1
|
Scheppke KA, Pepe PE, Garay SA, Coyle CW, Antevy PM, Perlmutter MC, Scheppke EK, Crowe RP. Effectiveness of Ketamine As a Rescue Drug for Patients Experiencing Benzodiazepine-Resistant Status Epilepticus in the Prehospital Setting. Crit Care Explor 2024; 6:e1186. [PMID: 39642307 PMCID: PMC11627481 DOI: 10.1097/cce.0000000000001186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2024] Open
Abstract
OBJECTIVES Accumulating basic science data, early clinical findings and various feasibility considerations have provided rationales for administering ketamine as a proposed rescue medication for midazolam-resistant status epilepticus (SE) in the logistically challenging prehospital environment. This report details the multiyear experience of paramedics managing midazolam-resistant SE following the introduction of a ketamine-rescue protocol. DESIGN A 7-year, population-based, observational study was conducted to evaluate outcomes of patients treated with IV, intraosseous, intramuscular, or intranasal ketamine for SE despite sufficient midazolam dosings. Tracked outcomes included: 1) rapid/sustained termination of clinical seizures in adults while under paramedics' care; 2) corresponding evaluations in children/adolescents; 3) any concerning observations regarding need for assisted ventilation, intubation, or other active interventions post-ketamine; and 4) any identifiable associations between outcomes and circumstances, demographics, or medical history. SETTING Emergency response 9-1-1 system serving a large, diverse U.S. county (jurisdictional population, 961,000/1,769 sq miles). PATIENTS Those receiving ketamine from paramedics for persistent seizures. INTERVENTIONS Adults and adolescents: 100 mg ketamine IV/intraosseous/intramuscular/intranasal; children: 1 mg/kg intramuscular/intranasal. MEASUREMENTS AND MAIN RESULTS Among 81 total cases, 57 involved adults (18-86 yr old) receiving the SE-midazolam + ketamine protocol. Ketamine rapidly terminated convulsions in 56 (98.2%) without recurrence during prehospital and hospital arrival phases. For approved reasons, paramedics administered ketamine directly (no midazolam) in eight adults and one child, terminating convulsions in every case. Among 15 childhood/adolescent cases treated per protocol, ketamine rapidly terminated SE activity in 11, but only mitigated it in four, including two retrospectively judged to involve nonseizure activity and two involving intranasal administration. Among all 81 ketamine-treated cases, there were no identifiable clinically significant complications attributable to ketamine, particularly the need for any additional active interventions. CONCLUSIONS Ketamine appeared to be consistently effective in treating adults with ongoing out-of-hospital seizures that were resistant to sufficient dosings of midazolam. Similar results were observed in children/adolescents.
Collapse
Affiliation(s)
- Kenneth A. Scheppke
- Palm Beach County Fire Rescue, Palm Beach County, West Palm Beach, FL
- Florida Department of Health, Tallahassee, FL
| | - Paul E. Pepe
- Palm Beach County Fire Rescue, Palm Beach County, West Palm Beach, FL
- Department of Management, Policy and Community Health, University of Texas Health Sciences Center, School of Public Health, Houston, TX
- Coral Springs/Parkland Fire Department, City of Coral Springs, FL
| | | | - Charles W. Coyle
- Palm Beach County Fire Rescue, Palm Beach County, West Palm Beach, FL
| | - Peter M. Antevy
- Palm Beach County Fire Rescue, Palm Beach County, West Palm Beach, FL
- Coral Springs/Parkland Fire Department, City of Coral Springs, FL
| | | | | | - Remle P. Crowe
- Department of Clinical and Operational Research, ESO, Austin, TX
| |
Collapse
|
2
|
Aroniadou-Anderjaska V, Figueiredo TH, De Araujo Furtado M, Pidoplichko VI, Lumley LA, Braga MFM. Alterations in GABA A receptor-mediated inhibition triggered by status epilepticus and their role in epileptogenesis and increased anxiety. Neurobiol Dis 2024; 200:106633. [PMID: 39117119 DOI: 10.1016/j.nbd.2024.106633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024] Open
Abstract
The triggers of status epilepticus (SE) in non-epileptic patients can vary widely, from idiopathic causes to exposure to chemoconvulsants. Regardless of its etiology, prolonged SE can cause significant brain damage, commonly resulting in the development of epilepsy, which is often accompanied by increased anxiety. GABAA receptor (GABAAR)-mediated inhibition has a central role among the mechanisms underlying brain damage and the ensuing epilepsy and anxiety. During SE, calcium influx primarily via ionotropic glutamate receptors activates signaling cascades which trigger a rapid internalization of synaptic GABAARs; this weakens inhibition, exacerbating seizures and excitotoxicity. GABAergic interneurons are more susceptible to excitotoxic death than principal neurons. During the latent period of epileptogenesis, the aberrant reorganization in synaptic interactions that follow interneuronal loss in injured brain regions, leads to the formation of hyperexcitable, seizurogenic neuronal circuits, along with disturbances in brain oscillatory rhythms. Reduction in the spontaneous, rhythmic "bursts" of IPSCs in basolateral amygdala neurons is likely to play a central role in anxiogenesis. Protecting interneurons during SE is key to preventing both epilepsy and anxiety. Antiglutamatergic treatments, including antagonism of calcium-permeable AMPA receptors, can be expected to control seizures and reduce excitotoxicity not only by directly suppressing hyperexcitation, but also by counteracting the internalization of synaptic GABAARs. Benzodiazepines, as delayed treatment of SE, have low efficacy due to the reduction and dispersion of their targets (the synaptic GABAARs), but also because themselves contribute to further reduction of available GABAARs at the synapse; furthermore, benzodiazepines may be completely ineffective in the immature brain.
Collapse
Affiliation(s)
- Vassiliki Aroniadou-Anderjaska
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA; Department of Psychiatry, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA.
| | - Taiza H Figueiredo
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA.
| | - Marcio De Araujo Furtado
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Volodymyr I Pidoplichko
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA.
| | - Lucille A Lumley
- U.S. Army Medical Research Institute of Chemical Defense, Aberdeen, Proving Ground, MD, USA.
| | - Maria F M Braga
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA; Department of Psychiatry, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA.
| |
Collapse
|
3
|
Reddy DS. Neurosteroids as Novel Anticonvulsants for Refractory Status Epilepticus and Medical Countermeasures for Nerve Agents: A 15-Year Journey to Bring Ganaxolone from Bench to Clinic. J Pharmacol Exp Ther 2024; 388:273-300. [PMID: 37977814 PMCID: PMC10801762 DOI: 10.1124/jpet.123.001816] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 10/05/2023] [Accepted: 10/23/2023] [Indexed: 11/19/2023] Open
Abstract
This article describes recent advances in the use of neurosteroids as novel anticonvulsants for refractory status epilepticus (RSE) and as medical countermeasures (MCs) for organophosphates and chemical nerve agents (OPNAs). We highlight a comprehensive 15-year journey to bring the synthetic neurosteroid ganaxolone (GX) from bench to clinic. RSE, including when caused by nerve agents, is associated with devastating morbidity and permanent long-term neurologic dysfunction. Although recent approval of benzodiazepines such as intranasal midazolam and intranasal midazolam offers improved control of acute seizures, novel anticonvulsants are needed to suppress RSE and improve neurologic function outcomes. Currently, few anticonvulsant MCs exist for victims of OPNA exposure and RSE. Standard-of-care MCs for postexposure treatment include benzodiazepines, which do not effectively prevent or mitigate seizures resulting from nerve agent intoxication, leaving an urgent unmet medical need for new anticonvulsants for RSE. Recently, we pioneered neurosteroids as next-generation anticonvulsants that are superior to benzodiazepines for treatment of OPNA intoxication and RSE. Because GX and related neurosteroids that activate extrasynaptic GABA-A receptors rapidly control seizures and offer robust neuroprotection by reducing neuronal damage and neuroinflammation, they effectively improve neurologic outcomes after acute OPNA exposure and RSE. GX has been selected for advanced, Biomedical Advanced Research and Development Authority-supported phase 3 trials of RSE and nerve agent seizures. In addition, in mechanistic studies of neurosteroids at extrasynaptic receptors, we identified novel synthetic analogs with features that are superior to GX for current medical needs. Development of new MCs for RSE is complex, tedious, and uncertain due to scientific and regulatory challenges. Thus, further research will be critical to fill key gaps in evaluating RSE and anticonvulsants in vulnerable (pediatric and geriatric) populations and military persons. SIGNIFICANCE STATEMENT: Following organophosphate and nerve agent intoxication, refractory status epilepticus (RSE) occurs despite benzodiazepine treatment. RSE occurs in 40% of status epilepticus patients, with a 35% mortality rate and significant neurological morbidity in survivors. To treat RSE, neurosteroids are better anticonvulsants than benzodiazepines. Our pioneering use of neurosteroids for RSE and nerve agents led us to develop ganaxolone as a novel anticonvulsant and neuroprotectant with significantly improved neurological outcomes. This article describes the bench-to-bedside journey of bringing neurosteroid therapy to patients, with ganaxolone leading the way.
Collapse
Affiliation(s)
- Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University School of Medicine, Bryan, Texas and Institute of Pharmacology and Neurotherapeutics, Texas A&M University Health Science Center, Bryan, Texas
| |
Collapse
|
4
|
Garcia-Durillo M, Frenguelli BG. Antagonism of P2X7 receptors enhances lorazepam action in delaying seizure onset in an in vitro model of status epilepticus. Neuropharmacology 2023; 239:109647. [PMID: 37459909 DOI: 10.1016/j.neuropharm.2023.109647] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/19/2023] [Accepted: 06/24/2023] [Indexed: 08/06/2023]
Abstract
Approximately 30% of patients with status epilepticus (SE) become refractory to two or more antiseizure medications (ASMs). There is thus a real need to identify novel targets against which to develop new ASMs for treating this clinical emergency. Among purinergic receptors, the ionotropic ATP-gated P2X7 receptor (P2X7R) has received attention as a potential ASM target. This study evaluated the effect of the selective P2X7R antagonist A740003 on acute seizures in the dentate gyrus (DG) of hippocampal brain slices, where P2X7Rs are highly expressed, with a view to establishing the potential of P2X7R antagonists as a therapy or adjunct with lorazepam (LZP) in refractory SE. Extracellular electrophysiological recordings were made from the DG of male mouse hippocampal slices. Spontaneous seizure-like events (SLEs) were induced by removing extracellular Mg2+ and sequentially adding the K+ channel blocker 4-aminopyridine and the adenosine A1 receptor antagonist 8-cyclopentyltheophylline, during which the early and late application of A740003 and/or lorazepam was evaluated. Our study revealed that, in the absence of changes in mRNA for P2X7Rs or inflammatory markers, P2X7R antagonism did not reduce the frequency of SLEs. However, A740003 in conjunction with LZP delayed the onset of seizures. Furthermore, our results support the need for employing LZP before seizures become refractory during SE as delayed application of LZP increased seizure frequency. These studies reveal possible sites of intervention that could have a positive impact in patients with high risk of suffering SE.
Collapse
Affiliation(s)
| | - Bruno G Frenguelli
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, United Kingdom.
| |
Collapse
|
5
|
Cagnotti G, Ferrini S, Di Muro G, Avilii E, Favole A, D’Angelo A. Duration of constant rate infusion with diazepam or propofol for canine cluster seizures and status epilepticus. Front Vet Sci 2023; 10:1247100. [PMID: 37675074 PMCID: PMC10478093 DOI: 10.3389/fvets.2023.1247100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 08/10/2023] [Indexed: 09/08/2023] Open
Abstract
Introduction Constant rate infusion (CRI) of benzodiazepines or propofol (PPF) is a therapeutic option for cluster seizures (CS) and status epilepticus (SE) in canine patients non-responding to first-line benzodiazepines or non-anesthetics. However, specific indications for optimal duration of CRI are lacking. The aim of this study was to determine the effect of duration of anesthetic CRI on outcome and length of hospital stay in dogs with refractory seizure activity of different etiology. Study design Open-label non-randomized clinical trial. Materials and methods Seventy-three client-owned dogs were enrolled. Two groups [experimental (EXP) vs. control (CTRL)] were compared. The EXP group received diazepam (DZP) or PPF CRI for 12 h (±1 h) and the CTRL group received DZP or PPF CRI for 24 h (±1 h) in addition to a standardized emergency treatment protocol identical for both study groups. The historical control group was made up of a population of dogs already reported in a previously published paper by the same authors. Favorable outcome was defined as seizure cessation after CRI, no seizure recurrence, and clinical recovery. Poor outcome was defined as seizure recurrence, death in hospital or no return to acceptable clinical baseline. Univariate statistical analysis was performed. Results The study sample was 73 dogs: 45 (62%) received DZP CRI and 28 (38%) received PPF CRI. The EXP group was 39 dogs (25 DZP CRI and 14 PPF CRI) and the CTRL group 34 dogs (20 DZP CRI and 14 PPF CRI). We found no statistically significant difference in outcomes between the groups. The median length of stay was 56 h (IQR, 40-78) for the ALL EXP group and 58.5 h (IQR, 48-74.5) for the ALL CTRL group (p = 0.8). Conclusion Even though a shorter DZP or PPF CRI duration was not associated with a worse outcome, the study failed to identify a clear superiority of shorter CRI duration on outcome or length of hospital stay in dogs with refractory seizure activity of different etiology.
Collapse
Affiliation(s)
- Giulia Cagnotti
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - Sara Ferrini
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - Giorgia Di Muro
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - Eleonora Avilii
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - Alessandra Favole
- Istituto Zooprofilattico del Piemonte, Liguria e Valle d’Aosta, Turin, Italy
| | - Antonio D’Angelo
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| |
Collapse
|
6
|
Adel SS, Clarke VRJ, Evans-Strong A, Maguire J, Paradis S. Semaphorin 4D induced inhibitory synaptogenesis decreases epileptiform activity and alters progression to Status Epilepticus in mice. Epilepsy Res 2023; 193:107156. [PMID: 37163910 PMCID: PMC10247425 DOI: 10.1016/j.eplepsyres.2023.107156] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 04/13/2023] [Accepted: 04/25/2023] [Indexed: 05/12/2023]
Abstract
Previously we demonstrated that intra-hippocampal infusion of purified, Semaphorin 4D (Sema4D) extracellular domain (ECD) into the mouse hippocampus rapidly promotes formation of GABAergic synapses and decreases seizure susceptibility in mice. Given the relatively fast action of Sema4D treatment revealed by these studies, we sought to determine the time course of Sema4D treatment on hippocampal network activity using an acute hippocampal slice preparation. We performed long-term extracellular recordings from area CA1 encompassing a 2-hour application of Sema4D and found that hippocampal excitation is suppressed for hours following treatment. We also asked if Sema4D treatment could ameliorate seizures in an acute seizure model: the kainic acid (KA) mouse model. We demonstrate that Sema4D treatment delays and suppresses ictal activity, delays the transition to Status Epilepticus (SE), and lessens the severity of SE. Lastly, we sought to explore alternative methods of Sema4D delivery to hippocampus and thus created an Adeno Associated Virus expressing the ECD of Sema4D. Our data reveal that virally delivered, chronically overexpressed Sema4D-ECD promotes GABAergic synapse formation and suppresses ictal activity and progression to SE. These results provide proof of concept that viral delivery of Sema4D is an efficacious and promising delivery method to abate epileptiform activity and progression to SE.
