H.B.), The University of Sydney, NSW, Australia; Sydney Neuroimaging Analysis Centre (M.H.B.), NSW, Australia; Department of Neurology (C.Y., J.D.E.P.), Royal North Shore Hospital, NSW, Australia; and Sydney Informatics and Data Science Hub (J.G.M.), The University of Sydney, NSW, Australia
| | - John D E Parratt
- From the Department of Clinical Medicine (Y.Y., S.L.G., A.K.), Macquarie University, NSW, Australia; Save Sight Institute (Y.Y., A.K.), The University of Sydney, NSW, Australia; Brain and Mind Centre (M.H.B.), The University of Sydney, NSW, Australia; Sydney Neuroimaging Analysis Centre (M.H.B.), NSW, Australia; Department of Neurology (C.Y., J.D.E.P.), Royal North Shore Hospital, NSW, Australia; and Sydney Informatics and Data Science Hub (J.G.M.), The University of Sydney, NSW, Australia
| | - Jim G Matthews
- From the Department of Clinical Medicine (Y.Y., S.L.G., A.K.), Macquarie University, NSW, Australia; Save Sight Institute (Y.Y., A.K.), The University of Sydney, NSW, Australia; Brain and Mind Centre (M.H.B.), The University of Sydney, NSW, Australia; Sydney Neuroimaging Analysis Centre (M.H.B.), NSW, Australia; Department of Neurology (C.Y., J.D.E.P.), Royal North Shore Hospital, NSW, Australia; and Sydney Informatics and Data Science Hub (J.G.M.), The University of Sydney, NSW, Australia
| | - Stuart L Graham
- From the Department of Clinical Medicine (Y.Y., S.L.G., A.K.), Macquarie University, NSW, Australia; Save Sight Institute (Y.Y., A.K.), The University of Sydney, NSW, Australia; Brain and Mind Centre (M.H.B.), The University of Sydney, NSW, Australia; Sydney Neuroimaging Analysis Centre (M.H.B.), NSW, Australia; Department of Neurology (C.Y., J.D.E.P.), Royal North Shore Hospital, NSW, Australia; and Sydney Informatics and Data Science Hub (J.G.M.), The University of Sydney, NSW, Australia
| | - Alexander Klistorner
- From the Department of Clinical Medicine (Y.Y., S.L.G., A.K.), Macquarie University, NSW, Australia; Save Sight Institute (Y.Y., A.K.), The University of Sydney, NSW, Australia; Brain and Mind Centre (M.H.B.), The University of Sydney, NSW, Australia; Sydney Neuroimaging Analysis Centre (M.H.B.), NSW, Australia; Department of Neurology (C.Y., J.D.E.P.), Royal North Shore Hospital, NSW, Australia; and Sydney Informatics and Data Science Hub (J.G.M.), The University of Sydney, NSW, Australia
| |
Collapse
|
23
|
Ilardi M, Nolan-Kenney R, Fatterpekar G, Hasanaj L, Serrano L, Joseph B, Wu S, Rucker JC, Balcer LJ, Galetta SL. Role for OCT in detecting hemi-macular ganglion cell layer thinning in patients with multiple sclerosis and related demyelinating diseases. J Neurol Sci 2020; 419:117159. [PMID: 33035869 DOI: 10.1016/j.jns.2020.117159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 09/16/2020] [Accepted: 09/24/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVE Investigations have found associations of homonymous thinning of the macular ganglion cell/ inner-plexiform layer (GCIPL) with demyelinating lesions in the post-chiasmal visual pathway among patients with multiple sclerosis (MS). Retinal thinning may also occur through retrograde trans-synaptic degeneration, a process by which lesions in post-geniculate visual pathway structures lead to thinning of the GCIPL across thalamic synapses. The purpose of our study was to determine the frequency of homonymous hemimacular thinning that occurs in association with post-chiasmal visual pathway demyelinating lesions in patients with MS and other demyelinating diseases. METHODS Adult patients with demyelinating diseases (MS, neuromyelitis optica spectrum disorder [NMOSD], myelin oligodendrocyte glycoprotein antibody disease (anti-MOG)) who were participants in an ongoing observational study of visual pathway structure and function were analyzed for the presence of hemimacular GCIPL thinning on OCT scans. Brain MRI scans were examined for the presence of post-geniculate visual pathway demyelinating lesions. RESULTS Among 135 participants in the visual pathway study, 5 patients (3.7%) had homonymous hemimacular GCIPL thinning. Eleven patients (8.1%) had a whole+half pattern of GCIPL thinning, characterized by hemimacular thinning in one eye and circumferential macular thinning in the contralateral eye. All but one patient with homonymous hemimacular thinning had demyelinating lesions in the post-geniculate visual pathway; however, these lesions were located in both cerebral hemispheres. CONCLUSION Homonymous hemimacular thinning in the GCIPL by OCT is associated with post-chiasmal visual pathway demyelinating lesions but it appears to be a relatively uncommon contributor to GCIPL loss. Patients with this pattern of GCIPL often fail to complain of hemifield visual loss. Future studies with prospective and detailed MR imaging may be able to more closely associate demyelinating lesions in anatomically appropriate regions of the post-chiasmal visual pathways with homonymous hemimacular thinning.
Collapse
Affiliation(s)
- Marissa Ilardi
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, USA.
| | - Rachel Nolan-Kenney
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, USA; Department of Population Health, New York University Grossman School of Medicine, New York, NY, USA.
| | - Girish Fatterpekar
- Department Radiology, New York University Grossman School of Medicine, New York, NY, USA.
| | - Lisena Hasanaj
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, USA.
| | - Liliana Serrano
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, USA.
| | - Binu Joseph
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, USA.
| | - Shirley Wu
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, USA.
| | - Janet C Rucker
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, USA; Department of Ophthalmology, New York University Grossman School of Medicine, New York, NY, USA.
| | - Laura J Balcer
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, USA; Department of Population Health, New York University Grossman School of Medicine, New York, NY, USA; Department of Ophthalmology, New York University Grossman School of Medicine, New York, NY, USA.
| | - Steven L Galetta
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, USA; Department of Ophthalmology, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
24
|
Filippatou AG, Vasileiou ES, He Y, Fitzgerald KC, Kalaitzidis G, Lambe J, Mealy MA, Levy M, Liu Y, Prince JL, Mowry EM, Saidha S, Calabresi PA, Sotirchos ES. Evidence of subclinical quantitative retinal layer abnormalities in AQP4-IgG seropositive NMOSD. Mult Scler 2020; 27:1738-1748. [PMID: 33307967 DOI: 10.1177/1352458520977771] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Prior studies have suggested that subclinical retinal abnormalities may be present in aquaporin-4 immunoglobulin G (AQP4-IgG) seropositive neuromyelitis optica spectrum disorder (NMOSD), in the absence of a clinical history of optic neuritis (ON). OBJECTIVE Our aim was to compare retinal layer thicknesses at the fovea and surrounding macula between AQP4-IgG+ NMOSD eyes without a history of ON (AQP4-nonON) and healthy controls (HC). METHODS In this single-center cross-sectional study, 83 AQP4-nonON and 154 HC eyes were studied with spectral-domain optical coherence tomography (OCT). RESULTS Total foveal thickness did not differ between AQP4-nonON and HC eyes. AQP4-nonON eyes exhibited lower outer nuclear layer (ONL) and inner photoreceptor segment (IS) thickness at the fovea (ONL: -4.01 ± 2.03 μm, p = 0.049; IS: -0.32 ± 0.14 μm, p = 0.029) and surrounding macula (ONL: -1.98 ± 0.95 μm, p = 0.037; IS: -0.16 ± 0.07 μm, p = 0.023), compared to HC. Macular retinal nerve fiber layer (RNFL: -1.34 ± 0.51 μm, p = 0.009) and ganglion cell + inner plexiform layer (GCIPL: -2.44 ± 0.93 μm, p = 0.009) thicknesses were also lower in AQP4-nonON compared to HC eyes. Results were similar in sensitivity analyses restricted to AQP4-IgG+ patients who had never experienced ON in either eye. CONCLUSIONS AQP4-nonON eyes exhibit evidence of subclinical retinal ganglion cell neuronal and axonal loss, as well as structural evidence of photoreceptor layer involvement. These findings support that subclinical anterior visual pathway involvement may occur in AQP4-IgG+ NMOSD.
