1
|
Chawla T, Nashi S, Baskar D, Polavarapu K, Vengalil S, Bardhan M, Preethish-Kumar V, Sukrutha R, Unnikrishnan G, Huddar A, Padmanabha H, Anjanappa RM, Bevinahalli N, Nittur V, Rajanna M, Arunachal Udupi G, Nalini A. Phenotype-genotype spectrum of a cohort of congenital muscular dystrophies: a single-centre experience from India. Neurogenetics 2024:10.1007/s10048-024-00776-6. [PMID: 39103709 DOI: 10.1007/s10048-024-00776-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/19/2024] [Indexed: 08/07/2024]
Abstract
Congenital Muscular Dystrophies (CMD) are phenotypically and genotypically heterogenous disorders with a prevalence of 0.68 to 2.5/100,000, contributing to significant morbidity and mortality. We aimed to study the phenotype-genotype spectrum of genetically confirmed cases of CMD. This was retrospective & descriptive study done at a quaternary care referral centre in south India. Genetically confirmed cases of CMDs seen between 2010 to 2020 were recruited. Detailed clinical history, including pedigree, MRI brain/muscle, next generation sequencing results of 61 CMD cases were collected. Collagen VI-related dystrophy (COL6-RD) (36%) was the most common subtype with variants frequently seen in COL6A1 gene. Other CMDs identified were LAMA2-RD (26%), alpha-dystroglycan-RD (19%), LMNA-RD (8%), CHKB-RD (7%) and SEPN1-RD (3%). Similar to previous cohorts, overall, missense variants were common in COL-6 RD. Variants in triple helical domain (THD) of COL6-RD were seen in 11/22 patients, 5 of whom were ambulatory contrary to previous literature citing severe disease with these variants. However, our follow-up period was shorter. In the LAMA2-RD, 2/16 patients were ambulatory & all 16 carried truncating variants. Among dystroglycanopathies, FKRP-RD was the commonest. Milder phenotype of FKRP- RD was observed with variant c.1343C > T, which was also a recurrent variant in our cohort. p.Arg249Trp variant in LMNA-CMD associated with early loss of ambulation was also identified in 1/5 of our patients who expired at age 2.8 years. The current retrospective series provides detailed clinical features and mutation patterns of genetically confirmed cases of CMD from a single center in India.
Collapse
Affiliation(s)
- Tanushree Chawla
- Department of Neurology, Neuroscience Faculty Center, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, 560029, India
| | - Saraswati Nashi
- Department of Neurology, Neuroscience Faculty Center, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, 560029, India
| | - Dipti Baskar
- Department of Neurology, Neuroscience Faculty Center, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, 560029, India
| | - Kiran Polavarapu
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada
| | - Seena Vengalil
- Department of Neurology, Neuroscience Faculty Center, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, 560029, India
| | - Mainak Bardhan
- Department of Neurology, Neuroscience Faculty Center, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, 560029, India
| | - Veeramani Preethish-Kumar
- Department of Neurology, Neuroscience Faculty Center, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, 560029, India
| | - Ramya Sukrutha
- Department of Human Genetics, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, 560029, India
| | - Gopikrishnan Unnikrishnan
- Department of Neurology, Neuroscience Faculty Center, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, 560029, India
| | - Akshata Huddar
- Department of Neurology, Neuroscience Faculty Center, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, 560029, India
| | - Hansashree Padmanabha
- Department of Neurology, Neuroscience Faculty Center, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, 560029, India
| | - Ram Murthy Anjanappa
- Department of Human Genetics, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, 560029, India
| | - Nandeesh Bevinahalli
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bengaluru, 560029, India
| | - Vidya Nittur
- Department of Neurology, Neuroscience Faculty Center, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, 560029, India
| | - Manoj Rajanna
- Department of Neurology, Neuroscience Faculty Center, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, 560029, India
| | - Gautham Arunachal Udupi
- Department of Human Genetics, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, 560029, India
| | - Atchayaram Nalini
- Department of Neurology, Neuroscience Faculty Center, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, 560029, India.
