1
|
Human Dental Pulp Stem Cells Differentiate into Cementoid-Like-Secreting Cells on Decellularized Teeth Scaffolds. Int J Mol Sci 2022; 23:ijms232415588. [PMID: 36555228 PMCID: PMC9779305 DOI: 10.3390/ijms232415588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
Periodontitis is a common inflammatory disease that in some cases can cause tooth loss. Cementum is a mineralized tissue that forms part of the insertion periodontium and serves to fix the teeth to the alveolar bone. In addition, it acts as a reservoir of different growth and differentiation factors, which regulate the biology of the teeth. Cementogenesis is a complex process that is still under investigation and involves different factors, including dentin sialophosphoprotein (DSPP). In this work we studied the role of surface microtopography in the differentiation of human dental pulp stem cells (hDPSCs) into cementoid-like secreting cells. We cultured hDPSCs on decellularized dental scaffolds on either dentin or cementum surfaces. Cell morphology was evaluated by light and electron microscopy. We also evaluated the DSPP expression by immunohistochemistry. The hDPSCs that was cultured on surfaces with accessible dentinal tubules acquired an odontoblastic phenotype and emitted characteristic processes within the dentinal tubules. These cells synthesized the matrix components of a characteristic reticular connective tissue, with fine collagen fibers and DSPP deposits. The hDPSCs that was cultured on cementum surfaces generated a well-organized tissue consisting of layers of secretory cells and dense fibrous connective tissue with thick bundles of collagen fibers perpendicular to the scaffold surface. Intra- and intercellular deposits of DSPP were also observed. The results presented here reinforce the potential for hDPSCs to differentiate in vitro into cells that secrete a cementoid-like matrix in response to the physical stimuli related to the microtopography of contact surfaces. We also highlight the role of DSPP as a component of the newly formed matrix.
Collapse
|
2
|
Andras NL, Mohamed FF, Chu EY, Foster BL. Between a rock and a hard place: Regulation of mineralization in the periodontium. Genesis 2022; 60:e23474. [PMID: 35460154 PMCID: PMC9492628 DOI: 10.1002/dvg.23474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 12/30/2022]
Abstract
The periodontium supports and attaches teeth via mineralized and nonmineralized tissues. It consists of two, unique mineralized tissues, cementum and alveolar bone. In between these tissues, lies an unmineralized, fibrous periodontal ligament (PDL), which distributes occlusal forces, nourishes and invests teeth, and harbors progenitor cells for dentoalveolar repair. Many unanswered questions remain regarding periodontal biology. This review will focus on recent research providing insights into one enduring mystery: the precise regulation of the hard-soft tissue borders in the periodontium which define the interfaces of the cementum-PDL-alveolar bone structure. We will focus on advances in understanding the molecular mechanisms that maintain the unmineralized PDL "between a rock and a hard place" by regulating the mineralization of cementum and alveolar bone.
Collapse
Affiliation(s)
- Natalie L. Andras
- Biosciences Division, College of DentistryThe Ohio State UniversityColumbusOhioUSA
| | - Fatma F. Mohamed
- Biosciences Division, College of DentistryThe Ohio State UniversityColumbusOhioUSA
| | - Emily Y. Chu
- Division of Operative Dentistry, Department of General Dentistry, School of DentistryUniversity of MarylandBaltimoreMarylandUSA
| | - Brian L. Foster
- Biosciences Division, College of DentistryThe Ohio State UniversityColumbusOhioUSA
| |
Collapse
|
3
|
Jing Z, Chen Z, Jiang Y. Effects of DSPP Gene Mutations on Periodontal Tissues. Glob Med Genet 2021; 8:90-94. [PMID: 34430959 PMCID: PMC8378919 DOI: 10.1055/s-0041-1726416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Dentin sialophosphoprotein ( DSPP ) gene mutations cause autosomal dominantly inherited diseases. DSPP gene mutations lead to abnormal expression of DSPP, resulting in a series of histological, morphological, and clinical abnormalities. A large number of previous studies demonstrated that DSPP is a dentinal-specific protein, and DSPP gene mutations lead to dentin dysplasia and dentinogenesis imperfecta. Recent studies have found that DSPP is also expressed in bone, periodontal tissues, and salivary glands. DSPP is involved in the formation of the periodontium as well as tooth structures. DSPP deficient mice present furcation involvement, cementum, and alveolar bone defect. We speculate that similar periodontal damage may occur in patients with DSPP mutations. This article reviewed the effects of DSPP gene mutations on periodontal status. However, almost all of the research is about animal study, there is no evidence that DSPP mutations cause periodontium defects in patients yet. We need to conduct systematic clinical studies on DSPP mutation families in the future to elucidate the effect of DSPP gene on human periodontium.