Collapse
Affiliation(s)
- Angeliki G Filippatou
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Eleni S Vasileiou
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yufan He
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Kathryn C Fitzgerald
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Grigorios Kalaitzidis
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jeffrey Lambe
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Maureen A Mealy
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA/Viela Bio, Gaithersburg, MD, USA
| | - Michael Levy
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Yihao Liu
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jerry L Prince
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Ellen M Mowry
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shiv Saidha
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter A Calabresi
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elias S Sotirchos
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
25
|
Garcia-Martin E, Ortiz M, Boquete L, Sánchez-Morla EM, Barea R, Cavaliere C, Vilades E, Orduna E, Rodrigo MJ. Early diagnosis of multiple sclerosis by OCT analysis using Cohen's d method and a neural network as classifier. Comput Biol Med 2020; 129:104165. [PMID: 33302162 DOI: 10.1016/j.compbiomed.2020.104165] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/23/2020] [Accepted: 12/01/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND The consequences of inflammation, demyelination, axonal degeneration and neuronal loss in the central nervous system, typical of the development of multiple sclerosis (MS), are manifested in thinning of the retina and optic nerve. The purpose of this work is to diagnose early-stage MS patients based on analysis of retinal layer thickness obtained by swept-source optical coherence tomography (SS-OCT). METHOD OCT (Triton® SS-OCT device -Topcon, Tokyo, Japan-) recordings were obtained from 48 control subjects and 48 recently diagnosed MS patients. The following thicknesses were measured on a 45 × 60 grid: retinal nerve fibre layer (RNFL), ganglion cell layer (GCL+), GCL++, retinal thickness and choroid. Using Cohen's d effect size, it was determined the regions and layers with greatest capacity to discriminate between control subjects and patients. Points exceeding the threshold set were used as inputs for an automatic classifier: support vector machine and feed-forward neural network. RESULTS In MS at clinical onset the layer with greatest discriminant capacity is GCL++ [AUC = 0.83] which exhibits a horseshoe-like macular topographic distribution. It is followed by retina, GCL+ and RNFL; choroidal thicknesses do not provide discriminatory capacity. Using a neural network as a classifier between controls and MS patients, obtains sensitivity of 0.98 and specificity of 0.98. CONCLUSIONS This work suggest that OCT may serve as an important complementary role to other clinical tests, particularly regarding neurodegeneration. It is possible to characterise structural alterations in retina and diagnose early-stage MS with high degree of accuracy using OCT and artificial neural networks.
Collapse
Affiliation(s)
- E Garcia-Martin
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain; Aragon Institute for Health Research (IIS Aragon). Miguel Servet Ophthalmology Innovation and Research Group (GIMSO), University of Zaragoza, Spain; RETICS: Thematic Networks for Co-operative Research in Health for Ocular Diseases, Spain
| | - M Ortiz
- School of Physics, University of Melbourne, VIC, 3010, Australia
| | - L Boquete
- RETICS: Thematic Networks for Co-operative Research in Health for Ocular Diseases, Spain; Biomedical Engineering Group, Department of Electronics, University of Alcalá, Alcalá de Henares, Spain
| | - E M Sánchez-Morla
- Department of Psychiatry, Hospital 12 de Octubre Research Institute (i+12), 28041, Madrid, Spain; Faculty of Medicine, Complutense University of Madrid, 28040, Madrid, Spain; CIBERSAM: Biomedical Research Networking Centre in Mental Health, 28029, Madrid, Spain
| | - R Barea
- Biomedical Engineering Group, Department of Electronics, University of Alcalá, Alcalá de Henares, Spain
| | - C Cavaliere
- Biomedical Engineering Group, Department of Electronics, University of Alcalá, Alcalá de Henares, Spain
| | - E Vilades
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain; Aragon Institute for Health Research (IIS Aragon). Miguel Servet Ophthalmology Innovation and Research Group (GIMSO), University of Zaragoza, Spain
| | - E Orduna
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain; Aragon Institute for Health Research (IIS Aragon). Miguel Servet Ophthalmology Innovation and Research Group (GIMSO), University of Zaragoza, Spain
| | - M J Rodrigo
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain; Aragon Institute for Health Research (IIS Aragon). Miguel Servet Ophthalmology Innovation and Research Group (GIMSO), University of Zaragoza, Spain; RETICS: Thematic Networks for Co-operative Research in Health for Ocular Diseases, Spain.
| |
Collapse
|
26
|
Latency of Multifocal Visual Evoked Potential in Multiple Sclerosis: A Visual Pathway Biomarker for Clinical Trials of Remyelinating Therapies. J Clin Neurophysiol 2020; 38:186-191. [DOI: 10.1097/wnp.0000000000000757] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
27
|
Mejia-Vergara AJ, Karanjia R, Sadun AA. OCT parameters of the optic nerve head and the retina as surrogate markers of brain volume in a normal population, a pilot study. J Neurol Sci 2020; 420:117213. [PMID: 33271374 DOI: 10.1016/j.jns.2020.117213] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 10/12/2020] [Accepted: 10/29/2020] [Indexed: 12/26/2022]
Abstract
The relationship between optical coherence tomography (OCT) measurements of the retinal structures has been described for various neurological diseases including Multiple Sclerosis (MS), Alzheimer's disease (AD) and Parkinson's disease (PD). Brain volume changes, both globally and by area, are associated with some of these same diseases, yet the correlation of OCT and disease is not fully elucidated. Our study looked at normal subjects, at the correlation of OCT measurements and brain volumes, both globally and for specific regions including the pericalcarine grey matter, entorhinal grey matter, and cerebellar volume using a retrospective, cross-sectional cohort study design. Thickness of the retinal nerve fiber layer (RNFL) as measured by OCT, correlated with volume of the pericalcarine grey matter, when adjusted for age and gender. Similarly, thickness of the ganglion cell layer-inner plexiform layer complex may be associated with both entorhinal grey matter volumes and total cerebellar volumes, although our pilot study did not reach statistical significance. This suggests that both eye and brain volumes follow a similar trajectory and understanding the inter-relationship of these structures will aid in the analysis of changes seen in disease. Further studies are needed to longitudinally demonstrate these relationships.
Collapse
Affiliation(s)
- Alvaro J Mejia-Vergara
- Doheny Eye Centers, Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America; Doheny Eye Institute, Los Angeles, California, United States of America; Department of Neuro-ophthalmology, Oftlamo-Sanitas Eye Institute, School of Medicine, Fundación Universitaria Sanitas, Bogotá, Colombia.
| | - Rustum Karanjia
- Doheny Eye Centers, Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America; Doheny Eye Institute, Los Angeles, California, United States of America; Department of Ophthalmology, University of Ottawa, Ottawa, Ontario, Canada; Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Alfredo A Sadun
- Doheny Eye Centers, Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America; Doheny Eye Institute, Los Angeles, California, United States of America
| |
Collapse
|
28
|
Gupta VB, Chitranshi N, den Haan J, Mirzaei M, You Y, Lim JK, Basavarajappa D, Godinez A, Di Angelantonio S, Sachdev P, Salekdeh GH, Bouwman F, Graham S, Gupta V. Retinal changes in Alzheimer's disease- integrated prospects of imaging, functional and molecular advances. Prog Retin Eye Res 2020; 82:100899. [PMID: 32890742 DOI: 10.1016/j.preteyeres.2020.100899] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/24/2020] [Accepted: 08/27/2020] [Indexed: 12/31/2022]
Abstract
Alzheimer's Disease (AD) is a devastating neurodegenerative disorder of the brain, clinically characterised by cognitive deficits that gradually worsen over time. There is, at present, no established cure, or disease-modifying treatments for AD. As life expectancy increases globally, the number of individuals suffering from the disease is projected to increase substantially. Cumulative evidence indicates that AD neuropathological process is initiated several years, if not decades, before clinical signs are evident in patients, and diagnosis made. While several imaging, cognitive, CSF and blood-based biomarkers have been proposed for the early detection of AD; their sensitivity and specificity in the symptomatic stages is highly variable and it is difficult to justify their use in even earlier, pre-clinical stages of the disease. Research has identified potentially measurable functional, structural, metabolic and vascular changes in the retina during early stages of AD. Retina offers a distinctively accessible insight into brain pathology and current and developing ophthalmic technologies have provided us with the possibility of detecting and characterising subtle, disease-related changes. Recent human and animal model studies have further provided mechanistic insights into the biochemical pathways that are altered in the retina in disease, including amyloid and tau deposition. This information coupled with advances in molecular imaging has allowed attempts to monitor biochemical changes and protein aggregation pathology in the retina in AD. This review summarises the existing knowledge that informs our understanding of the impact of AD on the retina and highlights some of the gaps that need to be addressed. Future research will integrate molecular imaging innovation with functional and structural changes to enhance our knowledge of the AD pathophysiological mechanisms and establish the utility of monitoring retinal changes as a potential biomarker for AD.