| |
Collapse
|
2
|
Meyer AP, Ma J, Brock G, Hashimoto S, Cottrell CE, Mathew M, Hunter JM, Leung ML, Corsmeier D, Jayaraman V, Waldrop MA, Flanigan KM. Exome sequencing in the pediatric neuromuscular clinic leads to more frequent diagnosis of both neuromuscular and neurodevelopmental conditions. Muscle Nerve 2023; 68:833-840. [PMID: 37789688 DOI: 10.1002/mus.27976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 09/06/2023] [Accepted: 09/10/2023] [Indexed: 10/05/2023]
Abstract
INTRODUCTION/AIMS Exome sequencing (ES) has proven to be a valuable diagnostic tool for neuromuscular disorders, which often pose a diagnostic challenge. The aims of this study were to investigate the clinical outcomes associated with utilization of ES in the pediatric neuromuscular clinic and to determine if specific phenotypic features or abnormal neurodiagnostic tests were predictive of a diagnostic result. METHODS This was a retrospective medical record review of 76 pediatric neuromuscular clinic patients who underwent ES. Based upon clinical assessment prior to ES, patients were divided into two groups: affected by neuromuscular (n = 53) or non-neuromuscular (n = 23) syndromes. RESULTS A diagnosis was made in 28/76 (36.8%), with 29 unique disorders identified. In the neuromuscular group, a neuromuscular condition was confirmed in 78% of those receiving a genetic diagnosis. Early age of symptom onset was associated with a significantly higher diagnostic yield. The most common reason neuromuscular diagnoses were not detected on prior testing was due to causative genes not being present on disease-specific panels. Changes to medical care were made in 57% of individuals receiving a diagnosis on ES. DISCUSSION These data further support ES as a powerful diagnostic tool in the pediatric neuromuscular clinic and highlight the advantages of ES over gene panels, including the ability to identify diagnoses regardless of etiology, identify genes newly associated with disease, and identify multiple confounding diagnoses. Rapid and accurate diagnosis by ES can not only end the patient's diagnostic odyssey, but often impacts patients' medical management and genetic counseling of families.
Collapse
Affiliation(s)
- Alayne P Meyer
- Division of Genetic and Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Jianing Ma
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio, USA
| | - Guy Brock
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio, USA
| | - Sayaka Hashimoto
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Catherine E Cottrell
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA
- Department of Pathology, The Ohio State University, Columbus, Ohio, USA
| | - Mariam Mathew
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA
- Department of Pathology, The Ohio State University, Columbus, Ohio, USA
| | - Jesse M Hunter
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA
- Department of Pathology, The Ohio State University, Columbus, Ohio, USA
| | - Marco L Leung
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA
- Department of Pathology, The Ohio State University, Columbus, Ohio, USA
| | - Don Corsmeier
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Vijayakumar Jayaraman
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Megan A Waldrop
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
- Department of Neurology, Nationwide Children's Hospital & The Ohio State University, Columbus, Ohio, USA
- Center for Gene Therapy, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Kevin M Flanigan
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
- Department of Neurology, Nationwide Children's Hospital & The Ohio State University, Columbus, Ohio, USA
- Center for Gene Therapy, Nationwide Children's Hospital, Columbus, Ohio, USA
| |
Collapse
|
3
|
Çavdarlı B, Köken ÖY, Satılmış SBA, Bilen Ş, Ardıçlı D, Ceylan AC, Gündüz CNS, Topaloğlu H. High diagnostic yield of targeted next-generation sequencing panel as a first-tier molecular test for the patients with myopathy or muscular dystrophy. Ann Hum Genet 2022; 87:104-114. [PMID: 36575883 DOI: 10.1111/ahg.12492] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 12/11/2022] [Accepted: 12/13/2022] [Indexed: 12/29/2022]