Collapse
Affiliation(s)
- Susannah S Adel
- Department of Biology and Volen Center for Complex Systems, Brandeis University, 415 South St., Waltham, MA 02453, USA
| | - Vernon R J Clarke
- Department of Biology and Volen Center for Complex Systems, Brandeis University, 415 South St., Waltham, MA 02453, USA.
| | - Aidan Evans-Strong
- Neuroscience Department, Tufts University School of Medicine, 136 Harrison Ave., Boston, MA 02111, USA
| | - Jamie Maguire
- Neuroscience Department, Tufts University School of Medicine, 136 Harrison Ave., Boston, MA 02111, USA
| | - Suzanne Paradis
- Department of Biology and Volen Center for Complex Systems, Brandeis University, 415 South St., Waltham, MA 02453, USA.
| |
Collapse
|
7
|
Perlmutter M, Price M, Kothari K, Rafique Z, Rogers Keene K, De La Rosa X, Weinstein E, Patrick C. Prehospital Treatment of Benzodiazepine-Resistant Pediatric Status Epilepticus with Parenteral Ketamine: A Case Series. PREHOSP EMERG CARE 2023; 27:920-926. [PMID: 37276174 DOI: 10.1080/10903127.2023.2221967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 05/26/2023] [Accepted: 05/27/2023] [Indexed: 06/07/2023]
Abstract
We report the initial six pediatric patients treated with ketamine for benzodiazepine-resistant status epilepticus in an urban, ground-based emergency medical services (EMS) system. Evidence for ketamine as a second-line agent for both adult and pediatric refractory seizure activity in the hospital setting has increased over the past decade. The availability of an inexpensive and familiar second-line prehospital anti-epileptic drug option is extremely desirable. We believe these initial data demonstrate promising seizure control effects without significant respiratory depression, indicating a potential role for ketamine in the EMS treatment of pediatric benzodiazepine-refractory seizures.
Collapse
Affiliation(s)
- Michael Perlmutter
- Department of Emergency Medicine, Hennepin County Medical Center, Minneapolis, Minnesota
| | - Mark Price
- Harris County ESD11 Mobile Healthcare, Houston, Texas
| | - Kathryn Kothari
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Zubaid Rafique
- Department of Emergency Medicine, Baylor College of Medicine, Houston, Texas
| | - Kelly Rogers Keene
- Department of Emergency Medicine, Baylor College of Medicine, Houston, Texas
| | | | - Elizabeth Weinstein
- Division of Pediatric Emergency Medicine, Department of Emergency Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Casey Patrick
- Harris County ESD11 Mobile Healthcare, Houston, Texas
| |
Collapse
|
8
|
Morgan LA, Hrachovec JB, Goodkin HP. Pediatric Status Epilepticus: Treat Early and Avoid Delays. Paediatr Drugs 2023:10.1007/s40272-023-00570-1. [PMID: 37178271 DOI: 10.1007/s40272-023-00570-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/28/2023] [Indexed: 05/15/2023]
Abstract
Pediatric convulsive status epilepticus (cSE) is a neurologic emergency with potential for morbidity and mortality. Rapid treatment and escalation of therapies to achieve early seizure control is paramount in preventing complications and providing the best patient outcomes. Although guidelines recommend early treatment, cessation of out-of-hospital SE is undermined by treatment delay and inadequate dosing. Logistical challenges include prompt seizure recognition, first-line benzodiazepine (BZD) availability, comfort and expertise in administration of BZD, and timely arrival of emergency personnel. In-hospital, SE onset is additionally impacted by delays to first- and second-line treatment and availability of resources. This review presents an evidence-based, clinically oriented review of pediatric cSE, including its definitions and treatments. It provides evidence and rationale for timely treatment of first-line BZD treatment followed by prompt escalation to second-line antiseizure medication therapies for established SE. Treatment delays and barriers to care are discussed, with practical considerations for opportunities for areas of improvement in the initial treatment of cSE.
Collapse
Affiliation(s)
- Lindsey A Morgan
- Division of Pediatric Neurology, Department of Neurology, University of Washington, 4800 Sand Point Way NE, Neurology, MB.7.420, Seattle, WA, 98105, USA.
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA.
| | - Jennifer B Hrachovec
- Quality and Clinical Effectiveness, Center for Quality and Patient Safety, Seattle Children's Hospital, Seattle, WA, USA
| | - Howard P Goodkin
- Departments of Neurology and Pediatrics, University of Virginia Health System, Charlottesville, VA, USA
| |
Collapse
|
9
|
Pressey JC, de Saint-Rome M, Raveendran VA, Woodin MA. Chloride transporters controlling neuronal excitability. Physiol Rev 2023; 103:1095-1135. [PMID: 36302178 DOI: 10.1152/physrev.00025.2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Synaptic inhibition plays a crucial role in regulating neuronal excitability, which is the foundation of nervous system function. This inhibition is largely mediated by the neurotransmitters GABA and glycine that activate Cl--permeable ion channels, which means that the strength of inhibition depends on the Cl- gradient across the membrane. In neurons, the Cl- gradient is primarily mediated by two secondarily active cation-chloride cotransporters (CCCs), NKCC1 and KCC2. CCC-mediated regulation of the neuronal Cl- gradient is critical for healthy brain function, as dysregulation of CCCs has emerged as a key mechanism underlying neurological disorders including epilepsy, neuropathic pain, and autism spectrum disorder. This review begins with an overview of neuronal chloride transporters before explaining the dependent relationship between these CCCs, Cl- regulation, and inhibitory synaptic transmission. We then discuss the evidence for how CCCs can be regulated, including by activity and their protein interactions, which underlie inhibitory synaptic plasticity. For readers who may be interested in conducting experiments on CCCs and neuronal excitability, we have included a section on techniques for estimating and recording intracellular Cl-, including their advantages and limitations. Although the focus of this review is on neurons, we also examine how Cl- is regulated in glial cells, which in turn regulate neuronal excitability through the tight relationship between this nonneuronal cell type and synapses. Finally, we discuss the relatively extensive and growing literature on how CCC-mediated neuronal excitability contributes to neurological disorders.
Collapse
Affiliation(s)
- Jessica C Pressey
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Miranda de Saint-Rome
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Vineeth A Raveendran
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Melanie A Woodin
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
10
|
Figueiredo TH, Aroniadou-Anderjaska V, Apland JP, Rossetti K, Braga MFM. Delayed tezampanel and caramiphen treatment but not midazolam protects against long-term neuropathology after soman exposure. Exp Biol Med (Maywood) 2023; 248:612-623. [PMID: 37300407 PMCID: PMC10350803 DOI: 10.1177/15353702231171911] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 03/09/2023] [Indexed: 06/12/2023] Open
Abstract
Prolonged status epilepticus (SE) can cause brain damage; therefore, treatment must be administered promptly after seizure onset to limit SE duration and prevent neuropathology. Timely treatment of SE is not always feasible; this would be particularly true in a mass exposure to an SE-inducing agent such as a nerve agent. Therefore, the availability of anticonvulsant treatments that have neuroprotective efficacy even if administered with a delay after SE onset is an imperative. Here, we compared the long-term neuropathology resulting from acutely exposing 21-day-old male and female rats to the nerve agent soman, and treating them with midazolam (3 mg/kg) or co-administration of tezampanel (10 mg/kg) and caramiphen (50 mg/kg), at 1 h postexposure (~50 min after SE onset). Midazolam-treated rats had significant neuronal degeneration in limbic structures, mainly at one month postexposure, followed by neuronal loss in the basolateral amygdala and the CA1 hippocampal area. Neuronal loss resulted in significant amygdala and hippocampal atrophy, deteriorating from one to six months postexposure. Rats treated with tezampanel-caramiphen had no evidence of neuropathology, except for neuronal loss in the basolateral amygdala at the six-month timepoint. Anxiety was increased only in the midazolam-treated rats, at one, three, and six months postexposure. Spontaneous recurrent seizures appeared only in midazolam-treated rats, at three and six months postexposure in males and only at six months in females. These findings suggest that delayed treatment of nerve agent-induced SE with midazolam may result in long-lasting or permanent brain damage, while antiglutamatergic anticonvulsant treatment consisting of tezampanel and caramiphen may provide full neuroprotection.
Collapse
Affiliation(s)
- Taiza H Figueiredo
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Vassiliki Aroniadou-Anderjaska
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Department of Psychiatry, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - James P Apland
- Neuroscience Program, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD 21010, USA
| | - Katia Rossetti
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Maria FM Braga
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Department of Psychiatry, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| |
Collapse
|
11
|
Buratti S, Giacheri E, Palmieri A, Tibaldi J, Brisca G, Riva A, Striano P, Mancardi MM, Nobili L, Moscatelli A. Ketamine as advanced second-line treatment in benzodiazepine-refractory convulsive status epilepticus in children. Epilepsia 2023; 64:797-810. [PMID: 36792542 DOI: 10.1111/epi.17550] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023]
Abstract
Status epilepticus (SE) is one of the most common neurological emergencies in children. To date, there is no definitive evidence to guide treatment of SE refractory to benzodiazepines. The main objectives of treatment protocols are to expedite therapeutic decisions and to use fast- and short-acting medications without significant adverse effects. Protocols differ among institutions, and most frequently valproate, phenytoin, and levetiracetam are used as second-line treatment. After failure of first- and second-line medications, admission to the intensive care unit and continuous infusion of anesthetics are usually indicated. Ketamine is a noncompetitive N-methyl-D-aspartate receptor antagonist that has been safely used for the treatment of refractory SE in adults and children. In animal models of SE, ketamine demonstrated antiepileptic and neuroprotective properties and synergistic effects with other antiseizure medications. We reviewed the literature to demonstrate the potential role of ketamine as an advanced second-line agent in the treatment of SE. Pharmacological targets, pathophysiology of SE, and the receptor trafficking hypothesis are reviewed and presented. The pharmacology of ketamine is outlined with related properties, advantages, and side effects. We summarize the most recent and relevant publications on experimental and clinical studies on ketamine in SE. Key expert opinion is also reported. Considering the current knowledge on SE pathophysiology, early sequential polytherapy should include ketamine for its wide range of positive assets. Future research and clinical trials on SE pharmacotherapy should focus on the role of ketamine as second-line medication.
Collapse
Affiliation(s)
- Silvia Buratti
- Neonatal and Pediatric Intensive Care Unit, Emergency Department, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Emanuele Giacheri
- Intermediate Care Unit, Emergency Department, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Antonella Palmieri
- Emergency Medicine Unit, Emergency Department, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Jessica Tibaldi
- Emergency Medicine Unit, Emergency Department, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Giacomo Brisca
- Intermediate Care Unit, Emergency Department, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Antonella Riva
- Department of Neuroscience (DINOGMI), University of Genoa, Genoa, Italy
| | - Pasquale Striano
- Department of Neuroscience (DINOGMI), University of Genoa, Genoa, Italy.,Pediatric Neurology and Muscular Disease Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | | | - Lino Nobili
- Department of Neuroscience (DINOGMI), University of Genoa, Genoa, Italy.,Child Neuropsychiatry Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Andrea Moscatelli
- Neonatal and Pediatric Intensive Care Unit, Emergency Department, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| |
Collapse
|
12
|
Chloride ion dysregulation in epileptogenic neuronal networks. Neurobiol Dis 2023; 177:106000. [PMID: 36638891 DOI: 10.1016/j.nbd.2023.106000] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/25/2022] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
GABA is the major inhibitory neurotransmitter in the mature CNS. When GABAA receptors are activated the membrane potential is driven towards hyperpolarization due to chloride entry into the neuron. However, chloride ion dysregulation that alters the ionic gradient can result in depolarizing GABAergic post-synaptic potentials instead. In this review, we highlight that GABAergic inhibition prevents and restrains focal seizures but then reexamine this notion in the context of evidence that a static and/or a dynamic chloride ion dysregulation, that increases intracellular chloride ion concentrations, promotes epileptiform activity and seizures. To reconcile these findings, we hypothesize that epileptogenic pathologically interconnected neuron (PIN) microcircuits, representing a small minority of neurons, exhibit static chloride dysregulation and should exhibit depolarizing inhibitory post-synaptic potentials (IPSPs). We speculate that chloride ion dysregulation and PIN cluster activation may generate fast ripples and epileptiform spikes as well as initiate the hypersynchronous seizure onset pattern and microseizures. Also, we discuss the genetic, molecular, and cellular players important in chloride dysregulation which regulate epileptogenesis and initiate the low-voltage fast seizure onset pattern. We conclude that chloride dysregulation in neuronal networks appears to be critical for epileptogenesis and seizure genesis, but feed-back and feed-forward inhibitory GABAergic neurotransmission plays an important role in preventing and restraining seizures as well.
Collapse
|
13
|
Nickels KC, Wirrell EC. Dravet Syndrome: Don't Hesitate, Just Vaccinate! Neurology 2023; 100:171-173. [PMID: 36323523 DOI: 10.1212/wnl.0000000000201531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 09/21/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Katherine C Nickels
- From the Divisions of Child and Adolescent Neurology and Epilepsy, Department of Neurology, Mayo Clinic, Rochester MN
| | - Elaine C Wirrell
- From the Divisions of Child and Adolescent Neurology and Epilepsy, Department of Neurology, Mayo Clinic, Rochester MN.
| |
Collapse
|
14
|
Novel variants in GABA A receptor subunits: A possible association with benzodiazepine resistance in patients with drug-resistant epilepsy. Epilepsy Res 2023; 189:107056. [PMID: 36469977 DOI: 10.1016/j.eplepsyres.2022.107056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/12/2022] [Accepted: 11/22/2022] [Indexed: 11/24/2022]
Abstract
Benzodiazepines (BDZ) such as diazepam and lorazepam are popular as first-line treatment for acute seizures due to their rapid action and high efficacy. However, long-term usage of BDZ leads to benzodiazepine resistance, a phenomenon whose underlying mechanisms are still being investigated. One of the hypothesised mechanisms contributing to BDZ resistance is the presence of mutations in benzodiazepine-sensitive receptors. While a few genetic variants have been reported previously, knowledge of relevant pathogenic variants is still scarce. We used Sanger Sequencing to detect variants in the ligand-binding domain of BDZ-sensitive GABAA receptor subunits α1-3 and 5 expressed in resected brain tissues of drug-resistant epilepsy (DRE) patients with a history of BDZ resistance and found two previously unreported predicted pathogenic frameshifting variants - NM_000807.4(GABRA2):c.367_368insG and NM_000810.4(GABRA5):c.410del - significantly enriched in these patients. The findings were further explored in resected DRE brain tissues through cellular electrophysiological experiments.
