1
|
May O, Yatime L, Merle NS, Delguste F, Howsam M, Daugan MV, Paul-Constant C, Billamboz M, Ghinet A, Lancel S, Dimitrov JD, Boulanger E, Roumenina LT, Frimat M. The receptor for advanced glycation end products is a sensor for cell-free heme. FEBS J 2020; 288:3448-3464. [PMID: 33314778 DOI: 10.1111/febs.15667] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 11/06/2020] [Accepted: 12/09/2020] [Indexed: 01/01/2023]
Abstract
Heme's interaction with Toll-like receptor 4 (TLR4) does not fully explain the proinflammatory properties of this hemoglobin-derived molecule during intravascular hemolysis. The receptor for advanced glycation end products (RAGE) shares many features with TLR4 such as common ligands and proinflammatory, prothrombotic, and pro-oxidative signaling pathways, prompting us to study its involvement as a heme sensor. Stable RAGE-heme complexes with micromolar affinity were detected as heme-mediated RAGE oligomerization. The heme-binding site was located in the V domain of RAGE. This interaction was Fe3+ -dependent and competitive with carboxymethyllysine, another RAGE ligand. We confirmed a strong basal gene expression of RAGE in mouse lungs. After intraperitoneal heme injection, pulmonary TNF-α, IL1β, and tissue factor gene expression levels increased in WT mice but were significantly lower in their RAGE-/- littermates. This may be related to the lower activation of ERK1/2 and Akt observed in the lungs of heme-treated, RAGE-/- mice. Overall, heme binds to RAGE with micromolar affinity and could promote proinflammatory and prothrombotic signaling in vivo, suggesting that this interaction could be implicated in heme-overload conditions.
Collapse
Affiliation(s)
- Olivia May
- Inserm, Institut Pasteur de Lille, U1167 - RID-AGE, Univ. Lille, France.,CHU Lille, Nephrology Department, Univ. Lille, France.,UMR_S 1138, Centre de Recherche des Cordeliers, INSERM, Paris, France
| | - Laure Yatime
- LPHI, UMR 5235, CNRS, INSERM, University of Montpellier, France
| | - Nicolas S Merle
- UMR_S 1138, Centre de Recherche des Cordeliers, INSERM, Paris, France
| | - Florian Delguste
- Inserm, Institut Pasteur de Lille, U1167 - RID-AGE, Univ. Lille, France
| | - Mike Howsam
- Inserm, Institut Pasteur de Lille, U1167 - RID-AGE, Univ. Lille, France
| | - Marie V Daugan
- UMR_S 1138, Centre de Recherche des Cordeliers, INSERM, Paris, France
| | | | - Muriel Billamboz
- Inserm, Institut Pasteur de Lille, U1167 - RID-AGE, Univ. Lille, France.,Yncréa Hauts-de-France, Ecole des Hautes Etudes d'Ingénieur, Health & Environment Department, Team Sustainable Chemistry, Laboratoire de Chimie Durable et Santé, UCLille, France
| | - Alina Ghinet
- Inserm, Institut Pasteur de Lille, U1167 - RID-AGE, Univ. Lille, France.,Yncréa Hauts-de-France, Ecole des Hautes Etudes d'Ingénieur, Health & Environment Department, Team Sustainable Chemistry, Laboratoire de Chimie Durable et Santé, UCLille, France.,Faculty of Chemistry, 'Alexandru Ioan Cuza' University of Iasi, Romania
| | - Steve Lancel
- Inserm, Institut Pasteur de Lille, U1167 - RID-AGE, Univ. Lille, France
| | - Jordan D Dimitrov
- UMR_S 1138, Centre de Recherche des Cordeliers, INSERM, Paris, France.,UPMC Univ Paris 06, Sorbonne Universités, Paris, France.,Sorbonne Paris Cité, Université Paris Descartes, France
| | - Eric Boulanger
- Inserm, Institut Pasteur de Lille, U1167 - RID-AGE, Univ. Lille, France
| | - Lubka T Roumenina
- UMR_S 1138, Centre de Recherche des Cordeliers, INSERM, Paris, France.,UPMC Univ Paris 06, Sorbonne Universités, Paris, France.,Sorbonne Paris Cité, Université Paris Descartes, France
| | - Marie Frimat
- Inserm, Institut Pasteur de Lille, U1167 - RID-AGE, Univ. Lille, France.,CHU Lille, Nephrology Department, Univ. Lille, France
| |
Collapse
|
2
|