Collapse
Affiliation(s)
- Veer B Gupta
- School of Medicine, Deakin University, VIC, Australia
| | - Nitin Chitranshi
- Faculty of Medicine Health and Human Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Jurre den Haan
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, the Netherlands
| | - Mehdi Mirzaei
- Faculty of Medicine Health and Human Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Yuyi You
- Faculty of Medicine Health and Human Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Jeremiah Kh Lim
- Optometry and Vision Science, College of Nursing and Health Sciences, Bedford Park, South Australia, 5042, Australia
| | - Devaraj Basavarajappa
- Faculty of Medicine Health and Human Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Angela Godinez
- Faculty of Medicine Health and Human Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Silvia Di Angelantonio
- Center for Life Nanoscience, Istituto Italiano di Tecnologia, Rome, Italy; Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Perminder Sachdev
- Centre for Healthy Brain and Ageing (CHeBA), School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia; Neuropsychiatric Institute, Prince of Wales Hospital, Sydney, New South Wales, Australia
| | - Ghasem H Salekdeh
- Department of Molecular Systems Biology, Cell Science Research Center, Royan, Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Femke Bouwman
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, the Netherlands
| | - Stuart Graham
- Faculty of Medicine Health and Human Sciences, Macquarie University, North Ryde, NSW, 2109, Australia; Save Sight Institute, Sydney University, Sydney, NSW, 2000, Australia.
| | - Vivek Gupta
- Faculty of Medicine Health and Human Sciences, Macquarie University, North Ryde, NSW, 2109, Australia.
| |
Collapse
|
29
|
Rodrigo MJ, Martinez-Rincon T, Subias M, Mendez-Martinez S, Luna C, Pablo LE, Polo V, Garcia-Martin E. Effect of age and sex on neurodevelopment and neurodegeneration in the healthy eye: Longitudinal functional and structural study in the Long-Evans rat. Exp Eye Res 2020; 200:108208. [PMID: 32882213 DOI: 10.1016/j.exer.2020.108208] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/05/2020] [Accepted: 08/26/2020] [Indexed: 01/03/2023]
Abstract
The processes involved in neurodevelopment and aging have not yet been fully discovered. This is especially challenging in premorbid or borderline situations of neurodegenerative diseases such as Alzheimer's or glaucoma. The retina, as part of the central nervous system, can be considered the easiest and most accessible neural structure that can be analyzed using non-invasive methods. Animal studies of neuroretinal tissue in situations of health and under controlled conditions allow the earliest sex- and aging-induced changes to be analyzed so as to differentiate them from the first signs occurring in manifested disease. This study evaluates differences by age and sex based on intraocular pressure (IOP) and neuroretinal function and structure in healthy young and adult rats before decline due to senescence. For this purpose, eighty-five healthy Long-Evans rats (31 males and 54 females) were analyzed in this 6-month longitudinal study running from childhood to adulthood. IOP was measured by tonometer (Tonolab; Tiolat Oy Helsinki, Finland), neuroretinal function was recorded by flash scotopic and light-adapted photopic negative response electroretinography (ERG) (Roland consult® RETIanimal ERG, Germany) at 4, 16 and 28 weeks of age; and structure was evaluated by in vivo optical coherence tomography (OCT) (Spectralis, Heidelberg® Engineering, Germany). Analyzing both sexes together, IOP was below 20 mmHg throughout the study; retina (R), retinal nerve fiber layer (RNFL) and ganglion cell layer (GCL) thicknesses measured by OCT decreased over time; an increase in ERG signal was recorded at week 16; and no differences were found between right and left eyes. However, analyzing differences by sex revealed that males had higher IOP (even reaching ocular hypertension [>20 mmHg] by the end of the study [7 months of age]), exhibited greater neuroretinal thickness but higher structural percentage loss, and had worse dark- and light-adapted function as measured by ERG than females. This study concludes that age and sex influenced neurodevelopment and neurodegeneration. Different structural and functional degenerative patterns were observed by sex; these occurred earlier and more intensely in males than in age-matched females.
Collapse
Affiliation(s)
- Maria Jesus Rodrigo
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), University of Zaragoza, Spain; RETICS: Thematic Networks for Co-operative Research in Health for Ocular Diseases, Spain.
| | - Teresa Martinez-Rincon
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), University of Zaragoza, Spain
| | - Manuel Subias
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), University of Zaragoza, Spain
| | - Silvia Mendez-Martinez
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), University of Zaragoza, Spain
| | - Coral Luna
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), University of Zaragoza, Spain
| | - Luis Emilio Pablo
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), University of Zaragoza, Spain; RETICS: Thematic Networks for Co-operative Research in Health for Ocular Diseases, Spain
| | - Vicente Polo
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), University of Zaragoza, Spain
| | - Elena Garcia-Martin
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), University of Zaragoza, Spain; RETICS: Thematic Networks for Co-operative Research in Health for Ocular Diseases, Spain
| |
Collapse
|
30
|
Filippi M, Preziosa P, Langdon D, Lassmann H, Paul F, Rovira À, Schoonheim MM, Solari A, Stankoff B, Rocca MA. Identifying Progression in Multiple Sclerosis: New Perspectives. Ann Neurol 2020; 88:438-452. [PMID: 32506714 DOI: 10.1002/ana.25808] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/18/2020] [Accepted: 05/25/2020] [Indexed: 01/10/2023]
Abstract
The identification of progression in multiple sclerosis is typically retrospective. Given the profound burden of progressive multiple sclerosis, and the recent development of effective treatments for these patients, there is a need to establish measures capable of identifying progressive multiple sclerosis early in the disease course. Starting from recent pathological findings, this review assesses the state of the art of potential measures able to predict progressive multiple sclerosis. Future promising biomarkers that might shed light on mechanisms of progression are also discussed. Finally, expansion of the concept of progressive multiple sclerosis, by including an assessment of cognition, patient-reported outcomes, and comorbidities, is considered. ANN NEUROL 2020;88:438-452.
Collapse
Affiliation(s)
- Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurophysiology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Paolo Preziosa
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Dawn Langdon
- Royal Holloway, University of London, London, United Kingdom
| | - Hans Lassmann
- Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Friedemann Paul
- NeuroCure Clinical Research Center and Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Àlex Rovira
- Neuroradiology Section, Department of Radiology, Vall d'Hebron University Hospital and Research Institute, Autonomous University of Barcelona, Barcelona, Spain
| | - Menno M Schoonheim
- Department of Anatomy and Neurosciences, Multiple Sclerosis Center Amsterdam, Amsterdam Neuroscience, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Alessandra Solari
- Unit of Neuroepidemiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Bruno Stankoff
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute - ICM, Inserm, CNRS, APHP, Paris, France
| | - Maria A Rocca
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
31
|
Pihl-Jensen G, Wanscher B, Frederiksen JL. Predictive value of optical coherence tomography, multifocal visual evoked potentials, and full-field visual evoked potentials of the fellow, non-symptomatic eye for subsequent multiple sclerosis development in patients with acute optic neuritis. Mult Scler 2020; 27:391-400. [PMID: 32507033 DOI: 10.1177/1352458520917924] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Diagnosis of multiple sclerosis (MS) may sometimes be ascertained at the time of optic neuritis (ON) but other times require the advent of new disease activity. OBJECTIVES The aim of this study was to examine the predictive value of optical coherence tomography (OCT) and visual evoked potential (VEP) measurements of the non-symptomatic, fellow eye of ON patients, for conversion to MS. METHODS This is a prospective cohort study in patients with acute ON. OCT thickness measurements of peripapillary retinal nerve fiber layer (pRNFL) and macular ganglion cell layer-inner plexiform layer (GCLIPL), and multifocal (mf) VEP and full-field (ff) VEP, were performed. Univariate and multivariate Cox regression examined the value of predictors for the conversion to MS. RESULTS A total of 79 unilateral, acute ON patients, with no MS diagnosis or prior demyelination, were included. Of which, 28 patients developed MS during follow-up. Inferonasal GCLIPL, mean GCLIPL, and pRNFL thickness significantly predicted MS development in multivariate analysis (hazard ratio (HR) = 0.922-0.939, p = 0.0172-0.021). MfVEP mean latency (HR = 1.052, p = 0.006) only predicted MS conversion in univariate analysis. No significant predictive value was shown for the other parameters (p > 0.2). CONCLUSION While both mfVEP and OCT are useful tools in the evaluation of acute ON patients, only OCT measurements of fellow eyes may serve as an independent predictor of MS development.
Collapse
Affiliation(s)
- Gorm Pihl-Jensen
- Clinic of Optic Neuritis and Clinic of Multiple Sclerosis, Department of Neurology, Rigshospitalet-Glostrup, Glostrup, Denmark/University of Copenhagen, Copenhagen, Denmark
| | - Benedikte Wanscher
- Clinic of Optic Neuritis and Clinic of Multiple Sclerosis, Department of Neurology, Rigshospitalet-Glostrup, Glostrup, Denmark/University of Copenhagen, Copenhagen, Denmark
| | - Jette Lautrup Frederiksen
- Department of Clinical Neurophysiology, Rigshospitalet-Glostrup, Glostrup, Denmark/Department of Neurology, Slagelse Hospital, Slagelse, Denmark
| |
Collapse
|
32
|
You Y, Barnett MH, Yiannikas C, Parratt J, Matthews J, Graham SL, Klistorner A. Chronic demyelination exacerbates neuroaxonal loss in patients with MS with unilateral optic neuritis. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2020; 7:7/3/e700. [PMID: 32170043 PMCID: PMC7136042 DOI: 10.1212/nxi.0000000000000700] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 01/30/2020] [Indexed: 12/02/2022]
Abstract
Objective To examine the effect of chronic demyelination in the optic nerve of patients with MS on progressive loss of retinal ganglion cell (RGC) axons. Methods Progressive retinal nerve fiber layer (RNFL) loss, as measured by optical coherence tomography, was longitudinally examined in 51 patients with MS with a history of unilateral optic neuritis (ON) and 25 normal controls. Patients were examined annually with a median of 4-year follow-up. Pairwise intereye comparison was performed between ON and fellow non-ON (NON) eyes of patients with MS using the linear mixed-effects model and survival analysis. The latency asymmetry of multifocal visual evoked potential (mfVEP) was used to determine the level of demyelination in the optic nerve. Results Although both ON and NON eyes demonstrate significantly faster loss of RGC axons compared with normal subjects, ON eyes with severe chronic demyelination show accelerated thinning in the RNFL in the temporal sector of the optic disc (temporal RNFL [tRNFL]) compared with fellow eyes (evidenced by both the linear mixed-effects model and survival analysis). Furthermore, progressive tRNFL thinning is associated with the degree of optic nerve demyelination and reflects the topography of pathology in the optic nerve. More rapid axonal loss in ON eyes is also functionally evidenced by mfVEP amplitude reduction, which correlates with the level of optic nerve demyelination. Conclusions Although the effect of demyelination on axonal survival has been demonstrated in experimental studies, our results provide first clinically meaningful evidence that chronic demyelination is associated with progressive axonal loss in human MS.