Collapse
|
15
|
DeVine MN, Gordon SE, Press CA. Use of Continuous Ketamine Infusion as an Adjunctive Agent in Young Infants With Refractory and Super Refractory Status Epilepticus: A Case Series. J Pediatr Pharmacol Ther 2023; 28:161-166. [PMID: 37139250 PMCID: PMC10150903 DOI: 10.5863/1551-6776-28.2.161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/24/2022] [Indexed: 05/05/2023]
Abstract
Continuous ketamine infusions have been studied as an adjunctive agent for refractory status epilepticus (RSE) and super refractory status epilepticus (SRSE) in older children and adults. However, minimal information exists on the efficacy, safety, and dosing for continuous ketamine in young infants. We present the clinical course of 3 young infants with RSE and SRSE who received continuous ketamine in conjunction with other antiseizure medications. The condition of these patients was refractory to an average of 6 antiseizure medications before initiation of continuous ketamine infusion. For each patient, a continuous ketamine infusion was initiated at a rate of 1 mg/kg/hr with 1 patient requiring titration to a maximum of 6 mg/kg/hr. In 1 case, the concomitant use of continuous ketamine allowed for a reduction in the benzodiazepine continuous infusion rate. In all cases, ketamine was well tolerated especially in the setting of hemodynamic instability. Ketamine may provide a safe adjunct in the acute setting in severe RSE and SRSE. This is the first case series to document the use of continuous ketamine as a treatment modality in young infants with RSE or SRSE secondary to various underlying etiologies, without adverse events. Further studies are needed to evaluate the long-term safety and efficacy of continuous ketamine in this patient population.
Collapse
Affiliation(s)
| | - Sharon E. Gordon
- Department of Pharmacy (MND, SEG), Children's Hospital Colorado, Aurora, CO
| | - Craig A. Press
- Department of Pediatrics (CAP), Section Child Neurology, University of Colorado Anschutz School of Medicine, Aurora, CO
- Department of Pediatrics and Neurology (CAP), University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| |
Collapse
|
16
|
Perri RGB, Mantello AG, Rosa DS, Beleboni RO. Silencing of the GluN1-NMDA Glutamate Receptor Subunit by Intranasal siRNA Increases the Latency Time for Seizures in the Pilocarpine Rodent Model of Epilepsy. Pharmaceuticals (Basel) 2022; 15:ph15121470. [PMID: 36558924 PMCID: PMC9785971 DOI: 10.3390/ph15121470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022] Open
Abstract
Temporal lobe epilepsy (TLE) is the most prevalent and treatment-refractory type of epilepsy. Among the different mechanisms associated with epileptogenesis, overstimulation of glutamatergic neurotransmission has been associated with the onset and progression of seizures in TLE. Experimental evidence indicates that blocking the N-methyl-D-aspartate (NMDA) receptor or suppressing the expression of its subunit, mainly GluN1, may be effective in preventing epileptic seizures. Small interfering RNA (siRNA) has received attention as a potential therapeutic tool due to the inhibition of gene expression in some diseases. The present work evaluated the potential silencing effect of intranasal administration of an siRNA conjugate against the GluN1 subunit in animals submitted to the pilocarpine model of epilepsy. The results showed that the siRNA conjugate transfection system silences the GluN1 subunit in the hippocampus of rats when administered intranasally. As demonstrated by the RT-qPCR and Western blotting approaches, the silencing of GluN1 was specific for this subunit without affecting the amount of mRNA for other subunits. Silencing increased the latency time for the first tonic-clonic seizure when compared to controls. The overlapping of findings and the validation of the intranasal route as a pharmacological route of siRNA targeting the GluN1 subunit give the work a significant biotechnological interest.
Collapse
Affiliation(s)
| | - Anieli Gaverio Mantello
- Department of Biotechnology, University of Ribeirão Preto, Ribeirão Preto 14096-300, SP, Brazil
| | - Daiane Santos Rosa
- Department of Biotechnology, University of Ribeirão Preto, Ribeirão Preto 14096-300, SP, Brazil
| | - Renê Oliveira Beleboni
- Department of Biotechnology, University of Ribeirão Preto, Ribeirão Preto 14096-300, SP, Brazil
- School of Medicine, University of Ribeirão Preto, Ribeirão Preto 14096-300, SP, Brazil
- Correspondence: ; Tel.: +55-16-3603-6827
| |
Collapse
|
17
|
Cagnotti G, Ferrini S, Muro GD, Borriello G, Corona C, Manassero L, Avilii E, Bellino C, D'Angelo A. Constant rate infusion of diazepam or propofol for the management of canine cluster seizures or status epilepticus. Front Vet Sci 2022; 9:1005948. [PMID: 36467660 PMCID: PMC9713018 DOI: 10.3389/fvets.2022.1005948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/04/2022] [Indexed: 11/04/2023] Open
Abstract
INTRODUCTION Cluster seizures (CS) and status epilepticus (SE) in dogs are severe neurological emergencies that require immediate treatment. Practical guidelines call for constant rate infusion (CRI) of benzodiazepines or propofol (PPF) in patients with seizures not responding to first-line treatment, but to date only few studies have investigated the use of CRI in dogs with epilepsy. STUDY DESIGN Retrospective clinical study. METHODS Dogs that received CRI of diazepam (DZP) or PPF for antiepileptic treatment during hospitalization at the Veterinary Teaching Hospital of the University of Turin for CS or SE between September 2016 and December 2019 were eligible for inclusion. Favorable outcome was defined as cessation of clinically visible seizure activity within few minutes from the initiation of the CRI, no seizure recurrence within 24 h after discontinuation of CRI through to hospital discharge, and clinical recovery. Poor outcome was defined as recurrence of seizure activity despite treatment or death in hospital because of recurrent seizures, catastrophic consequences of prolonged seizures or no return to an acceptable neurological and clinical baseline, despite apparent control of seizure activity. Comparisons between the number of patients with favorable outcome and those with poor outcome in relation to type of CRI, seizure etiology, reason for presentation (CS or SE), sex, previous AED therapy and dose of PPF CRI were carried out. RESULTS A total of 37 dogs, with 50 instances of hospitalization and CRI administered for CS or SE were included in the study. CRI of diazepam (DZP) or PPF was administered in 29/50 (58%) and in 21/50 (42%) instances of hospitalization, respectively. Idiopathic epilepsy was diagnosed in 21/37 (57%), (13/21 tier I and 8/21 tier II); structural epilepsy was diagnosed in 6/37 (16%) of which 4/6 confirmed and 2/6 suspected. A metabolic or toxic cause of seizure activity was recorded in 7/37 (19%). A total of 38/50 (76%) hospitalizations were noted for CS and 12/50 (24%) for SE. In 30/50 (60%) instances of hospitalization, the patient responded well to CRI with cessation of seizure activity, no recurrence in the 24 h after discontinuation of CRI through to hospital discharge, whereas a poor outcome was recorded for 20/50 (40%) cases (DZP CRI in 12/50 and PPF CRI in 8/50). Comparison between the number of patients with favorable outcome and those with poor outcome in relation to type of CRI, seizure etiology, reason for presentation (CS or SE), sex and previous AED therapy was carried out but no statistically significant differences were found. CONCLUSIONS The present study is the first to document administration of CRI of DZP or PPF in a large sample of dogs with epilepsy. The medications appeared to be tolerated without major side effects and helped control seizure activity in most patients regardless of seizure etiology. Further studies are needed to evaluate the effects of CRI duration on outcome and complications.
Collapse
Affiliation(s)
- Giulia Cagnotti
- Department of Veterinary Science, University of Turin, Torino, Italy
| | - Sara Ferrini
- Department of Veterinary Science, University of Turin, Torino, Italy
| | - Giorgia Di Muro
- Department of Veterinary Science, University of Turin, Torino, Italy
| | | | - Cristiano Corona
- Istituto Zooprofilattico del Piemonte, Liguria e Valle d'Aosta, Torino, Italy
| | - Luca Manassero
- Department of Veterinary Science, University of Turin, Torino, Italy
| | - Eleonora Avilii
- Department of Veterinary Science, University of Turin, Torino, Italy
| | - Claudio Bellino
- Department of Veterinary Science, University of Turin, Torino, Italy
| | - Antonio D'Angelo
- Department of Veterinary Science, University of Turin, Torino, Italy
| |
Collapse
|
18
|
Kapur J, Long L, Dixon-Salazar T. Consequences: Bench to home. Epilepsia 2022; 63 Suppl 1:S14-S24. [PMID: 35999173 DOI: 10.1111/epi.17342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/08/2022] [Accepted: 06/08/2022] [Indexed: 01/02/2023]
Abstract
Seizure clusters (also referred to as acute repetitive seizures) consist of several seizures interspersed with brief interictal periods. Seizure clusters can break down γ-aminobutyric acidergic (GABAergic) inhibition of dentate granule cells, leading to hyperactivation. Functional changes to GABAA receptors, which play a vital neuroinhibitory role, can include altered GABAA receptor subunit trafficking and cellular localization, intracellular chloride accumulation, and dysregulation of proteins critical to chloride homeostasis. A reduction in neuroinhibition and potentiation of excitatory neurotransmission in CA1 pyramidal neurons represent pathological mechanisms that underlie seizure clusters. Benzodiazepines are well-established treatments for seizure clusters; however, there remain barriers to appropriate care. At the clinical level, there is variability in seizure cluster definitions, such as the number and/or type of seizures associated with a cluster as well as the interictal duration between seizures. This can lead to delays in diagnosis and timely treatment. There are gaps in understanding between clinicians, their patients, and caregivers regarding acute treatment for seizure clusters, such as the use of rescue medications and emergency services. This lack of consensus to define seizure clusters in addition to a lack of education for appropriate treatment can affect quality of life for patients and place a greater burden on patient families and caregivers. For patients with seizure clusters, the sense of unpredictability can lead to continuous traumatic stress, during which patients and families live with a heightened level of anxiety. Clinicians can affect patient quality of life and clinical outcomes through improved seizure cluster education and treatment, such as the development and implementation of a personalized seizure action plan as well as prescriptions for suitable rescue medications indicated for seizure clusters and instructions for their proper use. In all, the combination of targeted therapy along with patient education and support can improve quality of life.
Collapse
Affiliation(s)
- Jaideep Kapur
- Department of Neurology, University of Virginia, Charlottesville, Virginia, USA
| | - Lucretia Long
- Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| | | |
Collapse
|
19
|
Figueiredo TH, Aroniadou-Anderjaska V, Pidoplichko VI, Apland JP, Braga MFM. Antiseizure and Neuroprotective Efficacy of Midazolam in Comparison with Tezampanel (LY293558) against Soman-Induced Status Epilepticus. TOXICS 2022; 10:409. [PMID: 35893842 PMCID: PMC9330837 DOI: 10.3390/toxics10080409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 12/12/2022]
Abstract
Acute exposure to nerve agents induces status epilepticus (SE), which can cause death or long-term brain damage. Diazepam is approved by the FDA for the treatment of nerve agent-induced SE, and midazolam (MDZ) is currently under consideration to replace diazepam. However, animal studies have raised questions about the neuroprotective efficacy of benzodiazepines. Here, we compared the antiseizure and neuroprotective efficacy of MDZ (5 mg/kg) with that of tezampanel (LY293558; 10 mg/kg), an AMPA/GluK1 receptor antagonist, administered 1 h after injection of the nerve agent, soman (1.2 × LD50), in adult male rats. Both of the anticonvulsants promptly stopped SE, with MDZ having a more rapid effect. However, SE reoccurred to a greater extent in the MDZ-treated group, resulting in a significantly longer total duration of SE within 24 h post-exposure compared with the LY293558-treated group. The neuroprotective efficacy of the two drugs was studied in the basolateral amygdala, 30 days post-exposure. Significant neuronal and inter-neuronal loss, reduced ratio of interneurons to the total number of neurons, and reduction in spontaneous inhibitory postsynaptic currents accompanied by increased anxiety were found in the MDZ-treated group. The rats treated with LY293558 did not differ from the control rats (not exposed to soman) in any of these measurements. Thus, LY293558 has significantly greater efficacy than midazolam in protecting against prolonged seizures and brain damage caused by acute nerve agent exposure.
Collapse
Affiliation(s)
- Taiza H. Figueiredo
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (T.H.F.); (V.A.-A.); (V.I.P.)
| | - Vassiliki Aroniadou-Anderjaska
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (T.H.F.); (V.A.-A.); (V.I.P.)
- Department of Psychiatry, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Volodymyr I. Pidoplichko
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (T.H.F.); (V.A.-A.); (V.I.P.)
| | - James P. Apland
- Neuroscience Branch, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Aberdeen, MD 21010, USA;
| | - Maria F. M. Braga
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (T.H.F.); (V.A.-A.); (V.I.P.)
- Department of Psychiatry, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| |
Collapse
|
20
|
Khoujah D, Chang WTW. The emergency neurology literature 2020. Am J Emerg Med 2022; 54:1-7. [DOI: 10.1016/j.ajem.2022.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/03/2022] [Accepted: 01/10/2022] [Indexed: 10/19/2022] Open
|
21
|
Cheung DL, Cooke MJ, Goulton CS, Chaichim C, Cheung LF, Khoshaba A, Nabekura J, Moorhouse AJ. Global transgenic upregulation of KCC2 confers enhanced diazepam efficacy in treating sustained seizures. Epilepsia 2021; 63:e15-e22. [PMID: 34791657 DOI: 10.1111/epi.17097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/25/2021] [Accepted: 09/29/2021] [Indexed: 11/30/2022]
Abstract
Reduced anticonvulsant efficacy of benzodiazepines is a problem in the treatment of status epilepticus, with up to 50% of patients failing to respond to their first dose. KCC2 is a neuronal K+ -Cl- co-transporter that helps set and maintain intracellular Cl- concentrations. KCC2 functional downregulation is a potential contributor to benzodiazepine resistance. We tested this idea using male and female doxycycline-inducible, conditional transgenic mice to increase the functional expression of KCC2 in pyramidal neurons. We administered mice with two doses of the chemoconvulsant kainic acid (5 mg/kg, i.p.) 60 min apart and quantified the resultant seizures with electroencephalography (EEG) recordings. Overexpression of KCC2 prior to the chemoconvulsant challenge did not affect seizure latency or other measures of seizure severity, but it did increase diazepam's efficacy in stopping EEG seizures. Spike rate, time in seizure, and EEG spectral power following diazepam (5 mg/kg, i.p) were all significantly lower in KCC2 overexpression mice as compared to control mice. Our results indicate that, in the context of benzodiazepine resistance during sustained seizures, addressing impaired Cl- homeostasis alone appreciably improves the efficacy of γ-aminobutyric acid (GABA)ergic inhibition. We therefore suggest the simultaneous targeting of KCC2 and GABAA receptors as a pathway for improving current anticonvulsant therapeutic strategies.