The Prognostic Value of Toll-Like Receptors in Head and Neck Squamous Cell Carcinoma: A Systematic Review and Meta-Analysis. Int J Mol Sci 2020; 21:ijms21197255. [PMID: 33008143 PMCID: PMC7582583 DOI: 10.3390/ijms21197255] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 12/29/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a group of tumours which exhibit low 5 year survival rates. Thus, there is an urgent need to identify biomarkers that may improve the clinical utility of patients with HNSCC. Emerging studies support a role of toll-like receptors (TLRs) in carcinogenesis. Therefore, this systematic review and meta-analysis was performed to assess the prognostic value of TLR immunoexpression in HNSCC patients. We compiled the results of thirteen studies comprising 1825 patients, of which six studies were deemed qualified for quantitative synthesis. The higher immunoexpression of TLR-1 to 5 and 9 was associated with a worsening of the clinical parameters of patients with HNSCC. Furthermore, induced levels of TLR-3, 4, 5, 7 and 9 were found to predict the patients' survival time. The meta-analysis revealed that TLR-7 overexpression is associated with a decreased mortality risk in HNSCC patients (HR 0.51; 95%CI 0.13-0.89; I2 34.6%), while a higher expression of TLR-5 predicted shorter, but non-significant, survival outcome. In conclusion, this review suggests that TLRs may represent some prognostic value for patients with HNSCC. However, due to small sample sizes and other inherent methodological limitations, more well designed studies across different populations are still needed before TLRs can be recommended as a reliable clinical risk-stratification tool.
Collapse
|
3
|
Li R, Zhang J, Pan S, Yuan Y, Qi H, Shu H, Hu Y, Ren L, Jiang Y, Yuan S. HMGB1 aggravates lipopolysaccharide-induced acute lung injury through suppressing the activity and function of Tregs. Cell Immunol 2020; 356:104192. [PMID: 32853967 DOI: 10.1016/j.cellimm.2020.104192] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 07/31/2020] [Accepted: 08/02/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND CD4+CD25+FoxP3+ T helper cells (Tregs), a subgroup of CD4+ T helper cells, are critical effectors that protect against acute lung injury (ALI) by contact-dependent suppression or releasing anti-inflammatory cytokines including interleukin-10 (IL-10), and transforming growth factor (TGF-β). HMGB1 (High mobility group box 1 protein) was identified as a nuclear non-histone DNA-binding chromosomal protein, which participates in the regulation of lung inflammatory response and pathological processes in ALI. Previous studies have suggested that Tregs overexpresses the HMGB1-recognizing receptor. However, the interaction of HMGB1 with Tregs in ALI is still unclear. OBJECTIVE To investigate whether HMGB1 aggravates ALI by suppressing immunosuppressive function of Tregs. METHODS Anti-HMGB1 antibody and recombinant mouse HMGB1 (rHMGB1) were administered in lipopolysaccharide (LPS)-induced ALI mice and polarized LPS-primed Tregs in vitro. The Tregs pre-stimulated with or without rHMGB1 were adoptively transferred to ALI mice and depleted by Diphtheria toxin (DT). For coculture experiment, isolated Tregs were first pre-stimulated with or without rHMGB1 or anti-HMGB1 antibody, then they were cocultured with bone marrow-derived macrophages (BMMs) under LPS stimulation. RESULTS Tregs protected against acute lung pathological injury. HMGB1 modulated the suppressive function of Tregs as follows: reduction in the number of the cells and the activity of Tregs, the secretion of anti-inflammatory cytokines (IL-10, TGF-β) from Tregs, the production of IL-2 from CD4+ T cells and CD11c+ DCs, and the M2 polarization of macrophages, as well as inducing proinflammatory response of macrophages. CONCLUSIONS HMGB1 could aggravate LPS induced-ALI through suppressing the activity and function of Tregs.