Collapse
Affiliation(s)
- Yuyi You
- From the Save Sight Institute (Y.Y., A.K.), The University of Sydney; Faculty of Medicine and Health Sciences (Y.Y., S.L.G., A.K.), Macquarie University; Brain and Mind Centre (M.H.B.), The University of Sydney; Sydney Neuroimaging Analysis Centre (M.H.B., A.K.); Department of Neurology (C.Y., J.P.), Royal North Shore Hospital; and Sydney Informatics and Data Science Hub (J.M.), The University of Sydney, NSW, Australia.
| | - Michael H Barnett
- From the Save Sight Institute (Y.Y., A.K.), The University of Sydney; Faculty of Medicine and Health Sciences (Y.Y., S.L.G., A.K.), Macquarie University; Brain and Mind Centre (M.H.B.), The University of Sydney; Sydney Neuroimaging Analysis Centre (M.H.B., A.K.); Department of Neurology (C.Y., J.P.), Royal North Shore Hospital; and Sydney Informatics and Data Science Hub (J.M.), The University of Sydney, NSW, Australia
| | - Con Yiannikas
- From the Save Sight Institute (Y.Y., A.K.), The University of Sydney; Faculty of Medicine and Health Sciences (Y.Y., S.L.G., A.K.), Macquarie University; Brain and Mind Centre (M.H.B.), The University of Sydney; Sydney Neuroimaging Analysis Centre (M.H.B., A.K.); Department of Neurology (C.Y., J.P.), Royal North Shore Hospital; and Sydney Informatics and Data Science Hub (J.M.), The University of Sydney, NSW, Australia
| | - John Parratt
- From the Save Sight Institute (Y.Y., A.K.), The University of Sydney; Faculty of Medicine and Health Sciences (Y.Y., S.L.G., A.K.), Macquarie University; Brain and Mind Centre (M.H.B.), The University of Sydney; Sydney Neuroimaging Analysis Centre (M.H.B., A.K.); Department of Neurology (C.Y., J.P.), Royal North Shore Hospital; and Sydney Informatics and Data Science Hub (J.M.), The University of Sydney, NSW, Australia
| | - Jim Matthews
- From the Save Sight Institute (Y.Y., A.K.), The University of Sydney; Faculty of Medicine and Health Sciences (Y.Y., S.L.G., A.K.), Macquarie University; Brain and Mind Centre (M.H.B.), The University of Sydney; Sydney Neuroimaging Analysis Centre (M.H.B., A.K.); Department of Neurology (C.Y., J.P.), Royal North Shore Hospital; and Sydney Informatics and Data Science Hub (J.M.), The University of Sydney, NSW, Australia
| | - Stuart L Graham
- From the Save Sight Institute (Y.Y., A.K.), The University of Sydney; Faculty of Medicine and Health Sciences (Y.Y., S.L.G., A.K.), Macquarie University; Brain and Mind Centre (M.H.B.), The University of Sydney; Sydney Neuroimaging Analysis Centre (M.H.B., A.K.); Department of Neurology (C.Y., J.P.), Royal North Shore Hospital; and Sydney Informatics and Data Science Hub (J.M.), The University of Sydney, NSW, Australia
| | - Alexander Klistorner
- From the Save Sight Institute (Y.Y., A.K.), The University of Sydney; Faculty of Medicine and Health Sciences (Y.Y., S.L.G., A.K.), Macquarie University; Brain and Mind Centre (M.H.B.), The University of Sydney; Sydney Neuroimaging Analysis Centre (M.H.B., A.K.); Department of Neurology (C.Y., J.P.), Royal North Shore Hospital; and Sydney Informatics and Data Science Hub (J.M.), The University of Sydney, NSW, Australia
| |
Collapse
|
33
|
Albert C, Mikolajczak J, Liekfeld A, Piper SK, Scheel M, Zimmermann HG, Nowak C, Dörr J, Bellmann-Strobl J, Chien C, Brandt AU, Paul F, Hoffmann O. Fingolimod after a first unilateral episode of acute optic neuritis (MOVING) - preliminary results from a randomized, rater-blind, active-controlled, phase 2 trial. BMC Neurol 2020; 20:75. [PMID: 32126977 PMCID: PMC7052969 DOI: 10.1186/s12883-020-01645-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 02/17/2020] [Indexed: 12/19/2022] Open
Abstract
Background Neuroprotection and promotion of remyelination represent important therapeutic gaps in multiple sclerosis (MS). Acute optic neuritis (ON) is a frequent MS manifestation. Based on the presence and properties of sphingosine-1-phosphate receptors (S1PR) on astrocytes and oligodendrocytes, we hypothesized that remyelination can be enhanced by treatment with fingolimod, a S1PR modulator currently licensed for relapsing-remitting MS. Methods MOVING was an investigator-driven, rater-blind, randomized clinical trial. Patients with acute unilateral ON, occurring as a clinically isolated syndrome or MS relapse, were randomized to 6 months of treatment with 0.5 mg oral fingolimod or subcutaneous IFN-β 1b 250 μg every other day. The change in multifocal visual evoked potential (mfVEP) latency of the qualifying eye was examined as the primary (month 6 vs. baseline) and secondary (months 3, 6 and 12 vs. baseline) outcome. In addition, full field visual evoked potentials, visual acuity, optical coherence tomography as well as clinical relapses and measures of disability, cerebral MRI, and self-reported visual quality of life were obtained for follow-up. The study was halted due to insufficient recruitment (n = 15), and available results are reported. Results Per protocol analysis of the primary endpoint revealed a significantly larger reduction of mfVEP latency at 6 months compared to baseline with fingolimod treatment (n = 5; median decrease, 15.7 ms) than with IFN-β 1b treatment (n = 4; median increase, 8.15 ms) (p < 0.001 for interaction). Statistical significance was maintained in the secondary endpoint analysis. Descriptive results are reported for other endpoints. Conclusion Preliminary results of the MOVING trial argue in support of a beneficial effect of fingolimod on optic nerve remyelination when compared to IFN-β treatment. Interpretation is limited by the small number of complete observations, an unexpected deterioration of the control group and a difference in baseline mfVEP latencies. The findings need to be confirmed in larger studies. Trial registration The trial was registered as EUDRA-CT 2011–004787-30 on October 26, 2012 and as NCT01647880 on July 24, 2012.
Collapse
Affiliation(s)
- Christian Albert
- Department of Neurology, Alexianer St. Josefs-Krankenhaus Potsdam, Allee nach Sanssouci 7, 14471, Potsdam, Germany
| | - Janine Mikolajczak
- Neurocure Clinical Research Center, Charite-Universitätsmedizin Berlin, Berlin, Germany
| | - Anja Liekfeld
- Department of Ophthalmology, Klinikum Ernst von Bergmann, Potsdam, Germany
| | - Sophie K Piper
- Institute of Biometry and Clinical Epidemiology, Charité-Universitätmedizin Berlin, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| | - Michael Scheel
- Neurocure Clinical Research Center, Charite-Universitätsmedizin Berlin, Berlin, Germany
| | - Hanna G Zimmermann
- Neurocure Clinical Research Center, Charite-Universitätsmedizin Berlin, Berlin, Germany
| | | | - Jan Dörr
- Neurocure Clinical Research Center, Charite-Universitätsmedizin Berlin, Berlin, Germany.,Department of Neurology, Oberhavel-Kliniken Hennigsdorf, Hennigsdorf, Germany
| | | | - Claudia Chien
- Neurocure Clinical Research Center, Charite-Universitätsmedizin Berlin, Berlin, Germany
| | - Alexander U Brandt
- Neurocure Clinical Research Center, Charite-Universitätsmedizin Berlin, Berlin, Germany.,Department of Neurology, University of California, Irvine, CA, USA
| | - Friedemann Paul
- Neurocure Clinical Research Center, Charite-Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany.,Department of Neurology, Charité-Universitätmedizin Berlin, Berlin, Germany.,Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité-Universitätmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Olaf Hoffmann
- Department of Neurology, Alexianer St. Josefs-Krankenhaus Potsdam, Allee nach Sanssouci 7, 14471, Potsdam, Germany. .,Neurocure Clinical Research Center, Charite-Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
34
|
Birkeldh U, Manouchehrinia A, Hietala MA, Hillert J, Olsson T, Piehl F, Kockum I, Brundin L, Zahavi O, Wahlberg-Ramsay M, Brautaset R, Nilsson M. Retinal nerve fiber layer thickness associates with cognitive impairment and physical disability in multiple sclerosis. Mult Scler Relat Disord 2019; 36:101414. [PMID: 31574404 DOI: 10.1016/j.msard.2019.101414] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 09/19/2019] [Accepted: 09/25/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND Reductions of the peripapillary retinal nerve fiber layer (pRNFL) thickness has been indicated even in early-stages of multiple sclerosis (MS). The aim was to investigate the association between pRNFL thickness, measured with optical coherence tomography (OCT), and physical disability and cognitive impairment in MS. METHODS 465 MS patients and 168 healthy controls (HCs) were included. MS subjects were divided into subgroups according to disease subtype. All subjects underwent OCT examination of all pRNFL quadrants using Canon OCT-HS100. Associations were tested using linear mixed effect models. Physical disability was assessed with the Expanded Disability Status Scale (EDSS) and cognitive function with the Symbol Digit Modalities Test (SDMT). RESULTS The average pRNFL, inferior pRNFL and temporal pRNFL thicknesses were significantly correlated to both EDSS (-1.0 µm, p < 0.01; -1.2 µm, p < 0.05; -1.2 µm, p < 0.01) and SDMT (0.1 µm, p < 0.05; 0.2 µm, p < 0.05; 0.2 µm, p < 0.01). A significant thickness loss compared with HCs was seen in the average pRNFL and in all quadrants except for the superior quadrant of primary progressive MS. The largest reduction compared with HCs was seen in the temporal pRNFL of PPMS eyes (-15.8 µm; p < 0.001). CONCLUSION The reduction of average pRNFL, inferior pRNFL and temporal pRNFL thickness is associated with physical and cognitive disability in MS. We suggest the use of temporal pRNFL as a more sensitive outcome as it showed the strongest association to both EDSS and SDMT.