Collapse
Affiliation(s)
- Dennis L Cheung
- Department of Physiology, School of Medical Sciences, Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia.,Division of Homeostatic Development, Department of Fundamental Neuroscience, National Institute for Physiological Sciences, Okazaki, Japan
| | - Matthew J Cooke
- School of Electrical Engineering and Telecommunications, Faculty of Engineering, UNSW Sydney, Sydney, New South Wales, Australia
| | - Chelsea S Goulton
- Department of Physiology, School of Medical Sciences, Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia.,School of Psychology, Faculty of Science, UNSW Sydney, Sydney, New South Wales, Australia
| | - Chanchanok Chaichim
- Department of Physiology, School of Medical Sciences, Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia
| | - Louis F Cheung
- School of Computer Science and Engineering, Faculty of Engineering, University of New South Wales, Sydney, New South Wales, Australia
| | - Ashor Khoshaba
- Department of Physiology, School of Medical Sciences, Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia
| | - Junichi Nabekura
- Division of Homeostatic Development, Department of Fundamental Neuroscience, National Institute for Physiological Sciences, Okazaki, Japan
| | - Andrew J Moorhouse
- Department of Physiology, School of Medical Sciences, Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
22
|
Gorsky K, Cuninghame S, Chen J, Jayaraj K, Withington D, Francoeur C, Slessarev M, Jerath A. Use of inhalational anaesthetic agents in paediatric and adult patients for status asthmaticus, status epilepticus and difficult sedation scenarios: a protocol for a systematic review. BMJ Open 2021; 11:e051745. [PMID: 34758996 PMCID: PMC8587357 DOI: 10.1136/bmjopen-2021-051745] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
INTRODUCTION Inhaled volatile anaesthetics have a long tradition of use as hypnotic agents in operating rooms and are gaining traction as sedatives in intensive care units (ICUs). However, uptake is impeded by low familiarity with volatiles, unique equipment and education needs. Inhaled anaesthetics are often reserved in ICUs as therapies for refractory and life threatening status asthmaticus, status epilepticus, high and difficult sedation need scenarios given they possess unique pharmacological properties to manage these medical conditions while providing sedation to acutely ill patients. The objective of this systematic review is to collate evidence regarding the efficacy, safety and feasibility of volatile anaesthetics in adult and paediatric ICU patients for these three emergency conditions. METHODS AND ANALYSIS We will conduct a systematic review of the primary studies in adult and paediatric ICU patients with status asthmaticus, status epilepticus and high/difficult sedation needs. We will include observational and interventional studies published from 1970 to 2021 in English or French investigating patients who have received a volatile inhalational agent for the above indications. We will evaluate the efficacy, safety, feasibility and implementation barriers for the volatile anaesthetics for each of three specified indications. Included studies will not be limited by necessity of a comparator arm. We will also evaluate clinical characteristics, patient demographics and provider attitudes towards volatile anaesthetic administration in defined critical care scenarios. Data will be extracted and analysed across these domains. The databases MEDLINE, EMBASE, the Science Citation Index as well as the Cochrane Central Controlled Trials Register will be queried with our search strategy.Descriptive and statistical analysis will be employed where appropriate. Data extraction and quality assessment will be performed in duplicate using a standardised tool. A narrative approach and statistical analyses will be used to describe patient characteristics, volatile efficacy, safety concerns, technical administration, attitudes towards administration and other implementation barriers. ETHICS AND DISSEMINATION No ethics board approval will be necessary for this systematic review. This research is independently funded. Results will be disseminated in a peer-reviewed journal and conference presentation. PROSPERO NUMBER CRD42021233083.
Collapse
Affiliation(s)
- Kevin Gorsky
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Sean Cuninghame
- Department of Medicine, University of Western Ontario, London, Ontario, Canada
| | - Jennifer Chen
- Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
| | - Kesikan Jayaraj
- University of Toronto Faculty of Medicine, Toronto, Ontario, Canada
| | - Davinia Withington
- Department of Anesthesiology, McGill University Faculty of Medicine, Montreal, Quebec, Canada
| | - Conall Francoeur
- Department of Pediatrics, Laval University Faculty of Medicine, Quebec, Canada
| | - Marat Slessarev
- Department of Medicine, University of Western Ontario, London, Ontario, Canada
- The Brain Institute, Western University, London, Ontario, Canada
| | - Angela Jerath
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Anesthesia, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| |
Collapse
|
23
|
Morgan JE, Wilson SC, Travis BJ, Bagri KH, Pagarigan KT, Belski HM, Jackson C, Bounader KM, Coppola JM, Hornung EN, Johnson JE, McCarren HS. Refractory and Super-Refractory Status Epilepticus in Nerve Agent-Poisoned Rats Following Application of Standard Clinical Treatment Guidelines. Front Neurosci 2021; 15:732213. [PMID: 34566572 PMCID: PMC8462486 DOI: 10.3389/fnins.2021.732213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/16/2021] [Indexed: 12/24/2022] Open
Abstract
Nerve agents (NAs) induce a severe cholinergic crisis that can lead to status epilepticus (SE). Current guidelines for treatment of NA-induced SE only include prehospital benzodiazepines, which may not fully resolve this life-threatening condition. This study examined the efficacy of general clinical protocols for treatment of SE in the specific context of NA poisoning in adult male rats. Treatment with both intramuscular and intravenous benzodiazepines was entirely insufficient to control SE. Second line intervention with valproate (VPA) initially terminated SE in 35% of rats, but seizures always returned. Phenobarbital (PHB) was more effective, with SE terminating in 56% of rats and 19% of rats remaining seizure-free for at least 24 h. The majority of rats demonstrated refractory SE (RSE) and required treatment with a continuous third-line anesthetic. Both ketamine (KET) and propofol (PRO) led to high levels of mortality, and nearly all rats on these therapies had breakthrough seizure activity, demonstrating super-refractory SE (SRSE). For the small subset of rats in which SE was fully resolved, significant improvements over controls were observed in recovery metrics, behavioral assays, and brain pathology. Together these data suggest that NA-induced SE is particularly severe, but aggressive treatment in the intensive care setting can lead to positive functional outcomes for casualties.
Collapse
Affiliation(s)
- Julia E Morgan
- Neuroscience Department, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, United States
| | - Sara C Wilson
- Neuroscience Department, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, United States
| | - Benjamin J Travis
- Neuroscience Department, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, United States
| | - Kathryn H Bagri
- Neuroscience Department, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, United States
| | - Kathleen T Pagarigan
- Neuroscience Department, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, United States
| | - Hannah M Belski
- Neuroscience Department, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, United States
| | - Cecelia Jackson
- Neuroscience Department, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, United States
| | - Kevin M Bounader
- Neuroscience Department, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, United States
| | - Jessica M Coppola
- Neuroscience Department, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, United States
| | - Eden N Hornung
- Neuroscience Department, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, United States
| | - James E Johnson
- Comparative Pathology Department, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, United States
| | - Hilary S McCarren
- Neuroscience Department, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, United States
| |
Collapse
|
24
|
Lee KL, Abiraman K, Lucaj C, Ollerhead TA, Brandon NJ, Deeb TZ, Maguire J, Moss SJ. Inhibiting with-no-lysine kinases enhances K+/Cl- cotransporter 2 activity and limits status epilepticus. Brain 2021; 145:950-963. [PMID: 34528073 DOI: 10.1093/brain/awab343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 06/25/2021] [Accepted: 08/14/2021] [Indexed: 11/12/2022] Open
Abstract
First-in-line benzodiazepine treatment fails to terminate seizures in about 30% of epilepsy patients, highlighting a need for novel antiseizure strategies. Impaired GABAergic inhibition is key to the development of such benzodiazepine-resistant seizures, as well as the pathophysiology of status epilepticus (SE). It is emerging that reduced or impaired neuronal K+/Cl- cotransporter 2 (KCC2) activity contributes to deficits in γ-aminobutyric acid (GABA)-mediated inhibition and increased seizure vulnerability. The with-no-lysine kinase (WNK)-STE20/SPS1-related proline/alanine-rich (SPAK) kinase signaling pathway inhibits neuronal KCC2 via KCC2-T1007 phosphorylation. A selective WNK kinase inhibitor, WNK463, was recently synthesized by Novartis. Exploiting WNK463, we test the hypothesis that pharmacological WNK inhibition will enhance KCC2 activity, increase the efficacy of GABAergic inhibition, and thereby limit seizure activity in animal models. Immunoprecipitation and Western blot analysis were used to examine WNK463's effects on KCC2-T1007 phosphorylation, in vitro and in vivo. A thallium (Tl+) uptake assay was used in human embryonic kidney (HEK-293) cells expressing KCC2 to test WNK463's effects on KCC2-mediated Tl+ transport. Gramicidin-perforated- and whole-cell patch-clamp recordings in cortical rat neurons were used to examine WNK463's effects on KCC2-mediated Cl- transport. In mouse brain slices (entorhinal cortex), field recordings were utilized to examine WNK463's effects on 4-aminopyridine-induced seizure activity. Last, WNK463 was directly deliver to the mouse hippocampus in vivo and tested in a kainic acid model of diazepam-resistant SE. WNK463 significantly reduces KCC2-T1007 phosphorylation in vitro and in vivo (mice). In human embryonic kidney 293 (HEK-293) cells expressing KCC2, WNK463 greatly enhanced the rates Tl+ transport. However, the drug did not enhance Tl+ transport in cells expressing a KCC2-phospho null T1007 mutant. In cultured rat neurons, WNK463 rapidly reduced intracellular Cl- and consequently hyperpolarized the Cl- reversal potential (EGABA). In mature neurons that were artificially loaded with 30 mM Cl-, WNK463 significantly enhanced KCC2-mediated Cl- export and hyperpolarized EGABA. In a 4-aminopyridine model of acute seizures, WNK463 reduced the frequency and number of seizure-like events (SLEs). Finally, in an in vivo kainic acid (KA) model of diazepam-resistant SE, WNK463 slowed the onset and reduced the severity of KA-induced status epilepticus. Last, WNK463 prevented the development of pharmaco-resistance to diazepam in drug-treated mice. Our findings demonstrate that acute WNK463 treatment potentiates KCC2 activity in neurons and limits seizure burden in two well-established models of seizures and epilepsy. Our work suggests that agents which act to increase KCC2 activity may be useful adjunct therapeutics to alleviate diazepam-resistant SE.
Collapse
Affiliation(s)
- Kathryn L Lee
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA 02111
| | - Krithika Abiraman
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA 02111
| | - Christopher Lucaj
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA 02111.,AstraZeneca-Tufts Laboratory of Basic and Translational Neuroscience, Tufts University School of Medicine, Boston, MA, USA 02111
| | - Thomas A Ollerhead
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA 02111
| | - Nicholas J Brandon
- Neuroscience, BioPharmaceuticals R&D, AstraZeneca, Boston, MA, USA 02451
| | - Tarek Z Deeb
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA 02111.,AstraZeneca-Tufts Laboratory of Basic and Translational Neuroscience, Tufts University School of Medicine, Boston, MA, USA 02111
| | - Jamie Maguire
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA 02111
| | - Stephen J Moss
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA 02111.,AstraZeneca-Tufts Laboratory of Basic and Translational Neuroscience, Tufts University School of Medicine, Boston, MA, USA 02111.,Department of Neuroscience, Physiology and Pharmacology, University College London, WC16BT, UK
| |
Collapse
|
25
|
Rashan S, Panahi Y, Khalilzadeh E. Stimulatory and inhibitory effects of morphine on pentylenetetrazol-induced epileptic activity in rat. Int J Neurosci 2021; 131:885-893. [PMID: 32315568 DOI: 10.1080/00207454.2020.1759591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/22/2020] [Accepted: 04/10/2020] [Indexed: 10/24/2022]
Abstract
AIMS The present study attempts to evaluate the effects of different doses of morphine on experimental epileptiform activity caused by pentylenetetrazol (PTZ) in rats. METHODS Thirty adult male rats were assigned to saline (n = 5), morphine (2, 5, and 10 mg/kg, n = 15), naloxone (1 mg/kg, n = 5), and pre-treated with naloxone+morphine (1 + 10 mg/kg, n = 5) groups. The animals were anesthetized with ketamine + xylazine (80 + 8 mg/kg), and then a bipolar electrode was implanted into the CA1 (AP: -2.76 mm, ML: -1.4 mm and DV: 3 mm). To evaluate the effects of drugs on spike count and their amplitudes by elab amplifier, after drug administration for 25 min, PTZ (80 mg/kg, i.p.) was injected to induce epileptiform activity. Finally, diazepam (10 mg/kg) was used to suppress epileptic activity. RESULTS The results revealed that morphine at a dose of 2 mg/kg decreased, and at doses of 5 and 10 mg/kg had an increasing effect on seizure-like events (SLEs). Nevertheless, morphine at a dose of 10 mg/kg enhanced SLEs significantly (p < 0.01). Naloxone at a dose of 1 mg/kg had no significant effect on the spike count but increased amplitude of them (p < 0.001). Moreover, being pretreatment with naloxone at a dose of 1 mg/kg, the morphine group showed significantly increased in the spike count (p < 0.05). CONCLUSIONS Morphine has biphasic effects on PTZ-induced epileptiform activities that way at a low dose has an inhibitory effect, but if the dose is increased, it will intensify the desired event and that the stimulatory effects of morphine appear not to be via opioid receptors.