Abstract
Muscular dystrophies are a heterogeneous group of neuromuscular disorders with a wide range of the clinical and genetic spectrum. Whole-exome sequencing (WES) has been on the rise to become the usual method of choice for molecular diagnosis in patients presenting with muscular dystrophy or congenital or metabolic myopathy phenotype. Here, we used a panel with 47 genes including not only muscular dystrophy but also myopathy-associated genes that had been used as a first-tier approach. A total of 146 patients who were referred to our clinic with the prediagnosis of muscular dystrophy and/or myopathy were included in the study. Dystrophin gene deletion/duplication was ruled out on the patients with a preliminary diagnosis of Duchenne muscular dystrophy. In this study, the molecular etiology of 67 patients was proved with the gene panel with a diagnostic yield of 46%. Causal variants were identified in 23 genes including CAPN3(11), DYSF(9), DMD(8), SGCA(5), TTN(4), LAMA2(3), LMNA(3), SGCB(3), COL6A1(3), DES (2), CAV3(2), FKRP(2), FKTN(2), ANO5, COL6A2, CLCN1, GNE, POMGNT1, POMGNT2, POMT2, SYNE1, TCAP, and FLNC with 16 novel variants. There were 27 patients with uncertain molecular results including the ones who had a variant of uncertain significance, who had only one heterozygous variant for an autosomal recessive disease, and the ones who had two variants in different genes. Molecular diagnosis in muscular dystrophy is essential to plan clinical management and choosing treatment options. Also, the results will affect the reproduction options. Targeted next-generation sequencing is a cost-effective method that reduces the WES requirements with a significant diagnostic rate.
Collapse
Affiliation(s)
- Büşranur Çavdarlı
- Department of Medical Genetics, Ankara City Hospital, Ankara, Turkey
| | | | | | - Şule Bilen
- Department of Neurology, Ankara City Hospital, Ankara, Turkey
| | - Didem Ardıçlı
- Department of Pediatric Neurology, Ankara City Hospital, Ankara, Turkey
| | - Ahmet Cevdet Ceylan
- Department of Medical Genetics, Ankara City Hospital, Ankara, Turkey.,Department of Medical Genetics, Ankara Yıldırım Beyazıt University, Ankara, Turkey
| | - Cavidan Nur Semerci Gündüz
- Department of Medical Genetics, Ankara City Hospital, Ankara, Turkey.,Department of Medical Genetics, Ankara Yıldırım Beyazıt University, Ankara, Turkey
| | - Haluk Topaloğlu
- Department of Pediatric Neurology, Yeditepe University, Istanbul, Turkey
| |
Collapse
|
4
|
Genotype-Phenotype Correlations in Human Diseases Caused by Mutations of LINC Complex-Associated Genes: A Systematic Review and Meta-Summary. Cells 2022; 11:cells11244065. [PMID: 36552829 PMCID: PMC9777268 DOI: 10.3390/cells11244065] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Mutations in genes encoding proteins associated with the linker of nucleoskeleton and cytoskeleton (LINC) complex within the nuclear envelope cause different diseases with varying phenotypes including skeletal muscle, cardiac, metabolic, or nervous system pathologies. There is some understanding of the structure of LINC complex-associated proteins and how they interact, but it is unclear how mutations in genes encoding them can cause the same disease, and different diseases with different phenotypes. Here, published mutations in LINC complex-associated proteins were systematically reviewed and analyzed to ascertain whether patterns exist between the genetic sequence variants and clinical phenotypes. This revealed LMNA is the only LINC complex-associated gene in which mutations commonly cause distinct conditions, and there are no clear genotype-phenotype correlations. Clusters of LMNA variants causing striated muscle disease are located in exons 1 and 6, and metabolic disease-associated LMNA variants are frequently found in the tail of lamin A/C. Additionally, exon 6 of the emerin gene, EMD, may be a mutation "hot-spot", and diseases related to SYNE1, encoding nesprin-1, are most often caused by nonsense type mutations. These results provide insight into the diverse roles of LINC-complex proteins in human disease and provide direction for future gene-targeted therapy development.
