1
|
Salahaldin MM, Shehadeh MH, Abu Keshek A, Abdullah TW, Abueita H. Landau-Kleffner syndrome (LKS) in an 8-year-old girl: a case report and review of the literature. Ann Med Surg (Lond) 2024; 86:4202-4205. [PMID: 38989194 PMCID: PMC11230735 DOI: 10.1097/ms9.0000000000002156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/02/2024] [Indexed: 07/12/2024] Open
Abstract
Introduction and importance Landau-Kleffner syndrome (LKS) is a rare epileptic encephalopathy characterized by language regression and abnormal electroencephalogram (EEG) patterns. This case report highlights the importance of early recognition and intervention in LKS, as well as the challenges in diagnosis and management due to its varied clinical manifestations. Case presentation An 8-year-old girl presented with delayed speech, suspected hearing loss, and regression in language skills. Diagnostic tests revealed mild sensorineural hearing loss and EEG abnormalities consistent with LKS. The patient underwent speech therapy and received pharmacological treatment with valproic acid, resulting in significant improvements in language function. Clinical discussion This case report provides insights into the typical features of LKS, including language regression and EEG abnormalities. It also highlights uncommon findings such as sensorineural hearing loss and mild intellectual delay. The multidisciplinary approach involving neurology, audiology, speech therapy, and education is crucial in the diagnosis and management of LKS. Conclusion Early recognition and intervention, along with tailored pharmacological approaches and a multidisciplinary care approach, are essential in managing LKS. Further research is needed to better understand the pathophysiology, natural history, and optimal treatment of LKS, aiming to improve long-term outcomes for affected children and their families.
Collapse
Affiliation(s)
| | | | | | | | - Hany Abueita
- Department of Pediatric Neurology, Palestinian Medical Complex (PMC), Ramallah, Palestine
| |
Collapse
|
2
|
Posar A, Visconti P. Continuous Spike-Waves during Slow Sleep Today: An Update. CHILDREN (BASEL, SWITZERLAND) 2024; 11:169. [PMID: 38397281 PMCID: PMC10887038 DOI: 10.3390/children11020169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/19/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024]
Abstract
In the context of childhood epilepsy, the concept of continuous spike-waves during slow sleep (CSWS) includes several childhood-onset heterogeneous conditions that share electroencephalograms (EEGs) characterized by a high frequency of paroxysmal abnormalities during sleep, which have negative effects on the cognitive development and behavior of the child. These negative effects may have the characteristics of a clear regression or of a slowdown in development. Seizures are very often present, but not constantly. The above makes it clear why CSWS have been included in epileptic encephalopathies, in which, by definition, frequent EEG paroxysmal abnormalities have an unfavorable impact on cognitive functions, including socio-communicative skills, causing autistic features, even regardless of the presence of clinically overt seizures. Although several decades have passed since the original descriptions of the electroclinical condition of CSWS, there are still many areas that are little-known and deserve to be further studied, including the EEG diagnostic criteria, the most effective electrophysiological parameter for monitoring the role of the thalamus in CSWS pathogenesis, its long-term evolution, the nosographic location of Landau-Kleffner syndrome, standardized neuropsychological and behavioral assessments, and pharmacological and non-pharmacological therapies.
Collapse
Affiliation(s)
- Annio Posar
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOSI Disturbi dello Spettro Autistico, 40139 Bologna, Italy;
- Department of Biomedical and Neuromotor Sciences, Bologna University, 40139 Bologna, Italy
| | - Paola Visconti
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOSI Disturbi dello Spettro Autistico, 40139 Bologna, Italy;
| |
Collapse
|
3
|
Licchetta L, Di Giorgi L, Santucci M, Taruffi L, Stipa C, Minardi R, Carelli V, Bisulli F. Biallelic pathogenic variants of PARS2 cause developmental and epileptic encephalopathy with spike-and-wave activation in sleep. Mol Genet Genomic Med 2024; 12:e2311. [PMID: 38087948 PMCID: PMC10767575 DOI: 10.1002/mgg3.2311] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/06/2023] [Accepted: 10/13/2023] [Indexed: 01/07/2024] Open
Abstract
BACKGROUND Biallelic pathogenic variants in the mitochondrial prolyl-tRNA synthetase 2 gene (PARS2, OMIM * 612036) have been associated with Developmental and Epileptic Encephalopathy-75 (DEE-75, MIM #618437). This condition is typically characterized by early-onset refractory infantile spasms with hypsarrhythmia, intellectual disability, microcephaly, cerebral atrophy with hypomyelination, lactic acidemia, and cardiomyopathy. Most affected individuals do not survive beyond the age of 10 years. METHODS We describe a patient with early-onset DEE, consistently showing an EEG pattern of Spike-and-Wave Activation in Sleep (SWAS) since childhood. The patient underwent extensive clinical, metabolic and genetic investigations, including whole exome sequencing (WES). RESULTS WES analysis identified compound heterozygous variants in PARS2 that have been already reported as pathogenic. A literature review of PARS2-associated DEE, focusing mainly on the electroclinical phenotype, did not reveal the association of SWAS with pathogenic variants in PARS2. Notably, unlike previously reported cases with the same genotype, this patient had longer survival without cardiac involvement or lactic acidosis, suggesting potential genetic modifiers contributing to disease variability. CONCLUSION These findings widen the genetic heterogeneity of DEE-SWAS, including PARS2 as a causative gene in this syndromic entity, and highlight the importance of prolonged sleep EEG recording for the recognition of SWAS as a possible electroclinical evolution of PARS2-related DEE.