Collapse
Affiliation(s)
- Zhaojun Jing
- Department of General Dentistry II, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, People's Republic of China
| | - Zhibin Chen
- Department of Periodontology, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, People's Republic of China
| | - Yong Jiang
- Department of General Dentistry II, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, People's Republic of China
| |
Collapse
|
4
|
Ye J, Wang Y, Zhu Q, Shi H, Xiang D, Wu C, Song L, Ma N, Liu Q, Zhang W. Primary observation of the role of posttranslational modification of dentin sialophosphoprotein (DSPP) on postnatal development of mandibular condyle in mice. Arch Oral Biol 2021; 125:105086. [PMID: 33639479 DOI: 10.1016/j.archoralbio.2021.105086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 02/13/2021] [Accepted: 02/15/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVES We aimed to observe the posttranslational role of dentin sialophosphoprotein (DSPP) on postnatal development of mandibular condyle in mice. METHODS To explore the function of full-length DSPP, four groups of mice were employed: (1) wild type (WT) mice; (2)Dspp knockout (Dspp KO) mice; (3) mice expressing the normal DSPP transgene in the Dspp KO background (Dspp KO/normal Tg); (4) mice expressing the uncleavable full-length DSPP in the Dspp KO background (Dspp KO/D452A Tg). Firstly, Plain X-ray Radiography and Micro-computed Tomography were used to observe the condylar morphology changes of Dspp KO/D452A Tg mice in comparison with the other three groups. Then, Hematoxylin & eosin and toluidine blue staining were applied to uncover the histological changes of mandibular condylar cartilage (MCC) of Dspp KO/D452A Tg mice. To explore the function of the NH2-terminal fragments (i.e. DSP/DSP-PG), three groups of mice were employed: (1) WT mice; (2) Dspp KO mice; (3) mice expressing the NH2-terminal fragments of DSPP in the Dspp-null background (Dspp KO/DSP Tg). The former strategies were utilized to examine the differences of condylar morphology and histological structures changes within three groups of mice. RESULTS Transgenic full-length DSPP partially maintained mandibular condylar morphology and MCC thickness of Dspp KO mice. Transgenic DSP failed to do so, but led to smaller mandibular condyle and disordered cartilage structure. CONCLUSIONS Our observations provide insight into the role of posttranslational modification of DSPP in the postnatal development of healthy MCC and maintenance of condylar morphology.
Collapse
Affiliation(s)
- Jiapeng Ye
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Yue Wang
- Department of Oral and Maxillofacial Surgery, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Qinglin Zhu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Stomatology, Department of Operative Dentistry and Endodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Haibo Shi
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Danwei Xiang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Chunyue Wu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Lina Song
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Ning Ma
- Department of Rheumatology, The First Hospital, Jilin University, Changchun, China
| | - Qilin Liu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, China.
| | - Wei Zhang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China.