Collapse
Affiliation(s)
- Samrand Rashan
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Yousef Panahi
- Division of Pharmacology and Toxicology, Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Emad Khalilzadeh
- Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| |
Collapse
|
26
|
Loughery TN, Whitten KA, Acon-Chen C, Shih TM. Intramuscularly administered A1 adenosine receptor agonists as delayed treatment for organophosphorus nerve agent-induced Status Epilepticus. Toxicol Appl Pharmacol 2021; 419:115515. [PMID: 33798593 DOI: 10.1016/j.taap.2021.115515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/22/2021] [Accepted: 03/28/2021] [Indexed: 11/20/2022]
Abstract
Exposure to organophosphorus nerve agents (NAs) like sarin (GB) and soman (GD) can lead to sustained seizure activity, or status epilepticus (SE). Previous research has shown that activation of A1 adenosine receptors (A1ARs) can inhibit neuronal excitability, which could aid in SE termination. Two A1AR agonists, 2-Chloro-N6-cyclopentyladenosine (CCPA) and N-Bicyclo(2.2.1)hept-2-yl-5'-chloro-5'-deoxyadenosine (ENBA), were effective in terminating GD-induced SE in rats when administered via intraperitoneal (IP) injection. However, IP injection is not a clinically relevant route of administration. This study evaluated the efficacy of these agonists in terminating NA-induced SE when administered via intramuscular (IM) route. Adult male rats were exposed subcutaneously (SC) to either GB (150 μg/kg) or GD (90 μg/kg) and were treated with ENBA or CCPA at 15, 30, or 60 min after seizure onset or left untreated. Up to 7 days after exposure, deeply anesthetized rats were euthanized and perfused brains were removed for histologic assessment of neuropathology (i.e., neuronal damage) in six brain regions (amygdala, cerebral cortex, piriform cortex, thalamus, dorsal hippocampus, and ventral hippocampus). A total neuropathy score (0-24) was determined for each rat by adding the scores from each of the six regions. The higher the total score the more severe the neuropathology. With the GB model and 60 min treatment delay, ENBA-treated rats experienced 78.6% seizure termination (N = 14) and reduced neuropathology (11.6 ± 2.6, N = 5), CCPA-treated rats experienced 85.7% seizure termination (N = 14) and slightly reduced neuropathology (20.7 ± 1.8, N = 6), and untreated rats experienced no seizure termination (N = 13) and severe neuropathology (22.3 ± 1.0, N = 4). With the GD model and 60 min treatment delay, ENBA-treated rats experienced 92.9% seizure termination (N = 14) and reduced neuropathology (13.96 ± 1.8, N = 9), CCPA-treated rats experienced 78.6% seizure termination (N = 14) and slightly reduced neuropathology (22.0 ± 0.9, N = 10); and untreated rats experienced 16.7% seizure termination (N = 12) and severe neuropathology (22.0 ± 1.8, N = 5). While ENBA and CCPA both demonstrate a clear ability to terminate SE when administered up to 60 min after seizure onset, ENBA offers more neuroprotection, making it a promising candidate for NA-induced SE.
Collapse
Affiliation(s)
- Tara N Loughery
- Neuroscience Department, Medical Toxicology Research Division, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD 21010-5400, USA
| | - Kimberly A Whitten
- Comparative Pathology Department, Research Support Division, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD 21010-5400, USA
| | - Cindy Acon-Chen
- Neuroscience Department, Medical Toxicology Research Division, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD 21010-5400, USA
| | - Tsung-Ming Shih
- Neuroscience Department, Medical Toxicology Research Division, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD 21010-5400, USA.
| |
Collapse
|
27
|
Gore A, Neufeld-Cohen A, Egoz I, Baranes S, Gez R, Efrati R, David T, Dekel Jaoui H, Yampolsky M, Grauer E, Chapman S, Lazar S. Neuroprotection by delayed triple therapy following sarin nerve agent insult in the rat. Toxicol Appl Pharmacol 2021; 419:115519. [PMID: 33823148 DOI: 10.1016/j.taap.2021.115519] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/25/2021] [Accepted: 04/01/2021] [Indexed: 02/08/2023]
Abstract
The development of refractory status epilepticus (SE) induced by sarin intoxication presents a therapeutic challenge. In our current research we evaluate the efficacy of a delayed combined triple treatment in ending the abnormal epileptiform seizure activity (ESA) and the ensuing of long-term neuronal insult. SE was induced in male Sprague-Dawley rats by exposure to 1.2LD50 sarin insufficiently treated by atropine and TMB4 (TA) 1 min later. Triple treatment of ketamine, midazolam and valproic acid was administered 30 min or 1 h post exposure and was compared to a delayed single treatment with midazolam alone. Toxicity and electrocorticogram activity were monitored during the first week and behavioral evaluation performed 3 weeks post exposure followed by brain biochemical and immunohistopathological analyses. The addition of both single and triple treatments reduced mortality and enhanced weight recovery compared to the TA-only treated group. The triple treatment also significantly minimized the duration of the ESA, reduced the sarin-induced increase in the neuroinflammatory marker PGE2, the brain damage marker TSPO, decreased the gliosis, astrocytosis and neuronal damage compared to the TA+ midazolam or only TA treated groups. Finally, the triple treatment eliminated the sarin exposed increased open field activity, as well as impairing recognition memory as seen in the other experimental groups. The delayed triple treatment may serve as an efficient therapy, which prevents brain insult propagation following sarin-induced refractory SE, even if treatment is postponed for up to 1 h.
Collapse
Affiliation(s)
- Ariel Gore
- Department of Pharmacology, Israel Institute for Biological, Chemical and Environmental Sciences, Ness-Ziona 74100, Israel.
| | - Adi Neufeld-Cohen
- Department of Pharmacology, Israel Institute for Biological, Chemical and Environmental Sciences, Ness-Ziona 74100, Israel
| | - Inbal Egoz
- Department of Pharmacology, Israel Institute for Biological, Chemical and Environmental Sciences, Ness-Ziona 74100, Israel
| | - Shlomi Baranes
- Department of Pharmacology, Israel Institute for Biological, Chemical and Environmental Sciences, Ness-Ziona 74100, Israel
| | - Rellie Gez
- Department of Pharmacology, Israel Institute for Biological, Chemical and Environmental Sciences, Ness-Ziona 74100, Israel
| | - Rahav Efrati
- Department of Pharmacology, Israel Institute for Biological, Chemical and Environmental Sciences, Ness-Ziona 74100, Israel
| | - Tse'ela David
- The Veterinary Center for Pre-clinical Research, Israel Institute for Biological, Chemical and Environmental Sciences, Ness- Ziona 74100, Israel
| | - Hani Dekel Jaoui
- The Veterinary Center for Pre-clinical Research, Israel Institute for Biological, Chemical and Environmental Sciences, Ness- Ziona 74100, Israel
| | - Michael Yampolsky
- The Veterinary Center for Pre-clinical Research, Israel Institute for Biological, Chemical and Environmental Sciences, Ness- Ziona 74100, Israel
| | - Ettie Grauer
- Department of Pharmacology, Israel Institute for Biological, Chemical and Environmental Sciences, Ness-Ziona 74100, Israel
| | - Shira Chapman
- Department of Pharmacology, Israel Institute for Biological, Chemical and Environmental Sciences, Ness-Ziona 74100, Israel
| | - Shlomi Lazar
- Department of Pharmacology, Israel Institute for Biological, Chemical and Environmental Sciences, Ness-Ziona 74100, Israel.
| |
Collapse
|
28
|
Yoshinaga H, Benitez A, Takeda S, Fournier M, Kugler AR. A Phase 3 open-label study of the efficacy, safety and pharmacokinetics of buccally administered midazolam hydrochloride for the treatment of status epilepticus in pediatric Japanese subjects. Epilepsy Res 2021; 174:106651. [PMID: 34020149 DOI: 10.1016/j.eplepsyres.2021.106651] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 04/30/2021] [Accepted: 05/02/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND In Japan, intravenous (IV) administration of antiepileptic drugs in a healthcare setting is the preferred treatment option that is both licensed and recommended for initial treatment of status epilepticus (SE). However, prompt conveyance to a healthcare institution and IV access may be difficult in patients experiencing a seizure and so delay treatment. Thus, there is an unmet need for an alternative effective antiepileptic drug with an easier and more rapid mode of administration. In this study we evaluated a midazolam hydrochloride oromucosal solution (MHOS) that can be simply and rapidly administered to patients in SE. METHODS A Phase 3, interventional, multicenter, nonrandomized study was conducted in 28 clinical centers in Japan. Pediatric subjects in convulsive SE received treatment with buccal MHOS with dosage based on their age. The primary efficacy outcome was the percentage of subjects with seizure termination within 10 min and a 30-min absence of visible seizure activity from time of administration. Safety evaluations included respiratory depression and the frequency of treatment-emergent adverse events (TEAEs). Pharmacokinetic (PK) profile was also assessed. RESULTS The study population comprised 25 subjects with a median age of 2.8 years and median bodyweight of 13.4 kg. The primary efficacy outcome was achieved in 80 % of subjects; 84 % of subjects had seizure resolution within 10 min. Nine subjects experienced a total of 13 TEAEs, and protocol-defined respiratory depression occurred in one subject. Mean maximum plasma midazolam concentration was 78.0 ng/mL, and mean time to peak concentration was 20.5 min, demonstrating that achieving maximum plasma midazolam concentration is not required for seizure cessation. CONCLUSIONS The efficacy, safety and pharmacokinetic profile of MHOS in pediatric Japanese subjects was consistent with that observed in non-Japanese populations. Compared to IV treatments, MHOS offers easier administration which may reduce the time to treatment and thereby minimize the sequelae of prolonged seizures.
Collapse
Affiliation(s)
- Harumi Yoshinaga
- National Hospital Organization Minami-Okayama Medical Center, Okayama, Japan.
| | | | | | | | | |
Collapse
|
29
|
Reddy DS, Zaayman M, Kuruba R, Wu X. Comparative profile of refractory status epilepticus models following exposure of cholinergic agents pilocarpine, DFP, and soman. Neuropharmacology 2021; 191:108571. [PMID: 33878303 DOI: 10.1016/j.neuropharm.2021.108571] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/24/2021] [Accepted: 04/13/2021] [Indexed: 12/12/2022]
Abstract
Status epilepticus (SE) is a medical emergency with continuous seizure activity that causes profound neuronal damage, morbidity, or death. SE incidents can arise spontaneously but mostly are elicited by seizurogenic triggers. Chemoconvulsants such as the muscarinic agonist pilocarpine and, organophosphates (OP) such as the pesticide diisopropylfluorophosphate (DFP) and, the nerve agent soman, can induce SE. Pilocarpine, DFP, and soman share a common feature of cholinergic crisis that transitions into a state of refractory SE, but their comparative profiles remain unclear. Here, we evaluated the comparative convulsant profile of pilocarpine, DFP, and soman to produce refractory SE and brain damage in rats. Behavioral and electrographic seizures were monitored for 24 h after exposure, and the extent of brain injury was determined by histological markers of neuronal injury and degeneration. Seizures were elicited rather slowly after pilocarpine as compared to DFP or soman, which caused rapid onset of spiking that swiftly developed into persistent SE. Time-course of SE activity after DFP was comparable to that after soman, a potent nerve agent. Diazepam controlled pilocarpine-induced SE, but it was ineffective in reducing OP-induced SE. All three agents produced modestly different degrees of neuronal injury and neurodegeneration in the brain. These results reveal distinct convulsant and neuronal injury patterns following exposure to cholinergic agonists, OP pesticides, and nerve agents. A battery of SE models, especially SE induced by cholinergic agents and other etiologies including epilepsy and brain tumors, is essential to identify novel anticonvulsant therapies for the management of refractory SE.
Collapse
Affiliation(s)
- Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center College of Medicine, Bryan, TX, 77807, USA.
| | - Marcus Zaayman
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center College of Medicine, Bryan, TX, 77807, USA
| | - Ramkumar Kuruba
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center College of Medicine, Bryan, TX, 77807, USA
| | - Xin Wu
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center College of Medicine, Bryan, TX, 77807, USA
| |
Collapse
|
30
|
Charalambous M, Volk HA, Van Ham L, Bhatti SFM. First-line management of canine status epilepticus at home and in hospital-opportunities and limitations of the various administration routes of benzodiazepines. BMC Vet Res 2021; 17:103. [PMID: 33663513 PMCID: PMC7934266 DOI: 10.1186/s12917-021-02805-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/16/2021] [Indexed: 12/22/2022] Open
Affiliation(s)
- Marios Charalambous
- Small Animal Department, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium.
| | - Holger A Volk
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, 30559, Hannover, Germany
| | - Luc Van Ham
- Small Animal Department, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium
| | - Sofie F M Bhatti
- Small Animal Department, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium
| |
Collapse
|
31
|
Roynard P, Bilderback A, Dewey CW. Intravenous Ketamine Bolus(es) for the Treatment of Status Epilepticus, Refractory Status Epilepticus, and Cluster Seizures: A Retrospective Study of 15 Dogs. Front Vet Sci 2021; 8:547279. [PMID: 33681317 PMCID: PMC7925624 DOI: 10.3389/fvets.2021.547279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 01/07/2021] [Indexed: 12/02/2022] Open
Abstract
Status epilepticus (SE) and cluster seizures (CS) are common occurrences in veterinary neurology and frequent reasons of admission to veterinary hospitals. With prolonged seizure activity, gamma amino-butyric acid (GABA) receptors (GABAa receptors) become inactive, leading to a state of pharmacoresistance to benzodiazepines and other GABAergic medications, which is called refractory status epilepticus (RSE). Prolonged seizure activity is also associated with overexpression of N-methyl-D-aspartic (NMDA) receptors. Rodent models have shown the efficacy of ketamine (KET) in treating RSE, and its use has been reported in one canine case of RSE. Boluses of KET 5 mg/kg IV have become the preferred treatment for RSE in our hospital. A retrospective study was performed to evaluate and report our experience with KET IV bolus to treat prolonged and/or repeated seizure activity in cases of canine CS, SE, and RSE. A total of 15 dogs were retrieved, for 20 hospitalizations and 28 KET IV injections over 3 years. KET IV boluses were used 12 times for RSE (9 generalized seizures, 3 focal seizures) and KET terminated the episode of RSE 12/12 times (100%); however, seizures recurred 4/12 times (33%) within ≤6 h of KET IV bolus. When used for CS apart from episodes of RSE, KET IV bolus was associated with termination of the CS episode only 4/14 times (29%). Only 4/28 (14%) KET IV boluses were associated with adverse effects imputable only to the use of KET. One dog experienced a short, self-limited seizure activity during administration of KET IV, which was most likely related to a pre-mature use of KET IV (i.e., before GABAergic resistance and NMDA receptor overexpression had taken place). This study indicates that KET 5 mg/kg IV bolus may be successful for the treatment of RSE in dogs.