Collapse
Affiliation(s)
- Laura Licchetta
- IRCCS Istituto delle Scienze Neurologiche di BolognaFull member of the European Reference Network EpiCARE BolognaBolognaItaly
| | - Lucia Di Giorgi
- IRCCS Istituto delle Scienze Neurologiche di BolognaFull member of the European Reference Network EpiCARE BolognaBolognaItaly
- Department of Biomedicine, Neuroscience and Advanced DiagnosticsUniversity of PalermoPalermoItaly
| | - Margherita Santucci
- Department of Biomedical and Neuromotor SciencesUniversity of BolognaBolognaItaly
| | - Lisa Taruffi
- IRCCS Istituto delle Scienze Neurologiche di BolognaFull member of the European Reference Network EpiCARE BolognaBolognaItaly
| | - Carlotta Stipa
- IRCCS Istituto delle Scienze Neurologiche di BolognaFull member of the European Reference Network EpiCARE BolognaBolognaItaly
| | - Raffaella Minardi
- IRCCS Istituto delle Scienze Neurologiche di BolognaFull member of the European Reference Network EpiCARE BolognaBolognaItaly
| | - Valerio Carelli
- IRCCS Istituto delle Scienze Neurologiche di BolognaFull member of the European Reference Network EpiCARE BolognaBolognaItaly
- Department of Biomedical and Neuromotor SciencesUniversity of BolognaBolognaItaly
| | - Francesca Bisulli
- IRCCS Istituto delle Scienze Neurologiche di BolognaFull member of the European Reference Network EpiCARE BolognaBolognaItaly
- Department of Biomedical and Neuromotor SciencesUniversity of BolognaBolognaItaly
| |
Collapse
|
4
|
Specchio N, Wirrell EC, Scheffer IE, Nabbout R, Riney K, Samia P, Guerreiro M, Gwer S, Zuberi SM, Wilmshurst JM, Yozawitz E, Pressler R, Hirsch E, Wiebe S, Cross HJ, Perucca E, Moshé SL, Tinuper P, Auvin S. International League Against Epilepsy classification and definition of epilepsy syndromes with onset in childhood: Position paper by the ILAE Task Force on Nosology and Definitions. Epilepsia 2022; 63:1398-1442. [PMID: 35503717 DOI: 10.1111/epi.17241] [Citation(s) in RCA: 320] [Impact Index Per Article: 106.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 12/30/2022]
Abstract
The 2017 International League Against Epilepsy classification has defined a three-tier system with epilepsy syndrome identification at the third level. Although a syndrome cannot be determined in all children with epilepsy, identification of a specific syndrome provides guidance on management and prognosis. In this paper, we describe the childhood onset epilepsy syndromes, most of which have both mandatory seizure type(s) and interictal electroencephalographic (EEG) features. Based on the 2017 Classification of Seizures and Epilepsies, some syndrome names have been updated using terms directly describing the seizure semiology. Epilepsy syndromes beginning in childhood have been divided into three categories: (1) self-limited focal epilepsies, comprising four syndromes: self-limited epilepsy with centrotemporal spikes, self-limited epilepsy with autonomic seizures, childhood occipital visual epilepsy, and photosensitive occipital lobe epilepsy; (2) generalized epilepsies, comprising three syndromes: childhood absence epilepsy, epilepsy with myoclonic absence, and epilepsy with eyelid myoclonia; and (3) developmental and/or epileptic encephalopathies, comprising five syndromes: epilepsy with myoclonic-atonic seizures, Lennox-Gastaut syndrome, developmental and/or epileptic encephalopathy with spike-and-wave activation in sleep, hemiconvulsion-hemiplegia-epilepsy syndrome, and febrile infection-related epilepsy syndrome. We define each, highlighting the mandatory seizure(s), EEG features, phenotypic variations, and findings from key investigations.