Collapse
Affiliation(s)
- Ruiting Li
- Department of Critical Care Medicine, Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, PR China
| | - Jiancheng Zhang
- Department of Critical Care Medicine, Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, PR China
| | - Shangwen Pan
- Department of Critical Care Medicine, Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, PR China
| | - Yin Yuan
- Department of Critical Care Medicine, Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, PR China
| | - Hong Qi
- Department of Critical Care Medicine, Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, PR China
| | - Huaqing Shu
- Department of Critical Care Medicine, Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, PR China
| | - Yingying Hu
- Department of Critical Care Medicine, Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, PR China
| | - Lehao Ren
- Department of Critical Care Medicine, Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, PR China
| | - Yongxiang Jiang
- Department of Critical Care Medicine, Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, PR China
| | - Shiying Yuan
- Department of Critical Care Medicine, Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, PR China.
| |
Collapse
|
4
|
Salem A, Salo T. Nothing to sneeze at: Histamine and histamine receptors in oral carcinogenesis. Oral Dis 2020; 27:1090-1096. [PMID: 32395857 DOI: 10.1111/odi.13411] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/01/2020] [Accepted: 05/05/2020] [Indexed: 12/25/2022]
Abstract
Oral squamous cell carcinoma (OSCC), the most common oral malignancy, shows an increasing rate of incidence worldwide. In spite of the recent advances in cancer research, OSCC therapy continues to have unfavourable outcomes, and thus, patient's prognosis remains relatively poor. Current research has been devoted to identifying novel therapeutic targets also in the tumour microenvironment (TME). Histamine and its G-protein-coupled receptors (H1R-H4R) play vital roles in multiple cancer-associated processes in TME, where histamine is mainly produced by mast cells. However, oral epithelial cells were recently shown to produce low concentrations of histamine in autocrine and paracrine modes. These findings, together with the discovery of the high-affinity histamine H4 receptor, have led to a massive increase in our understanding of histamine functions. In this review, we aim to summarize the most recent findings regarding histamine and its receptors and their involvement in oral carcinogenesis-from oral potentially malignant disorders (OPMDs) to invasive OSCC. Importantly, histamine receptors are differentially expressed in OPMDs and OSCC. Furthermore, H1R and H4R are associated with clinicopathological characteristics of OSCC patients, suggesting a role in prognosis. Due to the enormous success of histamine-based medications, histamine receptors may also represent promising and viable drug targets in oral cancer.
Collapse
Affiliation(s)
- Abdelhakim Salem
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, Helsinki, Finland.,Translational Immunology Research Program (TRIMM), Research Program Unit (RPU), University of Helsinki, Helsinki, Finland
| | - Tuula Salo
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, Helsinki, Finland.,Translational Immunology Research Program (TRIMM), Research Program Unit (RPU), University of Helsinki, Helsinki, Finland.,Cancer and Translational Medicine Research Unit, University of Oulu, Oulu, Finland.,Oulu University Hospital, Oulu, Finland.,Helsinki University Hospital (HUS), Helsinki, Finland
| |
Collapse
|
5
|
Tang Y, Duan J, Wang Y, Yuan L. Associations of HMGB1 gene polymorphisms with risk of coal workers' pneumoconiosis susceptibility in Chinese Han population. Inhal Toxicol 2020; 32:170-176. [PMID: 32408780 DOI: 10.1080/08958378.2020.1764153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background: High-mobility group box 1 (HMGB1) protein plays an important pathogenic role in various diseases such as pulmonary fibrosis. However, the relationship between variation of HMGB1 gene and susceptibility to coal worker's pneumoconiosis (CWP) remains unclear. The objective of the study was to determine the association between HMGB1 polymorphisms and CWP in Chinese Han population.Methods: The genotypes of HMGB1 gene rs1045411, rs2249825, rs1412125 and rs1360485 in 340 CWP patients and 312 healthy controls were determined and serum HMGB1 levels were detected.Results: Our finding showed that the HMGB1 rs1360485 G allele increased the risk of CWP in comparison with A allele (P = 0.005). HMGB1 rs1360485 GG genotype as well as AG+GG genotype increased the risk of CWP in comparison with AA genotype (P = 0.010, P = 0.025, respectively). Four haplotypes were identified and we found that the GCTA haplotype was associated with resistance to CWP (P = 0.005), while GCTG haplotype was associated with risk to CWP (P<0.001). Meanwhile, multifactor dimensionality reduction (MDR) analysis showed that the interaction between rs1360485 and exposure had the strongest, followed by rs2249825 and rs1412125. This study also found that the serum HMGB1 levels of the case group were significantly higher than that of the control group, and the serum HMGB1 levels of homozygous subjects with rs1360485 mutant were higher than that of the heterozygous wild type, respectively (P<0.001). Meanwhile, the levels of HMGB1 with GCTA haplotype was lower than with GCTG haplotype (P<0.001)Conclusion: Our findings indicated that HMGB1 gene rs1360485 polymorphism was associated with the susceptibility to CWP in Chinese Han population.