| |
Collapse
|
5
|
Huang X, Wang F, Zhao C, Yang S, Cheng Q, Tang Y, Zhang F, Zhang Y, Luo W, Wang C, Zhou P, Kim S, Zuo G, Hu N, Li R, He TC, Zhang H. Dentinogenesis and Tooth-Alveolar Bone Complex Defects in BMP9/GDF2 Knockout Mice. Stem Cells Dev 2019; 28:683-694. [PMID: 30816068 PMCID: PMC6534167 DOI: 10.1089/scd.2018.0230] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Tooth development is regulated by sequential and reciprocal epithelium-mesenchymal interactions and their related molecular signaling pathways, such as bone morphogenetic proteins (BMPs). Among the 14 types of BMPs, BMP9 (also known as growth differentiation factor 2) is one of the most potent BMPs to induce osteogenic differentiation of mesenchymal stem cells. The purpose of this study was to examine potential roles of BMP9 signaling in tooth development. First, we detected the expression pattern of BMP9 in tooth germ during postnatal tooth development, and we found that BMP9 was widely expressed in odontoblasts, ameloblasts, dental pulp cells, and osteoblasts in alveolar bones. Then, we established a BMP9-KO mouse model. Gross morphological examination revealed that the tooth cusps of BMP9-KO mice were significantly abraded with shorter roots. Micro-computed tomography and three-dimensional reconstruction analysis indicated that the first molars of the BMP9-KO mice exhibited a reduced thickness dentin, enlarged pulp canals, and shortened roots, resembling the phenotypes of the common hereditary dental disease dentinogenesis imperfecta. Further, the alveolar bone of the BMP9-KO mutants was found to be shorter and had a decreased mineral density and trabecular thickness and bone volume fraction compared with that of the wild-type control. Mechanistically, we demonstrated that both dentin sialophosphoprotein and dentin matrix protein 1 were induced in dental stem cells by BMP9, whereas their expression was reduced when BMP9 was silenced. Further studies are required to determine whether loss of or decreased BMP9 expression is clinically associated with dentinogenesis imperfecta. Collectively, our results strongly suggest that BMP9 may play an important role in regulating dentinogenesis and tooth development. Further research is recommended into the therapeutic uses of BMP9 to regenerate traumatized and diseased tissues and for the bioengineering of replacement teeth.
Collapse
Affiliation(s)
- Xia Huang
- 1 Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China.,2 Department of Pediatric Dentistry, The Affiliated Stomatology Hospital, Chongqing Medical University, Chongqing, China
| | - Feilong Wang
- 2 Department of Pediatric Dentistry, The Affiliated Stomatology Hospital, Chongqing Medical University, Chongqing, China.,3 Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Chen Zhao
- 4 Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Sheng Yang
- 1 Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China.,5 Department of Prosthodontics, The Affiliated Stomatology Hospital, Chongqing Medical University, Chongqing, China
| | - Qianyu Cheng
- 1 Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China.,2 Department of Pediatric Dentistry, The Affiliated Stomatology Hospital, Chongqing Medical University, Chongqing, China
| | - Yingying Tang
- 1 Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China.,2 Department of Pediatric Dentistry, The Affiliated Stomatology Hospital, Chongqing Medical University, Chongqing, China
| | - Fugui Zhang
- 1 Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China
| | - Yan Zhang
- 1 Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China
| | - Wenping Luo
- 1 Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China
| | - Chao Wang
- 1 Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China
| | - Pengfei Zhou
- 1 Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China
| | - Stephanie Kim
- 6 Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois
| | - Guowei Zuo
- 7 Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Ning Hu
- 4 Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ruidong Li
- 8 Department of Orthopaedic Surgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Tong-Chuan He
- 1 Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China.,6 Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois
| | - Hongmei Zhang
- 1 Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China.,2 Department of Pediatric Dentistry, The Affiliated Stomatology Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
6
|
Porntaveetus T, Nowwarote N, Osathanon T, Theerapanon T, Pavasant P, Boonprakong L, Sanon K, Srisawasdi S, Suphapeetiporn K, Shotelersuk V. Compromised alveolar bone cells in a patient with dentinogenesis imperfecta caused by DSPP mutation. Clin Oral Investig 2018; 23:303-313. [DOI: 10.1007/s00784-018-2437-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 04/09/2018] [Indexed: 11/29/2022]
|
7
|
Ao M, Chavez MB, Chu EY, Hemstreet KC, Yin Y, Yadav MC, Millán JL, Fisher LW, Goldberg HA, Somerman MJ, Foster BL. Overlapping functions of bone sialoprotein and pyrophosphate regulators in directing cementogenesis. Bone 2017; 105:134-147. [PMID: 28866368 PMCID: PMC5730356 DOI: 10.1016/j.bone.2017.08.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/24/2017] [Accepted: 08/28/2017] [Indexed: 12/19/2022]