Collapse
|
5
|
Masri AT, Oweis L, Qudah AA, El-Shanti H. Congenital muscle dystrophies: Role of singleton whole exome sequencing in countries with limited resources. Clin Neurol Neurosurg 2022; 217:107271. [DOI: 10.1016/j.clineuro.2022.107271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 12/01/2022]
|
6
|
Mohamadian M, Rastegar M, Pasamanesh N, Ghadiri A, Ghandil P, Naseri M. Clinical and Molecular Spectrum of Muscular Dystrophies (MDs) with Intellectual Disability (ID): a Comprehensive Overview. J Mol Neurosci 2021; 72:9-23. [PMID: 34727324 DOI: 10.1007/s12031-021-01933-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 10/18/2021] [Indexed: 12/22/2022]
Abstract
Muscular dystrophies encompass a wide and heterogeneous subset of hereditary myopathies that manifest by the structural or functional abnormalities in the skeletal muscle. Some pathogenic mutations induce a dysfunction or loss of proteins that are critical for the stability of muscle cells, leading to progressive muscle degradation and weakening. Several studies have well-established cognitive deficits in muscular dystrophies which are mainly due to the disruption of brain-specific expression of affected muscle proteins. We provide a comprehensive overview of the types of muscular dystrophies that are accompanied by intellectual disability by detailed consulting of the main libraries. The current paper focuses on the clinical and molecular evidence about Duchenne, congenital, limb-girdle, and facioscapulohumeral muscular dystrophies as well as myotonic dystrophies. Because these syndromes impose a heavy burden of psychological and financial problems on patients, their families, and the health care community, a thorough examination is necessary to perform timely psychological and medical interventions and thus improve the quality of life.
Collapse
Affiliation(s)
- Malihe Mohamadian
- Cancer Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran, 616476515.
| | - Mandana Rastegar
- Department of Molecular Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Negin Pasamanesh
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Ata Ghadiri
- Department of Immunology, Medical School, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Pegah Ghandil
- Diabetes Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Medical Genetics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohsen Naseri
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
7
|
Saat H, Sahin I. Mutation spectrum of hereditary myopathies in Turkish patients and novel variants. Ann Hum Genet 2021; 85:178-185. [PMID: 33963534 DOI: 10.1111/ahg.12429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 11/28/2022]
Abstract
Hereditary myopathies are a heterogeneous disorder known to be associated with more than 100 genes. Although hereditary myopathy subgroups can be partially described with traditional methods such as muscle biopsy, next-generation sequencing (NGS) is essential to reveal the disease's underlying genetic etiology and molecular mechanisms. In this study, we performed clinical exome sequencing or whole-exome sequencing (CES/WES) in 20 unrelated Turkish patients. Thirteen pathogenic or likely pathogenic variants, including five novel variantswere detected in the 16 known hereditary myopathy genes. We achieved a high rate of diagnosis (65%) compared to previous studies. The most common condition noticed was limb-girdle muscular dystrophy (LGMD), which should not be ignored in patients diagnosed with myopathy. CES or WES provides a certain molecular diagnosis from a broad perspective to demonstrate underlying genetic causes in heterogeneous disorders. Therefore, exome sequencing offers a higher and more complete diagnosis than the gene panel.
Collapse
Affiliation(s)
- Hanife Saat
- Department of Medical Genetics, University of Health Sciences, Dışkapı Yıldırım Beyazıt Research and Training Hospital, Ankara, Turkey
| | - Ibrahim Sahin
- Department of Medical Genetics, University of Health Sciences, Dışkapı Yıldırım Beyazıt Research and Training Hospital, Ankara, Turkey
| |
Collapse
|