Collapse
Affiliation(s)
- Ulrika Birkeldh
- Unit of Optometry, Department of Clinical Neuroscience, Karolinska Institutet, Box 8056, S-104 20 Stockholm, Sweden.
| | - Ali Manouchehrinia
- Department of Clinical Neuroscience, Karolinska Institutet at Karolinska University Hospital Solna, Stockholm, Sweden
| | - Max Albert Hietala
- Department of Clinical Neuroscience, Karolinska Institutet at Karolinska University Hospital Solna, Stockholm, Sweden
| | - Jan Hillert
- Department of Clinical Neuroscience, Karolinska Institutet at Karolinska University Hospital Solna, Stockholm, Sweden
| | - Tomas Olsson
- Department of Clinical Neuroscience, Karolinska Institutet at Karolinska University Hospital Solna, Stockholm, Sweden
| | - Fredrik Piehl
- Department of Clinical Neuroscience, Karolinska Institutet at Karolinska University Hospital Solna, Stockholm, Sweden
| | - Ingrid Kockum
- Department of Clinical Neuroscience, Karolinska Institutet at Karolinska University Hospital Solna, Stockholm, Sweden
| | - Lou Brundin
- Department of Clinical Neuroscience, Karolinska Institutet at Karolinska University Hospital Solna, Stockholm, Sweden
| | - Ori Zahavi
- Unit of Optometry, Department of Clinical Neuroscience, Karolinska Institutet, Box 8056, S-104 20 Stockholm, Sweden
| | - Marika Wahlberg-Ramsay
- Unit of Optometry, Department of Clinical Neuroscience, Karolinska Institutet, Box 8056, S-104 20 Stockholm, Sweden
| | - Rune Brautaset
- Unit of Optometry, Department of Clinical Neuroscience, Karolinska Institutet, Box 8056, S-104 20 Stockholm, Sweden
| | - Maria Nilsson
- Unit of Optometry, Department of Clinical Neuroscience, Karolinska Institutet, Box 8056, S-104 20 Stockholm, Sweden
| |
Collapse
|
35
|
Imaging the multiple sclerosis lesion: insights into pathogenesis, progression and repair. Curr Opin Neurol 2019; 32:338-345. [DOI: 10.1097/wco.0000000000000698] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
36
|
Papadopoulou A, Gaetano L, Pfister A, Altermatt A, Tsagkas C, Morency F, Brandt AU, Hardmeier M, Chakravarty MM, Descoteaux M, Kappos L, Sprenger T, Magon S. Damage of the lateral geniculate nucleus in MS: Assessing the missing node of the visual pathway. Neurology 2019; 92:e2240-e2249. [PMID: 30971483 DOI: 10.1212/wnl.0000000000007450] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 01/10/2019] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To study if the thalamic lateral geniculate nucleus (LGN) is affected in multiple sclerosis (MS) due to anterograde degeneration from optic neuritis (ON) or retrograde degeneration from optic radiation (OR) pathology, and if this is relevant for visual function. METHODS In this cross-sectional study, LGN volume of 34 patients with relapsing-remitting MS and 33 matched healthy controls (HC) was assessed on MRI using atlas-based automated segmentation (MAGeT). ON history, thickness of the ganglion cell-inner plexiform layer (GC-IPL), OR lesion volume, and fractional anisotropy (FA) of normal-appearing OR (NAOR-FA) were assessed as measures of afferent visual pathway damage. Visual function was tested, including low-contrast letter acuity (LCLA) and Hardy-Rand-Rittler (HRR) plates for color vision. RESULTS LGN volume was reduced in patients vs HC (165.5 ± 45.5 vs 191.4 ± 47.7 mm3, B = -25.89, SE = 5.83, p < 0.001). It was associated with GC-IPL thickness (B = 0.95, SE = 0.33, p = 0.006) and correlated with OR lesion volume (Spearman ρ = -0.53, p = 0.001), and these relationships remained after adjustment for normalized brain volume. There was no association between NAOR-FA and LGN volume (B = -133.28, SE = 88.47, p = 0.137). LGN volume was not associated with LCLA (B = 5.5 × 10-5, SE = 0.03, p = 0.998), but it correlated with HRR color vision (ρ = 0.39, p = 0.032). CONCLUSIONS LGN volume loss in MS indicates structural damage with potential functional relevance. Our results suggest both anterograde degeneration from the retina and retrograde degeneration from the OR lesions as underlying causes. LGN volume is a promising marker reflecting damage of the visual pathway in MS, with the advantage of individual measurement per patient on conventional MRI.
Collapse
Affiliation(s)
- Athina Papadopoulou
- From the Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research, and Biomedical Engineering (A. Papadopoulou, L.G., A. Pfister, C.T., M.H., L.K., T.S., S.M.), and Translational Imaging in Neurology (ThINK) Basel, Department of Medicine and Biomedical Engineering (A. Papadopoulou, L.G., A.A., C.T., S.M.), University Hospital Basel and University of Basel, Switzerland; NeuroCure Clinical Research Center (NCRC) (A. Papadopoulou, A.U.B.), and Experimental and Clinical Research Center (A. Papadopoulou, A.U.B.), Max Delbrück Center for Molecular Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany; Medical Image Analysis Center (MIAC) (L.G., A.A., C.T., S.M.), Basel, Switzerland; Imeka Solutions (F.M.), Sherbrooke, Canada; Department of Neurology (A.U.B.), University of California Irvine; Cerebral Imaging Centre (M.M.C.), Douglas Mental Health University Institute; Departments of Psychiatry and Biomedical Engineering (M.M.C.), McGill University, Montreal; University of Sherbrooke (M.D.), Canada; and Department of Neurology (T.S.), DKD Helios Klinik Wiesbaden, Germany. The present address for L.G. is F. Hoffmann-La Roche, Basel, Switzerland.