Abstract
Although acellular cementum is essential for tooth attachment, factors directing its development and regeneration remain poorly understood. Inorganic pyrophosphate (PPi), a mineralization inhibitor, is a key regulator of cementum formation: tissue-nonspecific alkaline phosphatase (Alpl/TNAP) null mice (increased PPi) feature deficient cementum, while progressive ankylosis protein (Ank/ANK) null mice (decreased PPi) feature increased cementum. Bone sialoprotein (Bsp/BSP) and osteopontin (Spp1/OPN) are multifunctional extracellular matrix components of cementum proposed to have direct and indirect effects on cell activities and mineralization. Studies on dentoalveolar development of Bsp knockout (Bsp-/-) mice revealed severely reduced acellular cementum, however underlying mechanisms remain unclear. The similarity in defective cementum phenotypes between Bsp-/- mice and Alpl-/- mice (the latter featuring elevated PPi and OPN), prompted us to examine whether BSP is operating by modulating PPi-associated genes. Genetic ablation of Bsp caused a 2-fold increase in circulating PPi, altered mRNA expression of Alpl, Spp1, and Ank, and increased OPN protein in the periodontia. Generation of a Bsp knock-out (KO) cementoblast cell line revealed significantly decreased mineralization capacity, 50% increased PPi in culture media, and increased Spp1 and Ank mRNA expression. While addition of 2μg/ml recombinant BSP altered Spp1, Ank, and Enpp1 expression in cementoblasts, changes resulting from this dose were not dependent on the integrin-binding RGD motif or MAPK/ERK signaling pathway. Decreasing PPi by genetic ablation of Ank on the Bsp-/- mouse background reestablished cementum formation, allowing >3-fold increased acellular cementum volume compared to wild-type (WT). However, deleting Ank did not fully compensate for the absence of BSP. Bsp-/-; Ank-/- double-deficient mice exhibited mean 20-27% reduced cementum thickness and volume compared to Ank-/- mice. From these data, we conclude that the perturbations in PPi metabolism are not solely driving the cementum pathology in Bsp-/- mice, and that PPi is more potent than BSP as a cementum regulator, as shown by the ability to override loss of BSP by lowering PPi. We propose that BSP and PPi work in concert to direct mineralization in cementum and likely other mineralized tissues.
Collapse
Affiliation(s)
- M Ao
- National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, USA
| | - M B Chavez
- Biosciences Division, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - E Y Chu
- National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, USA
| | - K C Hemstreet
- National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Y Yin
- National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Bethesda, MD, USA
| | - M C Yadav
- Sanford Children's Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - J L Millán
- Sanford Children's Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - L W Fisher
- National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Bethesda, MD, USA
| | - H A Goldberg
- Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | - M J Somerman
- National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, USA
| | - B L Foster
- Biosciences Division, College of Dentistry, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
8
|
Dentin Sialoprotein is a Novel Substrate of Matrix Metalloproteinase 9 in vitro and in vivo. Sci Rep 2017; 7:42449. [PMID: 28195206 PMCID: PMC5307955 DOI: 10.1038/srep42449] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 01/09/2017] [Indexed: 01/17/2023] Open
Abstract
Dentin sialoprotein (DSP) is essential for dentinogenesis and processed into fragments in the odontoblast-like cells and the tooth compartments. Matrix metalloproteinase 9 (MMP9) is expressed in teeth from early embryonic to adult stage. Although MMP9 has been reported to be involved in some physiological and pathological conditions through processing substrates, its role in tooth development and whether DSP is a substrate of MMP9 remain unknown. In this study, the function of MMP9 in the tooth development was examined by observation of Mmp9 knockout (Mmp9−/−) mouse phenotype, and whether DSP is a substrate of MMP9 was explored by in vitro and in vivo experiments. The results showed that Mmp9−/− teeth displayed a phenotype similar to dentinogenesis imperfecta, including decreased dentin mineral density, abnormal dentin architecture, widened predentin and irregular predentin-dentin boundary. The distribution of MMP9 and DSP overlapped in the odontoblasts, the predentin, and the mineralized dentin, and MMP9 was able to specifically bind to DSP. MMP9 highly efficiently cleaved DSP into distinct fragments in vitro, and the deletion of Mmp9 caused improper processing of DSP in natural teeth. Therefore, our findings demonstrate that MMP9 is important for tooth development and DSP is a novel target of MMP9 during dentinogenesis.