Collapse
Affiliation(s)
- Yijun Tang
- Department of Respiratory and Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Jingzhu Duan
- Department of Respiratory and Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Yun Wang
- Department of Respiratory and Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Leyong Yuan
- Department of Respiratory and Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China.,Department of Immunology, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China
| |
Collapse
|
6
|
Salem A, Almahmoudi R, Hagström J, Stark H, Nordström D, Salo T, Eklund KK. Human β-Defensin 2 Expression in Oral Epithelium: Potential Therapeutic Targets in Oral Lichen Planus. Int J Mol Sci 2019; 20:ijms20071780. [PMID: 30974892 PMCID: PMC6479702 DOI: 10.3390/ijms20071780] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/02/2019] [Accepted: 04/09/2019] [Indexed: 12/24/2022] Open
Abstract
Human β-defensin 2 (hBD-2) is a potent antimicrobial peptide that participates in defense against invading bacteria. We recently showed that bacterial components and histamine, through histamine H4 receptor (H4R), are involved in the pathogenesis of the potentially malignant lesion, oral lichen planus (OLP). However, the underlying mechanisms remain unknown. We, therefore, investigated the role of hBD2–histamine crosstalk signaling in promoting OLP pathology. Biopsies from OLP and oral tongue squamous cell carcinoma (OTSCC) patients, and healthy controls were used. Two OTSCC cell lines and normal human oral keratinocytes (HOKs) were used. HBD-2 and other targets were mapped by immunostaining and analyzed by ImageJ2 software. The highly sensitive droplet-digital PCR technology and qRT-PCR were utilized to study the clinically derived and in vitro samples, respectively. H4R was challenged with the specific agonist HST-10 and inverse agonist ST-1007. HBD-2 was highly induced in OLP lesions. In contrast, hBD2 expression was attenuated in OTSCC tissues, while very low levels of hBD-2 messenger RNA (mRNA) were observed in OTSCC cells. Together with tumor necrosis factor-α (TNF-α), histamine upregulated hBD-2 mRNA expression in HOKs. Activation of H4R seems to modulate the expression of epithelial hBD-2. These findings suggest the involvement of hBD-2 in the pathogenesis of OLP and may, thus, be harnessed for therapeutic interventions in OLP.
Collapse
Affiliation(s)
- Abdelhakim Salem
- Department of Clinical Medicine, Clinicum, University of Helsinki, 00014 Helsinki, Finland.
- Translational Immunology Research Program, University of Helsinki, 00014 Helsinki, Finland.
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, 00014 Helsinki, Finland.
| | - Rabeia Almahmoudi
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, 00014 Helsinki, Finland.
| | - Jaana Hagström
- Department of Pathology, Helsinki University Hospital, Helsinki, Finland and Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland.
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany.
| | - Dan Nordström
- Department of Internal Medicine, Helsinki University and Helsinki Hospital, 00014 Helsinki, Finland.
| | - Tuula Salo
- Translational Immunology Research Program, University of Helsinki, 00014 Helsinki, Finland.
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, 00014 Helsinki, Finland.
- Medical Research Centre, Oulu University Hospital, 90220 Oulu, Finland.
- Cancer and Translational Medicine Research Unit, University of Oulu, FI-90014 Oulu, Finland.
| | - Kari K Eklund
- Translational Immunology Research Program, University of Helsinki, 00014 Helsinki, Finland.
- Department of Internal Medicine, Helsinki University and Helsinki Hospital, 00014 Helsinki, Finland.