| | - Laura Gaetano
- From the Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research, and Biomedical Engineering (A. Papadopoulou, L.G., A. Pfister, C.T., M.H., L.K., T.S., S.M.), and Translational Imaging in Neurology (ThINK) Basel, Department of Medicine and Biomedical Engineering (A. Papadopoulou, L.G., A.A., C.T., S.M.), University Hospital Basel and University of Basel, Switzerland; NeuroCure Clinical Research Center (NCRC) (A. Papadopoulou, A.U.B.), and Experimental and Clinical Research Center (A. Papadopoulou, A.U.B.), Max Delbrück Center for Molecular Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany; Medical Image Analysis Center (MIAC) (L.G., A.A., C.T., S.M.), Basel, Switzerland; Imeka Solutions (F.M.), Sherbrooke, Canada; Department of Neurology (A.U.B.), University of California Irvine; Cerebral Imaging Centre (M.M.C.), Douglas Mental Health University Institute; Departments of Psychiatry and Biomedical Engineering (M.M.C.), McGill University, Montreal; University of Sherbrooke (M.D.), Canada; and Department of Neurology (T.S.), DKD Helios Klinik Wiesbaden, Germany. The present address for L.G. is F. Hoffmann-La Roche, Basel, Switzerland
| | - Armanda Pfister
- From the Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research, and Biomedical Engineering (A. Papadopoulou, L.G., A. Pfister, C.T., M.H., L.K., T.S., S.M.), and Translational Imaging in Neurology (ThINK) Basel, Department of Medicine and Biomedical Engineering (A. Papadopoulou, L.G., A.A., C.T., S.M.), University Hospital Basel and University of Basel, Switzerland; NeuroCure Clinical Research Center (NCRC) (A. Papadopoulou, A.U.B.), and Experimental and Clinical Research Center (A. Papadopoulou, A.U.B.), Max Delbrück Center for Molecular Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany; Medical Image Analysis Center (MIAC) (L.G., A.A., C.T., S.M.), Basel, Switzerland; Imeka Solutions (F.M.), Sherbrooke, Canada; Department of Neurology (A.U.B.), University of California Irvine; Cerebral Imaging Centre (M.M.C.), Douglas Mental Health University Institute; Departments of Psychiatry and Biomedical Engineering (M.M.C.), McGill University, Montreal; University of Sherbrooke (M.D.), Canada; and Department of Neurology (T.S.), DKD Helios Klinik Wiesbaden, Germany. The present address for L.G. is F. Hoffmann-La Roche, Basel, Switzerland
| | - Anna Altermatt
- From the Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research, and Biomedical Engineering (A. Papadopoulou, L.G., A. Pfister, C.T., M.H., L.K., T.S., S.M.), and Translational Imaging in Neurology (ThINK) Basel, Department of Medicine and Biomedical Engineering (A. Papadopoulou, L.G., A.A., C.T., S.M.), University Hospital Basel and University of Basel, Switzerland; NeuroCure Clinical Research Center (NCRC) (A. Papadopoulou, A.U.B.), and Experimental and Clinical Research Center (A. Papadopoulou, A.U.B.), Max Delbrück Center for Molecular Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany; Medical Image Analysis Center (MIAC) (L.G., A.A., C.T., S.M.), Basel, Switzerland; Imeka Solutions (F.M.), Sherbrooke, Canada; Department of Neurology (A.U.B.), University of California Irvine; Cerebral Imaging Centre (M.M.C.), Douglas Mental Health University Institute; Departments of Psychiatry and Biomedical Engineering (M.M.C.), McGill University, Montreal; University of Sherbrooke (M.D.), Canada; and Department of Neurology (T.S.), DKD Helios Klinik Wiesbaden, Germany. The present address for L.G. is F. Hoffmann-La Roche, Basel, Switzerland
| | - Charidimos Tsagkas
- From the Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research, and Biomedical Engineering (A. Papadopoulou, L.G., A. Pfister, C.T., M.H., L.K., T.S., S.M.), and Translational Imaging in Neurology (ThINK) Basel, Department of Medicine and Biomedical Engineering (A. Papadopoulou, L.G., A.A., C.T., S.M.), University Hospital Basel and University of Basel, Switzerland; NeuroCure Clinical Research Center (NCRC) (A. Papadopoulou, A.U.B.), and Experimental and Clinical Research Center (A. Papadopoulou, A.U.B.), Max Delbrück Center for Molecular Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany; Medical Image Analysis Center (MIAC) (L.G., A.A., C.T., S.M.), Basel, Switzerland; Imeka Solutions (F.M.), Sherbrooke, Canada; Department of Neurology (A.U.B.), University of California Irvine; Cerebral Imaging Centre (M.M.C.), Douglas Mental Health University Institute; Departments of Psychiatry and Biomedical Engineering (M.M.C.), McGill University, Montreal; University of Sherbrooke (M.D.), Canada; and Department of Neurology (T.S.), DKD Helios Klinik Wiesbaden, Germany. The present address for L.G. is F. Hoffmann-La Roche, Basel, Switzerland
| | - Felix Morency
- From the Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research, and Biomedical Engineering (A. Papadopoulou, L.G., A. Pfister, C.T., M.H., L.K., T.S., S.M.), and Translational Imaging in Neurology (ThINK) Basel, Department of Medicine and Biomedical Engineering (A. Papadopoulou, L.G., A.A., C.T., S.M.), University Hospital Basel and University of Basel, Switzerland; NeuroCure Clinical Research Center (NCRC) (A. Papadopoulou, A.U.B.), and Experimental and Clinical Research Center (A. Papadopoulou, A.U.B.), Max Delbrück Center for Molecular Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany; Medical Image Analysis Center (MIAC) (L.G., A.A., C.T., S.M.), Basel, Switzerland; Imeka Solutions (F.M.), Sherbrooke, Canada; Department of Neurology (A.U.B.), University of California Irvine; Cerebral Imaging Centre (M.M.C.), Douglas Mental Health University Institute; Departments of Psychiatry and Biomedical Engineering (M.M.C.), McGill University, Montreal; University of Sherbrooke (M.D.), Canada; and Department of Neurology (T.S.), DKD Helios Klinik Wiesbaden, Germany. The present address for L.G. is F. Hoffmann-La Roche, Basel, Switzerland
| | - Alexander U Brandt
- From the Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research, and Biomedical Engineering (A. Papadopoulou, L.G., A. Pfister, C.T., M.H., L.K., T.S., S.M.), and Translational Imaging in Neurology (ThINK) Basel, Department of Medicine and Biomedical Engineering (A. Papadopoulou, L.G., A.A., C.T., S.M.), University Hospital Basel and University of Basel, Switzerland; NeuroCure Clinical Research Center (NCRC) (A. Papadopoulou, A.U.B.), and Experimental and Clinical Research Center (A. Papadopoulou, A.U.B.), Max Delbrück Center for Molecular Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany; Medical Image Analysis Center (MIAC) (L.G., A.A., C.T., S.M.), Basel, Switzerland; Imeka Solutions (F.M.), Sherbrooke, Canada; Department of Neurology (A.U.B.), University of California Irvine; Cerebral Imaging Centre (M.M.C.), Douglas Mental Health University Institute; Departments of Psychiatry and Biomedical Engineering (M.M.C.), McGill University, Montreal; University of Sherbrooke (M.D.), Canada; and Department of Neurology (T.S.), DKD Helios Klinik Wiesbaden, Germany. The present address for L.G. is F. Hoffmann-La Roche, Basel, Switzerland
| | - Martin Hardmeier
- From the Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research, and Biomedical Engineering (A. Papadopoulou, L.G., A. Pfister, C.T., M.H., L.K., T.S., S.M.), and Translational Imaging in Neurology (ThINK) Basel, Department of Medicine and Biomedical Engineering (A. Papadopoulou, L.G., A.A., C.T., S.M.), University Hospital Basel and University of Basel, Switzerland; NeuroCure Clinical Research Center (NCRC) (A. Papadopoulou, A.U.B.), and Experimental and Clinical Research Center (A. Papadopoulou, A.U.B.), Max Delbrück Center for Molecular Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany; Medical Image Analysis Center (MIAC) (L.G., A.A., C.T., S.M.), Basel, Switzerland; Imeka Solutions (F.M.), Sherbrooke, Canada; Department of Neurology (A.U.B.), University of California Irvine; Cerebral Imaging Centre (M.M.C.), Douglas Mental Health University Institute; Departments of Psychiatry and Biomedical Engineering (M.M.C.), McGill University, Montreal; University of Sherbrooke (M.D.), Canada; and Department of Neurology (T.S.), DKD Helios Klinik Wiesbaden, Germany. The present address for L.G. is F. Hoffmann-La Roche, Basel, Switzerland
| | - Mallar M Chakravarty
- From the Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research, and Biomedical Engineering (A. Papadopoulou, L.G., A. Pfister, C.T., M.H., L.K., T.S., S.M.), and Translational Imaging in Neurology (ThINK) Basel, Department of Medicine and Biomedical Engineering (A. Papadopoulou, L.G., A.A., C.T., S.M.), University Hospital Basel and University of Basel, Switzerland; NeuroCure Clinical Research Center (NCRC) (A. Papadopoulou, A.U.B.), and Experimental and Clinical Research Center (A. Papadopoulou, A.U.B.), Max Delbrück Center for Molecular Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany; Medical Image Analysis Center (MIAC) (L.G., A.A., C.T., S.M.), Basel, Switzerland; Imeka Solutions (F.M.), Sherbrooke, Canada; Department of Neurology (A.U.B.), University of California Irvine; Cerebral Imaging Centre (M.M.C.), Douglas Mental Health University Institute; Departments of Psychiatry and Biomedical Engineering (M.M.C.), McGill University, Montreal; University of Sherbrooke (M.D.), Canada; and Department of Neurology (T.S.), DKD Helios Klinik Wiesbaden, Germany. The present address for L.G. is F. Hoffmann-La Roche, Basel, Switzerland
| | - Maxime Descoteaux
- From the Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research, and Biomedical Engineering (A. Papadopoulou, L.G., A. Pfister, C.T., M.H., L.K., T.S., S.M.), and Translational Imaging in Neurology (ThINK) Basel, Department of Medicine and Biomedical Engineering (A. Papadopoulou, L.G., A.A., C.T., S.M.), University Hospital Basel and University of Basel, Switzerland; NeuroCure Clinical Research Center (NCRC) (A. Papadopoulou, A.U.B.), and Experimental and Clinical Research Center (A. Papadopoulou, A.U.B.), Max Delbrück Center for Molecular Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany; Medical Image Analysis Center (MIAC) (L.G., A.A., C.T., S.M.), Basel, Switzerland; Imeka Solutions (F.M.), Sherbrooke, Canada; Department of Neurology (A.U.B.), University of California Irvine; Cerebral Imaging Centre (M.M.C.), Douglas Mental Health University Institute; Departments of Psychiatry and Biomedical Engineering (M.M.C.), McGill University, Montreal; University of Sherbrooke (M.D.), Canada; and Department of Neurology (T.S.), DKD Helios Klinik Wiesbaden, Germany. The present address for L.G. is F. Hoffmann-La Roche, Basel, Switzerland