Collapse
Affiliation(s)
- Patrick Roynard
- Long Island Veterinary Specialists, Department of Neurology/Neurosurgery, Plainview, NY, United States
| | - Ann Bilderback
- VCA Northwest Veterinary Specialists, Clackamas, OR, United States
| | | |
Collapse
|
32
|
Juvale IIA, Che Has AT. Possible interplay between the theories of pharmacoresistant epilepsy. Eur J Neurosci 2020; 53:1998-2026. [PMID: 33306252 DOI: 10.1111/ejn.15079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 11/22/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023]
Abstract
Epilepsy is one of the oldest known neurological disorders and is characterized by recurrent seizure activity. It has a high incidence rate, affecting a broad demographic in both developed and developing countries. Comorbid conditions are frequent in patients with epilepsy and have detrimental effects on their quality of life. Current management options for epilepsy include the use of anti-epileptic drugs, surgery, or a ketogenic diet. However, more than 30% of patients diagnosed with epilepsy exhibit drug resistance to anti-epileptic drugs. Further, surgery and ketogenic diets do little to alleviate the symptoms of patients with pharmacoresistant epilepsy. Thus, there is an urgent need to understand the underlying mechanisms of pharmacoresistant epilepsy to design newer and more effective anti-epileptic drugs. Several theories of pharmacoresistant epilepsy have been suggested over the years, the most common being the gene variant hypothesis, network hypothesis, multidrug transporter hypothesis, and target hypothesis. In our review, we discuss the main theories of pharmacoresistant epilepsy and highlight a possible interconnection between their mechanisms that could lead to the development of novel therapies for pharmacoresistant epilepsy.
Collapse
Affiliation(s)
- Iman Imtiyaz Ahmed Juvale
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Ahmad Tarmizi Che Has
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| |
Collapse
|
33
|
Aroniadou-Anderjaska V, Apland JP, Figueiredo TH, De Araujo Furtado M, Braga MF. Acetylcholinesterase inhibitors (nerve agents) as weapons of mass destruction: History, mechanisms of action, and medical countermeasures. Neuropharmacology 2020; 181:108298. [DOI: 10.1016/j.neuropharm.2020.108298] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 08/21/2020] [Accepted: 09/02/2020] [Indexed: 02/07/2023]
|
34
|
Stefanits H, Milenkovic I, Mahr N, Pataraia E, Baumgartner C, Hainfellner JA, Kovacs GG, Kasprian G, Sieghart W, Yilmazer-Hanke D, Czech T. Alterations in GABAA Receptor Subunit Expression in the Amygdala and Entorhinal Cortex in Human Temporal Lobe Epilepsy. J Neuropathol Exp Neurol 2020; 78:1022-1048. [PMID: 31631219 DOI: 10.1093/jnen/nlz085] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 07/06/2019] [Indexed: 12/14/2022] Open
Abstract
The amygdala has long been implicated in the pathophysiology of human temporal lobe epilepsy (TLE). The different nuclei of this complex structure are interconnected and share reciprocal connections with the hippocampus and other brain structures, partly via the entorhinal cortex. Expression of GABAA receptor subunits α1, α2, α3, α5, β2, β2/3, and γ2 was evaluated by immunohistochemistry in amygdala specimens and the entorhinal cortex of 12 TLE patients and 12 autopsy controls. A substantial decrease in the expression of α1, α2, α3, and β2/3 subunits was found in TLE cases, accompanied by an increase of γ2 subunit expression in many nuclei. In the entorhinal cortex, the expression of all GABAA receptor subunits was decreased except for the α1 subunit, which was increased on cellular somata. The overall reduction in α subunit expression may lead to decreased sensitivity to GABA and its ligands and compromise phasic inhibition, whereas upregulation of the γ2 subunit might influence clustering and kinetics of receptors and impair tonic inhibition. The description of these alterations in the human amygdala is important for the understanding of network changes in TLE as well as the development of subunit-specific therapeutic agents for the treatment of this disease.
Collapse
Affiliation(s)
- Harald Stefanits
- Department of Neurosurgery, Institute of Neurology, Department of Neurology, Department of Biomedical Imaging and Image Guided Therapy, Center for Brain Research, Department of Molecular Neurosciences, Medical University of Vienna, Vienna, Austria; Second Neurological Department, General Hospital Hietzing, Vienna, Austria; and Clinical Neuroanatomy, Neurology Department, Medical Faculty, Ulm University, Ulm, Germany
| | - Ivan Milenkovic
- Department of Neurosurgery, Institute of Neurology, Department of Neurology, Department of Biomedical Imaging and Image Guided Therapy, Center for Brain Research, Department of Molecular Neurosciences, Medical University of Vienna, Vienna, Austria; Second Neurological Department, General Hospital Hietzing, Vienna, Austria; and Clinical Neuroanatomy, Neurology Department, Medical Faculty, Ulm University, Ulm, Germany
| | - Nina Mahr
- Department of Neurosurgery, Institute of Neurology, Department of Neurology, Department of Biomedical Imaging and Image Guided Therapy, Center for Brain Research, Department of Molecular Neurosciences, Medical University of Vienna, Vienna, Austria; Second Neurological Department, General Hospital Hietzing, Vienna, Austria; and Clinical Neuroanatomy, Neurology Department, Medical Faculty, Ulm University, Ulm, Germany
| | - Ekaterina Pataraia
- Department of Neurosurgery, Institute of Neurology, Department of Neurology, Department of Biomedical Imaging and Image Guided Therapy, Center for Brain Research, Department of Molecular Neurosciences, Medical University of Vienna, Vienna, Austria; Second Neurological Department, General Hospital Hietzing, Vienna, Austria; and Clinical Neuroanatomy, Neurology Department, Medical Faculty, Ulm University, Ulm, Germany
| | - Christoph Baumgartner
- Department of Neurosurgery, Institute of Neurology, Department of Neurology, Department of Biomedical Imaging and Image Guided Therapy, Center for Brain Research, Department of Molecular Neurosciences, Medical University of Vienna, Vienna, Austria; Second Neurological Department, General Hospital Hietzing, Vienna, Austria; and Clinical Neuroanatomy, Neurology Department, Medical Faculty, Ulm University, Ulm, Germany
| | - Johannes A Hainfellner
- Department of Neurosurgery, Institute of Neurology, Department of Neurology, Department of Biomedical Imaging and Image Guided Therapy, Center for Brain Research, Department of Molecular Neurosciences, Medical University of Vienna, Vienna, Austria; Second Neurological Department, General Hospital Hietzing, Vienna, Austria; and Clinical Neuroanatomy, Neurology Department, Medical Faculty, Ulm University, Ulm, Germany
| | - Gabor G Kovacs
- Department of Neurosurgery, Institute of Neurology, Department of Neurology, Department of Biomedical Imaging and Image Guided Therapy, Center for Brain Research, Department of Molecular Neurosciences, Medical University of Vienna, Vienna, Austria; Second Neurological Department, General Hospital Hietzing, Vienna, Austria; and Clinical Neuroanatomy, Neurology Department, Medical Faculty, Ulm University, Ulm, Germany
| | - Gregor Kasprian
- Department of Neurosurgery, Institute of Neurology, Department of Neurology, Department of Biomedical Imaging and Image Guided Therapy, Center for Brain Research, Department of Molecular Neurosciences, Medical University of Vienna, Vienna, Austria; Second Neurological Department, General Hospital Hietzing, Vienna, Austria; and Clinical Neuroanatomy, Neurology Department, Medical Faculty, Ulm University, Ulm, Germany
| | - Werner Sieghart
- Department of Neurosurgery, Institute of Neurology, Department of Neurology, Department of Biomedical Imaging and Image Guided Therapy, Center for Brain Research, Department of Molecular Neurosciences, Medical University of Vienna, Vienna, Austria; Second Neurological Department, General Hospital Hietzing, Vienna, Austria; and Clinical Neuroanatomy, Neurology Department, Medical Faculty, Ulm University, Ulm, Germany
| | - Deniz Yilmazer-Hanke
- Department of Neurosurgery, Institute of Neurology, Department of Neurology, Department of Biomedical Imaging and Image Guided Therapy, Center for Brain Research, Department of Molecular Neurosciences, Medical University of Vienna, Vienna, Austria; Second Neurological Department, General Hospital Hietzing, Vienna, Austria; and Clinical Neuroanatomy, Neurology Department, Medical Faculty, Ulm University, Ulm, Germany
| | - Thomas Czech
- Department of Neurosurgery, Institute of Neurology, Department of Neurology, Department of Biomedical Imaging and Image Guided Therapy, Center for Brain Research, Department of Molecular Neurosciences, Medical University of Vienna, Vienna, Austria; Second Neurological Department, General Hospital Hietzing, Vienna, Austria; and Clinical Neuroanatomy, Neurology Department, Medical Faculty, Ulm University, Ulm, Germany
| |
Collapse
|
35
|
Burman RJ, Selfe JS, Lee JH, van den Berg M, Calin A, Codadu NK, Wright R, Newey SE, Parrish RR, Katz AA, Wilmshurst JM, Akerman CJ, Trevelyan AJ, Raimondo JV. Excitatory GABAergic signalling is associated with benzodiazepine resistance in status epilepticus. Brain 2020; 142:3482-3501. [PMID: 31553050 DOI: 10.1093/brain/awz283] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 06/10/2019] [Accepted: 07/11/2019] [Indexed: 01/17/2023] Open
Abstract
Status epilepticus is defined as a state of unrelenting seizure activity. Generalized convulsive status epilepticus is associated with a rapidly rising mortality rate, and thus constitutes a medical emergency. Benzodiazepines, which act as positive modulators of chloride (Cl-) permeable GABAA receptors, are indicated as first-line treatment, but this is ineffective in many cases. We found that 48% of children presenting with status epilepticus were unresponsive to benzodiazepine treatment, and critically, that the duration of status epilepticus at the time of treatment is an important predictor of non-responsiveness. We therefore investigated the cellular mechanisms that underlie acquired benzodiazepine resistance, using rodent organotypic and acute brain slices. Removing Mg2+ ions leads to an evolving pattern of epileptiform activity, and eventually to a persistent state of repetitive discharges that strongly resembles clinical EEG recordings of status epilepticus. We found that diazepam loses its antiseizure efficacy and conversely exacerbates epileptiform activity during this stage of status epilepticus-like activity. Interestingly, a low concentration of the barbiturate phenobarbital had a similar exacerbating effect on status epilepticus-like activity, while a high concentration of phenobarbital was effective at reducing or preventing epileptiform discharges. We then show that the persistent status epilepticus-like activity is associated with a reduction in GABAA receptor conductance and Cl- extrusion capability. We explored the effect on intraneuronal Cl- using both gramicidin, perforated-patch clamp recordings and Cl- imaging. This showed that during status epilepticus-like activity, reduced Cl- extrusion capacity was further exacerbated by activity-dependent Cl- loading, resulting in a persistently high intraneuronal Cl-. Consistent with these results, we found that optogenetic stimulation of GABAergic interneurons in the status epilepticus-like state, actually enhanced epileptiform activity in a GABAAR dependent manner. Together our findings describe a novel potential mechanism underlying benzodiazepine-resistant status epilepticus, with relevance to how this life-threatening condition should be managed in the clinic.
Collapse
Affiliation(s)
- Richard J Burman
- Division of Cell Biology, Department of Human Biology, Neuroscience Institute and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Department of Paediatric Neurology, Red Cross War Memorial Children's Hospital, Neuroscience Institute, University of Cape Town, Cape Town, South Africa.,Department of Pharmacology, University of Oxford, Oxford, UK
| | - Joshua S Selfe
- Division of Cell Biology, Department of Human Biology, Neuroscience Institute and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - John Hamin Lee
- Division of Cell Biology, Department of Human Biology, Neuroscience Institute and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Maurits van den Berg
- Division of Cell Biology, Department of Human Biology, Neuroscience Institute and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Alexandru Calin
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Neela K Codadu
- Institute of Neuroscience, Medical School, Framlington Place, Newcastle upon Tyne, NE24HH, UK
| | - Rebecca Wright
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Sarah E Newey
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - R Ryley Parrish
- Institute of Neuroscience, Medical School, Framlington Place, Newcastle upon Tyne, NE24HH, UK
| | - Arieh A Katz
- Division of Medical Biochemistry, Department of Integrated Biomedical Sciences and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Jo M Wilmshurst
- Department of Paediatric Neurology, Red Cross War Memorial Children's Hospital, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Colin J Akerman
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Andrew J Trevelyan
- Institute of Neuroscience, Medical School, Framlington Place, Newcastle upon Tyne, NE24HH, UK
| | - Joseph V Raimondo
- Division of Cell Biology, Department of Human Biology, Neuroscience Institute and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
36
|
Midazolam and isoflurane combination reduces late brain damage in the paraoxon-induced status epilepticus rat model. Neurotoxicology 2020; 78:99-105. [PMID: 32084435 DOI: 10.1016/j.neuro.2020.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/09/2020] [Accepted: 02/17/2020] [Indexed: 11/20/2022]
Abstract
Organophosphates (OPs) are widely used as pesticides and have been employed as warfare agents. OPs inhibit acetylcholinesterase, leading to over-stimulation of cholinergic synapses and can cause status epilepticus (SE). OPs poisoning can result in irreversible brain damage and death. Despite termination of SE, recurrent seizures and abnormal brain activity remain common sequelae often associated with long-term neural damage and cognitive dysfunction. Therefore, early treatment for prevention of seizures is of high interest. Using a rat model of paraoxon poisoning, we tested the efficacy of different neuroprotective and anti-epileptic drugs (AEDs) in suppressing early seizures and preventing brain damage. Electrocorticographic recordings were performed prior, during and after injection of 4.5 LD50 paraoxon, followed by injections of atropine and toxogonin (obidoxime) to prevent death. Thirty minutes later, rats were injected with midazolam alone or in combination with different AEDs (lorazepam, valproic acid, phenytoin) or neuroprotective drugs (losartan, isoflurane). Outcome measures included SE duration, early seizures frequency and epileptiform activity duration in the first 24 -hs after poisoning. To assess delayed brain damage, we performed T2-weighted magnetic resonance imaging one month after poisoning. SE duration and the number of recurrent seizures were not affected by the addition of any of the drugs tested. Delayed brain injury was most prominent in the septum, striatum, amygdala and piriform network. Only isoflurane anesthesia significantly reduced brain damage. We show that acute treatment with isoflurane, but not AEDs, reduces brain damage following SE. This may offer a new therapeutic approach for exposed individuals.