- Department of Rheumatology, Helsinki University and Helsinki University Hospital, and Orton Orthopedic Hospital and Research Institute, 00014 Helsinki, Finland.
| |
Collapse
|
7
|
Domingues R, Pietrobon AJ, Carvalho GC, Pereira NZ, Pereira NV, Sotto MN, Aoki V, Duarte AJS, Sato MN. Lichen planus: altered AIM2 and NLRP1 expression in skin lesions and defective activation in peripheral blood mononuclear cells. Clin Exp Dermatol 2018; 44:e89-e95. [PMID: 30552699 DOI: 10.1111/ced.13859] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2018] [Indexed: 12/27/2022]
Abstract
BACKGROUND Lichen planus (LP) is an inflammatory skin disease with unknown aetiology. Activation by pathogen-associated molecular patterns or environmental stimuli may activate some components of inflammasomes that contribute to the inflammatory process in LP lesions. AIM To characterize the inflammasomes in skin lesions and peripheral blood mononuclear cells (PBMCs) of patients with LP under Toll-like receptor (TLR) activation. METHODS In total, 15 patients with LP and 14 healthy controls (HCs) were enrolled in the study. Inflammasome expression in skin was evaluated by real-time PCR and immunohistochemistry, while ELISA was used to assess the production of interleukin (IL)-1β by PBMCs under stimulation with TLR4 and TLR7/TLR8 agonists and adenosine triphosphate (ATP). RESULTS Compared with the levels in HC samples, increased expression of the inflammasome AIM2 was verified in both epidermal and dermal sections of LP skin lesions, whereas NLRP1 and IL-β expression levels were enhanced in the dermis. LP skin lesion samples exhibited higher AIM2 transcript levels, similar NLRP1 levels and lower pro-IL-1β mRNA levels compared with HC samples. We verified that, compared with PBMCs from HC subjects, PBMCs from patients with LP produced similar amounts of IL-1β after induction by TLR4 agonists but lower IL-1β levels after induction by TLR7/TLR8 agonists, regardless of the addition of ATP. CONCLUSION Alterations in innate immunity, such as inflammasome component expression in skin lesions and PBMCs, were observed in patients with LP. Further investigations of dysfunctional inflammasome activation and the chronic inflammatory status of LP are required.
Collapse
Affiliation(s)
- R Domingues
- Laboratory of Investigation in Medicine, LIM-56, Department of Dermatology, Tropical Medicine Institute of São Paulo, University of São Paulo Medical School, São Paulo, Brazil
| | - A J Pietrobon
- Laboratory of Investigation in Medicine, LIM-56, Department of Dermatology, Tropical Medicine Institute of São Paulo, University of São Paulo Medical School, São Paulo, Brazil
| | - G C Carvalho
- Laboratory of Investigation in Medicine, LIM-56, Department of Dermatology, Tropical Medicine Institute of São Paulo, University of São Paulo Medical School, São Paulo, Brazil
| | - N Z Pereira
- Laboratory of Investigation in Medicine, LIM-56, Department of Dermatology, Tropical Medicine Institute of São Paulo, University of São Paulo Medical School, São Paulo, Brazil
| | - N V Pereira
- Laboratory of Investigation in Medicine, LIM-56, Department of Dermatology, Tropical Medicine Institute of São Paulo, University of São Paulo Medical School, São Paulo, Brazil
| | - M N Sotto
- Department of Pathology, University of São Paulo Medical School, São Paulo, Brazil
| | - V Aoki
- Laboratory of Investigation in Medicine, LIM-56, Department of Dermatology, Tropical Medicine Institute of São Paulo, University of São Paulo Medical School, São Paulo, Brazil
| | - A J S Duarte
- Laboratory of Investigation in Medicine, LIM-56, Department of Dermatology, Tropical Medicine Institute of São Paulo, University of São Paulo Medical School, São Paulo, Brazil.,Department of Pathology, University of São Paulo Medical School, São Paulo, Brazil
| | - M N Sato
- Laboratory of Investigation in Medicine, LIM-56, Department of Dermatology, Tropical Medicine Institute of São Paulo, University of São Paulo Medical School, São Paulo, Brazil
| |
Collapse
|