| | - Ludwig Kappos
- From the Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research, and Biomedical Engineering (A. Papadopoulou, L.G., A. Pfister, C.T., M.H., L.K., T.S., S.M.), and Translational Imaging in Neurology (ThINK) Basel, Department of Medicine and Biomedical Engineering (A. Papadopoulou, L.G., A.A., C.T., S.M.), University Hospital Basel and University of Basel, Switzerland; NeuroCure Clinical Research Center (NCRC) (A. Papadopoulou, A.U.B.), and Experimental and Clinical Research Center (A. Papadopoulou, A.U.B.), Max Delbrück Center for Molecular Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany; Medical Image Analysis Center (MIAC) (L.G., A.A., C.T., S.M.), Basel, Switzerland; Imeka Solutions (F.M.), Sherbrooke, Canada; Department of Neurology (A.U.B.), University of California Irvine; Cerebral Imaging Centre (M.M.C.), Douglas Mental Health University Institute; Departments of Psychiatry and Biomedical Engineering (M.M.C.), McGill University, Montreal; University of Sherbrooke (M.D.), Canada; and Department of Neurology (T.S.), DKD Helios Klinik Wiesbaden, Germany. The present address for L.G. is F. Hoffmann-La Roche, Basel, Switzerland
| | - Till Sprenger
- From the Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research, and Biomedical Engineering (A. Papadopoulou, L.G., A. Pfister, C.T., M.H., L.K., T.S., S.M.), and Translational Imaging in Neurology (ThINK) Basel, Department of Medicine and Biomedical Engineering (A. Papadopoulou, L.G., A.A., C.T., S.M.), University Hospital Basel and University of Basel, Switzerland; NeuroCure Clinical Research Center (NCRC) (A. Papadopoulou, A.U.B.), and Experimental and Clinical Research Center (A. Papadopoulou, A.U.B.), Max Delbrück Center for Molecular Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany; Medical Image Analysis Center (MIAC) (L.G., A.A., C.T., S.M.), Basel, Switzerland; Imeka Solutions (F.M.), Sherbrooke, Canada; Department of Neurology (A.U.B.), University of California Irvine; Cerebral Imaging Centre (M.M.C.), Douglas Mental Health University Institute; Departments of Psychiatry and Biomedical Engineering (M.M.C.), McGill University, Montreal; University of Sherbrooke (M.D.), Canada; and Department of Neurology (T.S.), DKD Helios Klinik Wiesbaden, Germany. The present address for L.G. is F. Hoffmann-La Roche, Basel, Switzerland
| | - Stefano Magon
- From the Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research, and Biomedical Engineering (A. Papadopoulou, L.G., A. Pfister, C.T., M.H., L.K., T.S., S.M.), and Translational Imaging in Neurology (ThINK) Basel, Department of Medicine and Biomedical Engineering (A. Papadopoulou, L.G., A.A., C.T., S.M.), University Hospital Basel and University of Basel, Switzerland; NeuroCure Clinical Research Center (NCRC) (A. Papadopoulou, A.U.B.), and Experimental and Clinical Research Center (A. Papadopoulou, A.U.B.), Max Delbrück Center for Molecular Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany; Medical Image Analysis Center (MIAC) (L.G., A.A., C.T., S.M.), Basel, Switzerland; Imeka Solutions (F.M.), Sherbrooke, Canada; Department of Neurology (A.U.B.), University of California Irvine; Cerebral Imaging Centre (M.M.C.), Douglas Mental Health University Institute; Departments of Psychiatry and Biomedical Engineering (M.M.C.), McGill University, Montreal; University of Sherbrooke (M.D.), Canada; and Department of Neurology (T.S.), DKD Helios Klinik Wiesbaden, Germany. The present address for L.G. is F. Hoffmann-La Roche, Basel, Switzerland
| |
Collapse
|
37
|
You Y, Zhu L, Zhang T, Shen T, Fontes A, Yiannikas C, Parratt J, Barton J, Schulz A, Gupta V, Barnett MH, Fraser CL, Gillies M, Graham SL, Klistorner A. Evidence of Müller Glial Dysfunction in Patients with Aquaporin-4 Immunoglobulin G-Positive Neuromyelitis Optica Spectrum Disorder. Ophthalmology 2019; 126:801-810. [PMID: 30711604 DOI: 10.1016/j.ophtha.2019.01.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/14/2019] [Accepted: 01/15/2019] [Indexed: 11/29/2022] Open
Abstract
PURPOSE To compare functional and structural changes in the retina in patients with aquaporin-4 immunoglobulin G (AQP4-IgG)-positive neuromyelitis optica spectrum disorder (NMOSD) and multiple sclerosis (MS). DESIGN Cross-sectional study; biochemical study of human retinas. PARTICIPANTS A total of 181 participants, including 22 consecutive patients (44 eyes) with NMOSD, 131 patients (262 eyes) with multiple sclerosis (MS), and 28 normal subjects (56 eyes). In addition, 8 eyeballs from healthy donors were used for biochemical analysis. METHODS Full-field electroretinography (ERG) and spectral-domain OCT were performed in all the subjects. Topography of AQP4 expression and Müller glial distribution were analyzed using Western blotting and immunohistochemistry. MAIN OUTCOME MEASURES Full-field ERG parameters, including amplitudes and peak times. Tissue volume of each of the retinal layers at the fovea by OCT segmentation. Levels of AQP4 expression at different retinal regions. RESULTS The b-wave amplitude was significantly reduced in patients with AQP4-IgG+ NMOSD in scotopic ERGs (compared with AQP4-IgG- subjects, patients with MS, and normal controls) but not in photopic ERGs. Further analysis showed that this b-wave change was mainly caused by reduction of the slow PII component, suggesting specific Müller cell dysfunction. We also found thinning of specific retinal layers at the fovea in patients with AQP4-IgG+ NMOSD, in the Henle fiber outer nuclear layer (HFONL) and the inner segment (IS) layer, but not in the inner nuclear layer (INL), outer plexiform layer (OPL), or outer segment (OS) layer. Furthermore, there was a significant association between foveal HFONL-IS complex thinning and scotopic b-wave amplitude reduction (P = 0.005∼0.01, fixed-effects model). Western blotting demonstrated that Müller cell-specific AQP4 was expressed at a higher level at the fovea than the peripheral retina. Immunohistochemical studies revealed that the specific foveal thinning reflected the topography of AQP4 expression and Müller glial distribution in the human macula. CONCLUSIONS This study provides in vivo structural and functional evidence of Müller glial dysfunction in eyes of patients with AQP4-IgG+ NMOSD. Topography of retinal structural change is supported by distribution of Müller cells and patterns of AQP4 expression. The study suggests that visual electrophysiology and retinal imaging could be useful biomarkers to assess the potential retinal astrocytopathy in NMOSD.
Collapse
Affiliation(s)
- Yuyi You
- Save Sight Institute, The University of Sydney, NSW, Australia; Department of Health and Medical Sciences, Macquarie University, NSW, Australia.
| | - Ling Zhu
- Save Sight Institute, The University of Sydney, NSW, Australia
| | - Ting Zhang
- Save Sight Institute, The University of Sydney, NSW, Australia
| | - Ting Shen
- Department of Health and Medical Sciences, Macquarie University, NSW, Australia
| | - Ariadna Fontes
- Department of Neurology, Royal North Shore Hospital, NSW, Australia
| | - Con Yiannikas
- Department of Neurology, Royal North Shore Hospital, NSW, Australia
| | - John Parratt
- Department of Neurology, Royal North Shore Hospital, NSW, Australia
| | - Joshua Barton
- Brain and Mind Centre, The University of Sydney, NSW, Australia
| | - Angela Schulz
- Department of Health and Medical Sciences, Macquarie University, NSW, Australia
| | - Vivek Gupta
- Department of Health and Medical Sciences, Macquarie University, NSW, Australia
| | - Michael H Barnett
- Brain and Mind Centre, The University of Sydney, NSW, Australia; Sydney Neuroimaging Analysis Centre, NSW, Australia
| | - Clare L Fraser
- Save Sight Institute, The University of Sydney, NSW, Australia
| | - Mark Gillies
- Save Sight Institute, The University of Sydney, NSW, Australia
| | - Stuart L Graham
- Save Sight Institute, The University of Sydney, NSW, Australia; Department of Health and Medical Sciences, Macquarie University, NSW, Australia
| | - Alexander Klistorner
- Save Sight Institute, The University of Sydney, NSW, Australia; Department of Health and Medical Sciences, Macquarie University, NSW, Australia; Sydney Neuroimaging Analysis Centre, NSW, Australia
| |
Collapse
|
38
|
Schapira AHV. Progress in neurology 2017-2018. Eur J Neurol 2018; 25:1389-1397. [DOI: 10.1111/ene.13846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- A. H. V. Schapira
- Department of Clinical and Movement Neurosciences; UCL Queen Square Institute of Neurology; London UK
| |
Collapse
|
39
|
Coric D, Nij Bijvank JA, van Rijn LJ, Petzold A, Balk LJ. The role of optical coherence tomography and infrared oculography in assessing the visual pathway and CNS in multiple sclerosis. Neurodegener Dis Manag 2018; 8:323-335. [DOI: 10.2217/nmt-2018-0011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
In this review, a current overview is provided of how optical coherence tomography and infrared oculography can aid in assessing the visual system and CNS in multiple sclerosis (MS). Both afferent and efferent visual disorders are common in MS and visual complaints can have a tremendous impact on daily functioning. Optical coherence tomography and infrared oculography can detect and quantify visual disorders with high accuracy, but could also serve as quantitative markers for inflammation, neurodegeneration and network changes including cognitive decline in MS patients. The assessment of the efferent and afferent visual pathways is relevant for monitoring and predicting the disease course, but is also potentially valuable as an outcome measure in therapeutic trials.