Collapse
|
9
|
Boskey AL, Villarreal-Ramirez E. Intrinsically disordered proteins and biomineralization. Matrix Biol 2016; 52-54:43-59. [PMID: 26807759 DOI: 10.1016/j.matbio.2016.01.007] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 01/19/2016] [Accepted: 01/19/2016] [Indexed: 01/21/2023]
Abstract
In vertebrates and invertebrates, biomineralization is controlled by the cell and the proteins they produce. A large number of these proteins are intrinsically disordered, gaining some secondary structure when they interact with their binding partners. These partners include the component ions of the mineral being deposited, the crystals themselves, the template on which the initial crystals form, and other intrinsically disordered proteins and peptides. This review speculates why intrinsically disordered proteins are so important for biomineralization, providing illustrations from the SIBLING (small integrin binding N-glycosylated) proteins and their peptides. It is concluded that the flexible structure, and the ability of the intrinsically disordered proteins to bind to a multitude of surfaces is crucial, but details on the precise-interactions, energetics and kinetics of binding remain to be determined.
Collapse
Affiliation(s)
- Adele L Boskey
- Musculoskeletal Integrity Program, Hospital for Special Surgery, New York, NY 10021, USA.
| | | |
Collapse
|
10
|
Gibson MP, Jani P, Wang X, Lu Y, Qin C. Overexpressing the NH 2-terminal fragment of dentin sialophosphoprotein (DSPP) aggravates the periodontal defects in Dspp knockout mice. J Oral Biosci 2014; 56:143-148. [PMID: 25386098 DOI: 10.1016/j.job.2014.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
OBJECTIVE Previous studies have shown that dentin sialophosphoprotein (DSPP) is not only essential to the formation and mineralization of dentin but also plays an important role in forming and maintaining a healthy periodontium. Under physiological conditions, DSPP is proteolytically processed into the NH2-terminal and COOH-terminal fragments, and these fragments are believed to perform different functions in the mineralized tissues. Previous studies in our group have demonstrated that the NH2-terminal fragment of DSPP inhibits the formation and mineralization of dentin, while the role of this fragment in periodontium is unclear. METHODS We analyzed the periodontal tissues of the transgenic mice overexpressing the NH2-terminal fragment of DSPP in the Dspp knockout background (referred to as "Dspp KO/DSP Tg" mice), in comparison with wild type mice and Dspp knockout mice. The approaches used in this study included histology, micro-computed tomography, back scattered scanning electron microscopy and resin-casted scanning electron microscopy. RESULTS Dspp KO/DSP Tg mice exhibited a greater reduction of the alveolar bone, more remarkably altered canalicular systems around the osteocytes, less cementum, more radical migration of the epithelial attachment towards the apical direction, and more severe inflammation in molar furcation region, than in the Dspp knockout mice. CONCLUSION Overexpressing the NH2-terminal fragment of DSPP worsened the periodontal defects in Dspp knockout mice, indicating that the NH2-terminal fragment of DSPP may exert an inhibitory role in the formation and mineralization of hard tissues in the periodontium.
Collapse
Affiliation(s)
- Monica Prasad Gibson
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University Baylor College of Dentistry, 3302 Gaston Avenue, Dallas, TX 75246, USA
| | - Priyam Jani
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University Baylor College of Dentistry, 3302 Gaston Avenue, Dallas, TX 75246, USA
| | - Xiaofang Wang
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University Baylor College of Dentistry, 3302 Gaston Avenue, Dallas, TX 75246, USA
| | - Yongbo Lu
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University Baylor College of Dentistry, 3302 Gaston Avenue, Dallas, TX 75246, USA
| | - Chunlin Qin
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University Baylor College of Dentistry, 3302 Gaston Avenue, Dallas, TX 75246, USA
| |
Collapse
|