Collapse
|
37
|
Barker BS, Spampanato J, McCarren HS, Smolik M, Jackson CE, Hornung EN, Yeung DT, Dudek FE, McDonough JH. Screening for Efficacious Anticonvulsants and Neuroprotectants in Delayed Treatment Models of Organophosphate-induced Status Epilepticus. Neuroscience 2020; 425:280-300. [PMID: 31783100 PMCID: PMC6935402 DOI: 10.1016/j.neuroscience.2019.11.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/30/2019] [Accepted: 11/12/2019] [Indexed: 01/04/2023]
Abstract
Organophosphorus (OP) compounds are deadly chemicals that exert their intoxicating effects through the irreversible inhibition of acetylcholinesterase (AChE). In addition to an excess of peripheral ailments, OP intoxication induces status epilepticus (SE) which if left untreated may lead to permanent brain damage or death. Benzodiazepines are typically the primary therapies for OP-induced SE, but these drugs lose efficacy as treatment time is delayed. The CounterACT Neurotherapeutic Screening (CNS) Program was therefore established by the National Institutes of Health (NIH) to discover novel treatments that may be administered adjunctively with the currently approved medical countermeasures for OP-induced SE in a delayed treatment scenario. The CNS program utilizes in vivo EEG recordings and Fluoro-JadeB (FJB) histopathology in two established rat models of OP-induced SE, soman (GD) and diisopropylfluorophosphate (DFP), to evaluate the anticonvulsant and neuroprotectant efficacy of novel adjunct therapies when administered at 20 or 60 min after the induction of OP-induced SE. Here we report the results of multiple compounds that have previously shown anticonvulsant or neuroprotectant efficacy in other models of epilepsy or trauma. Drugs tested were ganaxolone, diazoxide, bumetanide, propylparaben, citicoline, MDL-28170, and chloroquine. EEG analysis revealed that ganaxolone demonstrated the most robust anticonvulsant activity, whereas all other drugs failed to attenuate ictal activity in both models of OP-induced SE. FJB staining demonstrated that none of the tested drugs had widespread neuroprotective abilities. Overall these data suggest that neurosteroids may represent the most promising anticonvulsant option for OP-induced SE out of the seven unique mechanisms tested here. Additionally, these results suggest that drugs that provide significant neuroprotection from OP-induced SE without some degree of anticonvulsant activity are elusive, which further highlights the necessity to continue screening novel adjunct treatments through the CNS program.
Collapse
Affiliation(s)
- Bryan S Barker
- Medical Toxicology Research Division, Neuroscience Department, U.S. Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Rd, Aberdeen Proving Ground, MD 21010, USA.
| | - Jay Spampanato
- Department of Neurosurgery, University of Utah School of Medicine, Salt Lake City, UT 84108, USA
| | - Hilary S McCarren
- Medical Toxicology Research Division, Neuroscience Department, U.S. Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Rd, Aberdeen Proving Ground, MD 21010, USA
| | - Melissa Smolik
- Department of Neurosurgery, University of Utah School of Medicine, Salt Lake City, UT 84108, USA
| | - Cecelia E Jackson
- Medical Toxicology Research Division, Neuroscience Department, U.S. Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Rd, Aberdeen Proving Ground, MD 21010, USA
| | - Eden N Hornung
- Medical Toxicology Research Division, Neuroscience Department, U.S. Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Rd, Aberdeen Proving Ground, MD 21010, USA
| | - David T Yeung
- Chemical Countermeasures Research Program, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA
| | - F Edward Dudek
- Department of Neurosurgery, University of Utah School of Medicine, Salt Lake City, UT 84108, USA
| | - John H McDonough
- Medical Toxicology Research Division, Neuroscience Department, U.S. Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Rd, Aberdeen Proving Ground, MD 21010, USA
| |
Collapse
|
38
|
Gelfuso EA, Reis SL, Pereira AMS, Aguiar DSR, Beleboni RO. Neuroprotective effects and improvement of learning and memory elicited by erythravine and 11α-hydroxy-erythravine against the pilocarpine model of epilepsy. Life Sci 2020; 240:117072. [PMID: 31751584 DOI: 10.1016/j.lfs.2019.117072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 12/19/2022]
Abstract
Deficits in cognitive functions are often observed in epileptic patients, particularly in temporal lobe epilepsy (TLE). Evidence suggests that this cognitive decline can be associated with the occurrence of focal brain lesions, especially on hippocampus and cortex regions. We previously demonstrated that the erythrinian alkaloids, (+)-erythravine and (+)-11α-hydroxy-erythravine, inhibit seizures evoked in rats by different chemoconvulsants. AIMS The current study evaluated if these alkaloids would be acting in a neuroprotective way, reducing hippocampal sclerosis, and consequently, improving learning/memory performance. MAIN METHODS Here we confirmed the anticonvulsant effect of both alkaloids by means of the pilocarpine seizure-induced model and also showed that they enhanced spatial learning of rats submitted to the Morris Water Maze test reverting the cognition deficit. Additionally, immunohistochemistry assays showed that neuronal death and glial activation were prevented by the alkaloids in the hippocampus CA1, CA3 and dentate gyrus regions at both hemispheres indistinctly 15 days after status epilepticus induction. KEY FINDINGS Our results show, for the first-time, the improvement on memory/learning elicited by these erythrinian alkaloids. Furthermore, data presented herein explain, at least partially, the cellular mechanism of action of these alkaloids. Together, (+)-erythravine and (+)-11α-hydroxy-erythravine seem to be a promising protective strategy against TLE, comprising three main aspects: neuroprotection, control of epileptic seizures and cognitive improvement. SIGNIFICANCE Moreover, our findings on neuroprotection corroborate the view that seizure frequency and severity, hippocampal lesions and memory deficits are interconnected events.
Collapse
Affiliation(s)
- Erica Aparecida Gelfuso
- Department of Biotechnology, University of Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil
| | - Suelen Lorenzato Reis
- Department of Biotechnology, University of Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil
| | | | | | - Renê Oliveira Beleboni
- Department of Biotechnology, University of Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil; School of Medicine, University of Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
39
|
Maguire JL. What Do We Want? INHIBITION. When Do We Want it? NOW. Epilepsy Curr 2019; 19:402-404. [PMID: 31718334 PMCID: PMC6891176 DOI: 10.1177/1535759719873035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
40
|
Abstract
This article describes current pursuits for developing novel antidotes for organophosphate (OP) intoxication. Recent mechanistic studies of benzodiazepine-resistant seizures have key consequences for victims of OP pesticide and nerve agent attacks. We uncovered why current therapies are not able to stop the OP-induced seizures and brain cell death and what type of drug might be better. OP exposure down regulates critical inhibitory GABA-A receptors, kills neurons, and causes massive neuroinflammation that will cause more neuronal death, which causes the problem of too few benzodiazepine receptors. The loss of inhibitory interneurons creates a self-sustaining seizure circuit and refractory status epilepticus. Thus, there is an urgent need for mechanism-based, new antidotes for OP intoxication. We have discovered neurosteroids as next-generation anticonvulsants superior to midazolam for the treatment of OP poisoning. Neurosteroids that activate both extrasynaptic and synaptic GABA-A receptors have the potential to stop seizures more effectively and safely than benzodiazepines. In addition, neurosteroids confers robust neuroprotection by reducing neuronal injury and neuroinflammation. The synthetic neurosteroid ganaxolone is being considered for advanced development as a future anticonvulsant for nerve agents. Experimental studies shows striking efficacy of ganaxolone and its analogs in OP exposure models. They are also effective in attenuating long-term neuropsychiatric deficits caused by OP exposure. Overall, neurosteroids represent rational anticonvulsants for OP intoxication, even when given late after exposure.
Collapse
|
41
|
Zhu X, Yao Y, Li X, Dong J, Zhang A. Alteration of GABAergic signaling is associated with anxiety-like behavior in temporal lobe epilepsy mice. Prog Neuropsychopharmacol Biol Psychiatry 2019; 93:141-148. [PMID: 30951784 DOI: 10.1016/j.pnpbp.2019.03.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 03/20/2019] [Accepted: 03/29/2019] [Indexed: 12/18/2022]
Abstract
Temporal lobe epilepsy (TLE), which is one of the most common neurological diseases, is accompanied by a high incidence of psychiatric disorders. Among these psychiatric disorders, anxiety is one of the major psychiatric comorbidities in epilepsy patients. However, anxiety in epilepsy patients often remains unrecognized and untreated. It is believed that the inhibitory networks of γ-aminobutyric acid (GABA) neurotransmission play pivotal roles in the modulation of emotion and mood responses in both physiological and pathological conditions. The impairment of neurotransmission mediated by GABAergic signaling is related to the pathophysiology of anxiety. However, it remains unclear whether and how GABAergic signaling modulates anxiety responses in the context of an epileptic brain. In the present study, we sought to determine the role of inhibitory networks of GABAergic signaling in the anxiety-like behavior of epileptic mice. Our results show epileptic mice exhibited increased anxiety-like behavior, and this increased anxiety-like behavior was accompanied by a decrease in GABAergic interneurons and an increase in GABA type A receptor (GABAAR) β3 subunit (GABRB3) expression in the hippocampus. Furthermore, the activation of GABAARs produced an anxiolytic-like effect, while the inhibition of GABAARs elicited an anxiogenic-like effect in the epileptic mice, suggesting that the alteration of GABAergic signaling is associated with anxiety-like behavior in epileptic mice. Thus, targeting GABAergic signaling in the epileptic brain may provide an effective anxiolytic treatment in epilepsy patients.
Collapse
Affiliation(s)
- Xinjian Zhu
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China.
| | - Yuanyuan Yao
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China
| | - Xiaolin Li
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jingde Dong
- Department of Geriatric Neurology, Nanjing Brain Hospital Affiliated with Nanjing Medical University, Nanjing, China
| | - Aifeng Zhang
- Department of Pathology, Medical School of Southeast University, Nanjing, China
| |
Collapse
|
42
|
Sudhakar SK, Choi TJ, Ahmed OJ. Biophysical Modeling Suggests Optimal Drug Combinations for Improving the Efficacy of GABA Agonists after Traumatic Brain Injuries. J Neurotrauma 2019; 36:1632-1645. [PMID: 30484362 PMCID: PMC6531909 DOI: 10.1089/neu.2018.6065] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Traumatic brain injuries (TBI) lead to dramatic changes in the surviving brain tissue. Altered ion concentrations, coupled with changes in the expression of membrane-spanning proteins, create a post-TBI brain state that can lead to further neuronal loss caused by secondary excitotoxicity. Several GABA receptor agonists have been tested in the search for neuroprotection immediately after an injury, with paradoxical results. These drugs not only fail to offer neuroprotection, but can also slow down functional recovery after TBI. Here, using computational modeling, we provide a biophysical hypothesis to explain these observations. We show that the accumulation of intracellular chloride ions caused by a transient upregulation of Na+-K+-2Cl- (NKCC1) co-transporters as observed following TBI, causes GABA receptor agonists to lead to excitation and depolarization block, rather than the expected hyperpolarization. The likelihood of prolonged, excitotoxic depolarization block is further exacerbated by the extremely high levels of extracellular potassium seen after TBI. Our modeling results predict that the neuroprotective efficacy of GABA receptor agonists can be substantially enhanced when they are combined with NKCC1 co-transporter inhibitors. This suggests a rational, biophysically principled method for identifying drug combinations for neuroprotection after TBI.
Collapse
Affiliation(s)
| | - Thomas J. Choi
- Department of Psychology, University of Michigan, Ann Arbor, Michigan
| | - Omar J. Ahmed
- Department of Psychology, University of Michigan, Ann Arbor, Michigan
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
- Department of Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan
- Department of Kresge Hearing Research Institute, University of Michigan, Ann Arbor, Michigan
- Department of Michigan Center for Integrative Research in Critical Care, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
43
|
Aroniadou-Anderjaska V, Figueiredo TH, Apland JP, Braga MF. Targeting the glutamatergic system to counteract organophosphate poisoning: A novel therapeutic strategy. Neurobiol Dis 2019; 133:104406. [PMID: 30798006 DOI: 10.1016/j.nbd.2019.02.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 01/23/2019] [Accepted: 02/20/2019] [Indexed: 12/15/2022] Open
Abstract
One of the devastating effects of acute exposure to organophosphates, like nerve agents, is the induction of severe and prolonged status epilepticus (SE), which can cause death, or brain damage if death is prevented. Seizures after exposure are initiated by muscarinic receptor hyperstimulation-after inhibition of acetylcholinesterase by the organophosphorus agent and subsequent elevation of acetylcholine-but they are reinforced and sustained by glutamatergic hyperexcitation, which is the primary cause of brain damage. Diazepam is the FDA-approved anticonvulsant for the treatment of nerve agent-induced SE, and its replacement by midazolam is currently under consideration. However, clinical data derived from the treatment of SE of any etiology, as well as studies on the control of nerve agent-induced SE in animal models, have indicated that diazepam and midazolam control seizures only temporarily, their antiseizure efficacy is reduced as the latency of treatment from the onset of SE increases, and their neuroprotective efficacy is limited or absent. Here, we review data on the discovery of a novel anticonvulsant and neuroprotectant, LY293558, an AMPA/GluK1 receptor antagonist. Treatment of soman-exposed immature, young-adult, and aged rats with LY293558, terminates SE with limited recurrence of seizures, significantly protects from brain damage, and prevents long-term behavioral deficits, even when LY293558 is administered 1 h post-exposure. More beneficial effects and complete neuroprotection is obtained when LY293558 administration is combined with caramiphen, which antagonizes NMDA receptors. Further efficacy studies may bring the LY293558 + caramiphen combination therapy on the pathway to approval for human use.
Collapse
Affiliation(s)
- Vassiliki Aroniadou-Anderjaska
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, United States of America; Department of Psychiatry, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, United States of America.
| | - Taiza H Figueiredo
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, United States of America.
| | - James P Apland
- Neuroscience Program, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD 21010, United States of America.
| | - Maria F Braga
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, United States of America; Department of Psychiatry, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, United States of America.
| |
Collapse
|
44
|
Okada A, Suzuki K, Hara K, Kojina M, Aiba T. In Vivo Study on Mechanism Underlying Increased Pharmacological Effects of Phenobarbital in Rats with Glycerol-Induced Acute Renal Failure. Biol Pharm Bull 2019; 42:501-506. [PMID: 30828081 DOI: 10.1248/bpb.b18-00659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
The mechanism underlying the increased pharmacological effects of phenobarbital in rats with glycerol-induced acute renal failure (ARF) was examined. In the experiments, a surgical cannula was inserted in the lateral ventricle of the rats for phenobarbital infusion, and the ARF induction was performed by intramuscular administration of 50% glycerol. The onset time of anesthesia by phenobarbital was determined with the tail flick method. In addition, cerebral microsomes were prepared from excised cerebral cortices of sham and ARF rats, and the cerebral expression of the γ-aminobutyric acid (GABA)A receptor and two cation-chloride transporters, KCC2 and NKCC1, was evaluated by Western blotting, as their functions are involved in the anesthetic effects of phenobarbital. When phenobarbital was infused in the ventricle, anesthesia was induced 2.2-times faster in ARF rats than in sham rats, and there was no detectable increase in the cerebral expression of the GABAA receptor in ARF rats. It was additionally noted that the cerebral expression of KCC2 decreased, whereas that of NKCC1 was unaltered in ARF rats. These findings indicated that the anesthetic effects of phenobarbital are potentiated in ARF rats, probably due to imbalanced cerebral expression of KCC2 and NKCC1, suggesting that altered cation-chloride handling in nerve cells is associated.