Collapse
Affiliation(s)
- Danko Coric
- Department of Neurology, Amsterdam Neuroscience, VU University Medical Centre, Amsterdam, The Netherlands
| | - Jenny A Nij Bijvank
- Department of Neurology, Amsterdam Neuroscience, VU University Medical Centre, Amsterdam, The Netherlands
- Department of Ophthalmology, VU University Medical Centre, Amsterdam, The Netherlands
| | - Laurentius J van Rijn
- Department of Ophthalmology, VU University Medical Centre, Amsterdam, The Netherlands
| | - Axel Petzold
- Department of Neurology, Amsterdam Neuroscience, VU University Medical Centre, Amsterdam, The Netherlands
- Moorfields Eye Hospital & The National Hospital for Neurology & Neurosurgery, London, UK
| | - Lisanne J Balk
- Department of Neurology, Amsterdam Neuroscience, VU University Medical Centre, Amsterdam, The Netherlands
| |
Collapse
|
40
|
Shen T, You Y, Arunachalam S, Fontes A, Liu S, Gupta V, Parratt J, Wang C, Barnett M, Barton J, Chitranshi N, Zhu L, Fraser CL, Graham SL, Klistorner A, Yiannikas C. Differing Structural and Functional Patterns of Optic Nerve Damage in Multiple Sclerosis and Neuromyelitis Optica Spectrum Disorder. Ophthalmology 2018; 126:445-453. [PMID: 30060979 DOI: 10.1016/j.ophtha.2018.06.022] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 05/27/2018] [Accepted: 06/15/2018] [Indexed: 10/28/2022] Open
Abstract
PURPOSE To assess differential patterns of axonal loss and demyelination in the optic nerve in multiple sclerosis (MS) and neuromyelitis optica spectrum disorders (NMOSD). DESIGN Cross-sectional study. PARTICIPANTS One hundred ninety-two participants, including 136 MS patients (272 eyes), 19 NMOSD patients (38 eyes), and 37 healthy control participants (74 eyes). METHODS All participants underwent spectral-domain OCT scans and multifocal visual evoked potential (mfVEP) recordings. High-resolution magnetic resonance imaging (MRI) with the diffusion protocol also was performed in all patients. MAIN OUTCOME MEASURES Ganglion cell-inner plexiform layer (GCIPL) thickness and mfVEP amplitude and latency at 5 eccentricities; global and temporal retinal nerve fiber layer thickness. RESULTS In optic neuritis (ON) eyes, the NMOSD patients had more severe GCIPL loss (P < 0.001) and mfVEP amplitude reduction (P < 0.001) compared with MS patients, whereas in contrast, mfVEP latency delay was more evident in MS patients (P < 0.001). The NMOSD patients showed more morphologic and functional loss at the foveal to parafoveal region, whereas the MS patients showed evenly distributed damage at the macula. Correlation analysis demonstrated a strong structure-function (OCT-mfVEP) association in the NMOSD patients, which was only moderate in the MS patients. In non-ON (NON) eyes, the MS patients showed significantly thinner GCIPL than controls (P < 0.001), whereas no GCIPL loss was observed in NON eyes in NMOSD. In addition, a significant correlation was found between all OCT and mfVEP measures in MS patients, but not in NMOSD patients. MRI demonstrated significant lesional load in the optic radiation in MS compared to NMOSD eyes (P = 0.002), which was related to the above OCT and mfVEP changes in NON eyes. CONCLUSIONS Our study demonstrated different patterns of ON damage in NMOSD and MS. In MS, the ON damage was less severe, with demyelination as the main pathologic component, whereas in NMOSD, axonal loss was more severe compared with myelin loss. The disproportional mfVEP amplitude and latency changes suggested predominant axonal damage within the anterior visual pathway as the main clinical feature of NMOSD, in contrast to MS, where demyelination spreads along the entire visual pathway.
Collapse
Affiliation(s)
- Ting Shen
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Yuyi You
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia; Save Sight Institute, The University of Sydney, Sydney, Australia.
| | | | - Ariadna Fontes
- Australia Department of Neurology, Royal North Shore Hospital, Sydney, Australia
| | - Sidong Liu
- Save Sight Institute, The University of Sydney, Sydney, Australia; Brain and Mind Centre, The University of Sydney, Sydney, Australia
| | - Vivek Gupta
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - John Parratt
- Australia Department of Neurology, Royal North Shore Hospital, Sydney, Australia
| | - Chenyu Wang
- Brain and Mind Centre, The University of Sydney, Sydney, Australia; Sydney Neuroimaging Analysis Centre, Sydney, Australia
| | - Michael Barnett
- Brain and Mind Centre, The University of Sydney, Sydney, Australia; Sydney Neuroimaging Analysis Centre, Sydney, Australia
| | - Joshua Barton
- Brain and Mind Centre, The University of Sydney, Sydney, Australia
| | - Nitin Chitranshi
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Ling Zhu
- Save Sight Institute, The University of Sydney, Sydney, Australia
| | - Clare L Fraser
- Save Sight Institute, The University of Sydney, Sydney, Australia
| | - Stuart L Graham
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia; Save Sight Institute, The University of Sydney, Sydney, Australia
| | - Alexander Klistorner
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia; Save Sight Institute, The University of Sydney, Sydney, Australia; Brain and Mind Centre, The University of Sydney, Sydney, Australia
| | - Con Yiannikas
- Australia Department of Neurology, Royal North Shore Hospital, Sydney, Australia
| |
Collapse
|
41
|
Coric D, Petzold A, Uitdehaag BMJ, Balk LJ. Software updates of OCT segmentation algorithms influence longitudinal assessment of retinal atrophy. J Neurol Sci 2018; 387:16-20. [PMID: 29571856 DOI: 10.1016/j.jns.2018.01.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/02/2018] [Accepted: 01/17/2018] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To investigate whether there is a systematic difference in peripapillary retinal nerve fiber layer (pRNFL) thickness measurements between subsequent updates of pRNFL segmentation software provided by Heidelberg Spectralis optical coherence tomography (OCT). METHODS In total, 838 pRNFL scans from 213 multiple sclerosis (MS) patients and 61 healthy controls were analyzed. All scans were performed on the same OCT device followed by automated segmentation (HRA 5.6.4.0) and data extraction. Subsequently, all scans were re-segmented with an updated software version (HRA 6.0.7.0). To assess level of agreement between the two algorithms, Bland-Altman Plots were constructed. Paired samples t-test and linear regression analyses were used to investigate for differences in mean thickness and proportional bias respectively. RESULTS Overall, the updated version showed an overestimation of 0.16μm [95%CI 0.097-0.23, p<0.001] for the global pRNFL thickness compared to the earlier version. The largest differences were found for the nasal inferior (mean ∆ 0.29μm, p<0.001) and temporal inferior (mean ∆ 0.43μm, p<0.001) sectors. Inspection of the Bland-Altman Plot revealed that the difference between the two versions could be up to 6μm for the global mean. There was no proportional bias for the global mean (β=0.003, p=0.245) nor for any of the separate sectors. CONCLUSION The data show a significant difference in pRNFL thickness measurements between two subsequent versions of the same segmentation software. Although the mean difference was relatively small, the differences within the individual subject could be considerably higher than the known atrophy rate of 1μm/year in MS.
Collapse
Affiliation(s)
- Danko Coric
- Department of Neurology, VU University Medical Center, Amsterdam, The Netherlands; Dutch Expertise Center for Neuro-ophthalmology, VU University Medical Center, Amsterdam, The Netherlands.
| | - Axel Petzold
- Department of Neurology, VU University Medical Center, Amsterdam, The Netherlands; Dutch Expertise Center for Neuro-ophthalmology, VU University Medical Center, Amsterdam, The Netherlands; Moorfields Eye Hospital, City Road, London, UK; The National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | | | - Lisanne J Balk
- Department of Neurology, VU University Medical Center, Amsterdam, The Netherlands; Dutch Expertise Center for Neuro-ophthalmology, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
42
|
Optical coherence tomography in multiple sclerosis. Eye (Lond) 2018; 32:884-888. [PMID: 29391574 DOI: 10.1038/s41433-017-0010-2] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 11/15/2017] [Indexed: 12/20/2022] Open
Abstract
To summarize recent findings regarding the utility of optical coherence tomography in multiple sclerosis. We searched PubMed for relevant articles using the keywords 'optical coherence tomography multiple sclerosis'. Additional articles were found via references in these articles. We selected articles based on relevance. Optical coherence tomography has contributed to greater insights into the pathophysiology of multiple sclerosis. Loss of retinal nerve fibre layer and ganglion cell layer thickness correlate with clinical and paraclinical parameters such as visual function, disability and magnetic resonance imaging. Some studies indicate that OCT parameters may be able to predict disability progression and visual function in MS. OCT angiography has recently emerged as a novel technique to study MS. OCT has proven very useful with regards to research, monitoring and predicting disability in multiple sclerosis. It will be interesting to see how OCT angiography will contribute to this field.
Collapse
|