Collapse
Affiliation(s)
- Atsuyoshi Okada
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| | - Keiichiro Suzuki
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| | - Keisuke Hara
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| | - Moeko Kojina
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| | - Tetsuya Aiba
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| |
Collapse
|
45
|
Kuruba R, Wu X, Reddy DS. Benzodiazepine-refractory status epilepticus, neuroinflammation, and interneuron neurodegeneration after acute organophosphate intoxication. Biochim Biophys Acta Mol Basis Dis 2018; 1864:2845-2858. [PMID: 29802961 PMCID: PMC6066461 DOI: 10.1016/j.bbadis.2018.05.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 04/30/2018] [Accepted: 05/22/2018] [Indexed: 12/19/2022]
Abstract
Nerve agents and some pesticides such as diisopropylfluorophosphate (DFP) cause neurotoxic manifestations that include seizures and status epilepticus (SE), which are potentially lethal and carry long-term neurological morbidity. Current antidotes for organophosphate (OP) intoxication include atropine, 2-PAM and diazepam (a benzodiazepine for treating seizures and SE). There is some evidence for partial or complete loss of diazepam anticonvulsant efficacy when given 30 min or later after exposure to an OP; this condition is known as refractory SE. Effective therapies for OP-induced SE are lacking and it is unclear why current therapies do not work. In this study, we investigated the time-dependent efficacy of diazepam in the nerve agent surrogate DFP model of OP intoxication on seizure suppression and neuroprotection in rats, following an early and late therapy. Diazepam (5 mg/kg, IM) controlled seizures when given 10 min after DFP exposure ("early"), but it was completely ineffective at 60 or 120 min ("late") after DFP. DFP-induced neuronal injury, neuroinflammation, and neurodegeneration of principal cells and GABAergic interneurons were significantly reduced by early but not late therapy. These findings demonstrate that diazepam failed to control seizures, SE and neuronal injury when given 60 min or later after DFP exposure, confirming the benzodiazepine-refractory SE and brain damage after OP intoxication. In addition, this study indicates that degeneration of inhibitory interneurons and inflammatory glial activation are potential mechanisms underlying these morbid outcomes of OP intoxication. Therefore, novel anticonvulsant and neuroprotectant antidotes, superior to benzodiazepines, are desperately needed for controlling nerve agent-induced SE and brain injury.
Collapse
Affiliation(s)
- Ramkumar Kuruba
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, College of Medicine, Bryan, TX 77807, USA
| | - Xin Wu
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, College of Medicine, Bryan, TX 77807, USA
| | - Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, College of Medicine, Bryan, TX 77807, USA.
| |
Collapse
|
46
|
Wu X, Kuruba R, Reddy DS. Midazolam-Resistant Seizures and Brain Injury after Acute Intoxication of Diisopropylfluorophosphate, an Organophosphate Pesticide and Surrogate for Nerve Agents. J Pharmacol Exp Ther 2018; 367:302-321. [PMID: 30115757 DOI: 10.1124/jpet.117.247106] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 08/14/2018] [Indexed: 12/15/2022] Open
Abstract
Organophosphates (OP) such as the pesticide diisopropylfluorophosphate (DFP) and the nerve agent sarin are lethal chemicals that induce seizures, status epilepticus (SE), and brain damage. Midazolam, a benzodiazepine modulator of synaptic GABA-A receptors, is currently considered as a new anticonvulsant for nerve agents. Here, we characterized the time course of protective efficacy of midazolam (0.2-5 mg/kg, i.m.) in rats exposed to DFP, a chemical threat agent and surrogate for nerve agents. Behavioral and electroencephalogram (EEG) seizures were monitored for 24 hours after DFP exposure. The extent of brain injury was determined 3 days after DFP exposure by unbiased stereologic analyses of valid markers of neurodegeneration and neuroinflammation. Seizures were elicited within ∼8 minutes after DFP exposure that progressively developed into persistent SE lasting for hours. DFP exposure resulted in massive neuronal injury or necrosis, neurodegeneration of principal cells and interneurons, and neuroinflammation as evident by extensive activation of microglia and astrocytes in the hippocampus, amygdala, and other brain regions. Midazolam controlled seizures, neurodegeneration, and neuroinflammation when given early (10 minutes) after DFP exposure, but it was less effective when given at 40 minutes or later. Delayed therapy (≥40 minutes), a simulation of the practical therapeutic window for first responders or hospital admission, was associated with reduced seizure protection and neuroprotection. These results strongly reaffirm that the DFP-induced seizures and brain damage are progressively resistant to delayed treatment with midazolam, confirming the benzodiazepine refractory SE after OP intoxication. Thus, novel anticonvulsants superior to midazolam or adjunct therapies that enhance its efficacy are needed for effective treatment of refractory SE.
Collapse
Affiliation(s)
- Xin Wu
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center College of Medicine, Bryan, Texas
| | - Ramkumar Kuruba
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center College of Medicine, Bryan, Texas
| | - Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center College of Medicine, Bryan, Texas
| |
Collapse
|
47
|
Cagnotti G, Odore R, Gardini G, Amedeo S, Bertone I, Guerriero G, Lentini L, Dappiano E, D'Angelo A. Pharmacokinetics of rectal levetiracetam as add-on treatment in dogs affected by cluster seizures or status epilepticus. BMC Vet Res 2018; 14:189. [PMID: 29914474 PMCID: PMC6006693 DOI: 10.1186/s12917-018-1522-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 06/12/2018] [Indexed: 12/02/2022] Open
Abstract
Background Levetiracetam can be used for seizure control alone or in combination with other antiepileptic medications. A previous study achieved the minimum targeted serum drug concentration after rectal administration of levetiracetam in healthy dogs. The purpose of the present study was to determine the pharmacokinetics of rectal LEV in dogs presented for cluster seizures or status epilepticus and potentially in treatment with other anti-epileptic drugs. Furthermore, preliminary information on response to this treatment as add-on to the standard treatment protocol is reported. Results Eight client-owned dogs were enrolled. Plasma levetiracetam concentrations (measured at 0, 30, 60, 90, 120, 180, 240, 360, 720, and 1440 min after drug administration) reached the minimum target concentration (5 μg/ml) at 30 min in all but one patient. At T1 (30 min) the mean concentration was 28.2 ± 15.5 μg/ml. Plasma concentrations remained above the targeted minimum concentration in all patients until 240 min and in 7/8 until 360 min. Six out of eight patients experienced no seizures in the 24-h period after hospitalization and were classified as “responders”. Conclusions Minimum plasma levetiracetam concentration can be reached after rectal administration of 40 mg/kg in dogs affected by cluster seizures and status epilepticus and concurrently receiving other antiepileptic drugs. These preliminary results may encourage the evaluation of rectal levetiracetam as an additional treatment option for cluster seizures and status epilepticus in a larger number of dogs. Electronic supplementary material The online version of this article (10.1186/s12917-018-1522-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Giulia Cagnotti
- Department of Veterinary Science, University of Turin, Via Largo Braccini 2, 10095, Grugliasco, Turin, Italy.
| | - Rosangela Odore
- Department of Veterinary Science, University of Turin, Via Largo Braccini 2, 10095, Grugliasco, Turin, Italy
| | - Giulia Gardini
- Department of Veterinary Science, University of Turin, Via Largo Braccini 2, 10095, Grugliasco, Turin, Italy
| | - Stefano Amedeo
- Department of Veterinary Science, University of Turin, Via Largo Braccini 2, 10095, Grugliasco, Turin, Italy
| | - Iride Bertone
- Department of Veterinary Science, University of Turin, Via Largo Braccini 2, 10095, Grugliasco, Turin, Italy
| | - Giulia Guerriero
- Department of Veterinary Science, University of Turin, Via Largo Braccini 2, 10095, Grugliasco, Turin, Italy
| | - Laura Lentini
- Department of Veterinary Science, University of Turin, Via Largo Braccini 2, 10095, Grugliasco, Turin, Italy
| | - Elena Dappiano
- Department of Veterinary Science, University of Turin, Via Largo Braccini 2, 10095, Grugliasco, Turin, Italy
| | - Antonio D'Angelo
- Department of Veterinary Science, University of Turin, Via Largo Braccini 2, 10095, Grugliasco, Turin, Italy
| |
Collapse
|
48
|
Apland JP, Aroniadou-Anderjaska V, Figueiredo TH, Pidoplichko VI, Rossetti K, Braga MFM. Comparing the Antiseizure and Neuroprotective Efficacy of LY293558, Diazepam, Caramiphen, and LY293558-Caramiphen Combination against Soman in a Rat Model Relevant to the Pediatric Population. J Pharmacol Exp Ther 2018; 365:314-326. [PMID: 29467308 PMCID: PMC5878669 DOI: 10.1124/jpet.117.245969] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 02/08/2018] [Indexed: 12/13/2022] Open
Abstract
The currently Food and Drug Administration-approved anticonvulsant for the treatment of status epilepticus (SE) induced by nerve agents is the benzodiazepine diazepam; however, diazepam does not appear to offer neuroprotective benefits. This is of particular concern with respect to the protection of children because, in the developing brain, synaptic transmission mediated via GABAA receptors, the target of diazepam, is weak. In the present study, we exposed 21-day-old male rats to 1.2 × LD50 soman and compared the antiseizure, antilethality, and neuroprotective efficacy of diazepam (10 mg/kg), LY293558 (an AMPA/GluK1 receptor antagonist; 15 mg/kg), caramiphen (CRM, an antimuscarinic with NMDA receptor-antagonistic properties; 50 mg/kg), and LY293558 (15 mg/kg) + CRM (50 mg/kg), administered 1 hour after exposure. Diazepam, LY293558, and LY293558 + CRM, but not CRM alone, terminated SE; LY293558 + CRM treatment acted significantly faster and produced a survival rate greater than 85%. Thirty days after soman exposure, neurodegeneration in limbic regions was most severe in the CRM-treated group, minimal to severe-depending on the region-in the diazepam group, absent to moderate in the LY293558-treated group, and totally absent in the LY293558 + CRM group. Amygdala and hippocampal atrophy, a severe reduction in spontaneous inhibitory activity in the basolateral amygdala, and increased anxiety-like behavior in the open-field and acoustic startle response tests were present in the diazepam and CRM groups, whereas the LY293558 and LY293558 + CRM groups did not differ from controls. The combined administration of LY293558 and CRM, by blocking mainly AMPA, GluK1, and NMDA receptors, is a very effective anticonvulsant and neuroprotective therapy against soman in young rats.
Collapse
Affiliation(s)
- James P Apland
- Neuroscience Branch, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland (J.P.A.); and Departments of Anatomy, Physiology, and Genetics (V.A.-A., T.H.F., V.I.P., K.R., M.F.M.B.) and Psychiatry (V.A.-A., M.F.M.B.), F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Vassiliki Aroniadou-Anderjaska
- Neuroscience Branch, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland (J.P.A.); and Departments of Anatomy, Physiology, and Genetics (V.A.-A., T.H.F., V.I.P., K.R., M.F.M.B.) and Psychiatry (V.A.-A., M.F.M.B.), F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Taiza H Figueiredo
- Neuroscience Branch, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland (J.P.A.); and Departments of Anatomy, Physiology, and Genetics (V.A.-A., T.H.F., V.I.P., K.R., M.F.M.B.) and Psychiatry (V.A.-A., M.F.M.B.), F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Volodymyr I Pidoplichko
- Neuroscience Branch, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland (J.P.A.); and Departments of Anatomy, Physiology, and Genetics (V.A.-A., T.H.F., V.I.P., K.R., M.F.M.B.) and Psychiatry (V.A.-A., M.F.M.B.), F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Katia Rossetti
- Neuroscience Branch, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland (J.P.A.); and Departments of Anatomy, Physiology, and Genetics (V.A.-A., T.H.F., V.I.P., K.R., M.F.M.B.) and Psychiatry (V.A.-A., M.F.M.B.), F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Maria F M Braga
- Neuroscience Branch, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland (J.P.A.); and Departments of Anatomy, Physiology, and Genetics (V.A.-A., T.H.F., V.I.P., K.R., M.F.M.B.) and Psychiatry (V.A.-A., M.F.M.B.), F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| |
Collapse
|
49
|
Full Protection Against Soman-Induced Seizures and Brain Damage by LY293558 and Caramiphen Combination Treatment in Adult Rats. Neurotox Res 2018; 34:511-524. [PMID: 29713995 DOI: 10.1007/s12640-018-9907-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 04/14/2018] [Accepted: 04/17/2018] [Indexed: 10/17/2022]
Abstract
Acute exposure to nerve agents induces status epilepticus (SE), which causes brain damage or death. LY293558, an antagonist of AMPA and GluK1 kainate receptors is a very effective anticonvulsant and neuroprotectant against soman; however, some neuronal damage is still present after treatment of soman-exposed rats with LY293558. Here, we have tested whether combining LY293558 with an NMDA receptor antagonist can eliminate the residual damage. For this purpose, we chose caramiphen (CRM), an antimuscarinic compound with NMDA receptor antagonistic properties. Adult male rats were exposed to 1.2 × LD50 soman, and at 20 min after soman exposure, were injected with atropine + HI-6, or atropine + HI-6 + LY293558 (15 mg/kg), or atropine + HI-6 + LY293558 + CRM (50 mg/kg). We found that (1) the LY293558 + CRM treatment terminated SE significantly faster than LY293558 alone; (2) after cessation of the initial SE, seizures did not return in the LY293558 + CRM-treated group, during 72 h of monitoring; (3) power spectrum analysis of continuous EEG recordings for 7 days post-exposure showed increased delta and decreased gamma power that lasted beyond 24 h post-exposure only in the rats who did not receive anticonvulsant treatment; (4) spontaneous recurrent seizures appeared on day 7 only in the group that did not receive anticonvulsant treatment; (5) significant neuroprotection was achieved by LY293558 administration, while the rats who received LY293558 + CRM displayed no neurodegeneration; (6) body weight loss and recovery in the LY293558 + CRM-treated rats did not differ from those in control rats who were not exposed to soman. The data show that treatment with LY293558 + CRM provides full antiseizure and neuroprotective efficacy against soman.
Collapse
|
50
|
Leo A, Giovannini G, Russo E, Meletti S. The role of AMPA receptors and their antagonists in status epilepticus. Epilepsia 2018; 59:1098-1108. [DOI: 10.1111/epi.14082] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2018] [Indexed: 01/08/2023]
Affiliation(s)
- Antonio Leo
- Department of Science of Health; University Magna Graecia of Catanzaro; Catanzaro Italy
| | - Giada Giovannini
- Department of Biomedical Metabolic and Neural Sciences; University of Modena and Reggio Emilia; Modena Italy
| | - Emilio Russo
- Department of Science of Health; University Magna Graecia of Catanzaro; Catanzaro Italy
| | - Stefano Meletti
- Department of Biomedical Metabolic and Neural Sciences; University of Modena and Reggio Emilia; Modena Italy
| |
Collapse
|