Collapse
Affiliation(s)
- Nicola Specchio
- Rare and Complex Epilepsy Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, Scientific Institute for Research and Health Care, Full Member of EpiCARE, Rome, Italy
| | - Elaine C Wirrell
- Divisions of Child and Adolescent Neurology and Epilepsy, Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Ingrid E Scheffer
- Austin Health and Royal Children's Hospital, Florey Institute, Murdoch Children's Research Institute, University of Melbourne, Melbourne, Victoria, Australia
| | - Rima Nabbout
- Reference Center for Rare Epilepsies, Department of Pediatric Neurology, Necker-Sick Children Hospital, Public Hospital Network of Paris, member of EpiCARE, Imagine Institute, National Institute of Health and Medical Research, Mixed Unit of Research 1163, University of Paris, Paris, France
| | - Kate Riney
- Neurosciences Unit, Queensland Children's Hospital, South Brisbane, Queensland, Australia.,Faculty of Medicine, University of Queensland, South Brisbane, Queensland, Australia
| | - Pauline Samia
- Department of Pediatrics and Child Health, Aga Khan University, Nairobi, Kenya
| | | | - Sam Gwer
- School of Medicine, Kenyatta University, and Afya Research Africa, Nairobi, Kenya
| | - Sameer M Zuberi
- Paediatric Neurosciences Research Group, Royal Hospital for Children and Institute of Health & Wellbeing, member of EpiCARE, University of Glasgow, Glasgow, UK
| | - Jo M Wilmshurst
- Department of Paediatric Neurology, Red Cross War Memorial Children's Hospital, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Elissa Yozawitz
- Isabelle Rapin Division of Child Neurology of the Saul R. Korey Department of Neurology, Montefiore Medical Center, Bronx, New York, USA
| | - Ronit Pressler
- Programme of Developmental Neurosciences, University College London National Institute for Health Research Biomedical Research Centre Great Ormond Street Institute of Child Health, Department of Clinical Neurophysiology, Great Ormond Street Hospital for Children, London, UK
| | - Edouard Hirsch
- Neurology Epilepsy Units "Francis Rohmer", INSERM 1258, FMTS, Strasbourg University, Strasbourg, France
| | - Sam Wiebe
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Helen J Cross
- Programme of Developmental Neurosciences, University College London National Institute for Health Research Biomedical Research Centre Great Ormond Street Institute of Child Health, Great Ormond Street Hospital for Children, and Young Epilepsy Lingfield, London, UK
| | - Emilio Perucca
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia.,Department of Medicine, Austin Health, University of Melbourne, Heidelberg, Victoria, Australia
| | - Solomon L Moshé
- Isabelle Rapin Division of Child Neurology, Saul R. Korey Department of Neurology, and Departments of Neuroscience and Pediatrics, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, USA
| | - Paolo Tinuper
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,Institute of Neurological Sciences, Scientific Institute for Research and Health Care, Bologna, Italy
| | - Stéphane Auvin
- Robert Debré Hospital, Public Hospital Network of Paris, NeuroDiderot, National Institute of Health and Medical Research, Department Medico-Universitaire Innovation Robert-Debré, Pediatric Neurology, University of Paris, Paris, France
| |
Collapse
|
5
|
Functions of CNKSR2 and Its Association with Neurodevelopmental Disorders. Cells 2022; 11:cells11020303. [PMID: 35053419 PMCID: PMC8774548 DOI: 10.3390/cells11020303] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/05/2022] [Accepted: 01/13/2022] [Indexed: 02/04/2023] Open
Abstract
The Connector Enhancer of Kinase Suppressor of Ras-2 (CNKSR2), also known as CNK2 or MAGUIN, is a scaffolding molecule that contains functional protein binding domains: Sterile Alpha Motif (SAM) domain, Conserved Region in CNK (CRIC) domain, PSD-95/Dlg-A/ZO-1 (PDZ) domain, Pleckstrin Homology (PH) domain, and C-terminal PDZ binding motif. CNKSR2 interacts with different molecules, including RAF1, ARHGAP39, and CYTH2, and regulates the Mitogen-Activated Protein Kinase (MAPK) cascade and small GTPase signaling. CNKSR2 has been reported to control the development of dendrite and dendritic spines in primary neurons. CNKSR2 is encoded by the CNKSR2 gene located in the X chromosome. CNKSR2 is now considered as a causative gene of the Houge type of X-linked syndromic mental retardation (MRXHG), an X-linked Intellectual Disability (XLID) that exhibits delayed development, intellectual disability, early-onset seizures, language delay, attention deficit, and hyperactivity. In this review, we summarized molecular features, neuronal function, and neurodevelopmental disorder-related variations of CNKSR2.
Collapse
|
6
|
Gong P, Jiao X, Yang Z. A case of Landau-Kleffner syndrome with SLC26A4-related hearing impairment. ACTA EPILEPTOLOGICA 2022. [DOI: 10.1186/s42494-021-00067-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Landau-Kleffner syndrome (LKS) is an acquired aphasia and electroencephalogram (EEG) abnormalities mainly in temporoparietal areas. SLC26A4 mutations can cause hearing loss associated with enlarged vestibular aqueduct (EVA).
Case presentations
We report a case of LKS in a 5-year-old boy with non-syndromic EVA due to homozygous mutations of c.919-2A>G (IVS7-2A>G) in SLC26A4. He had normal language development before 2 years old. At the age of 2.5 years, he was admitted to the hospital due to remarkable language delay, and diagnosed with hearing loss with EVA. The seizures started at 4.4 years of age and EEG recording showed electrical status epilepticus during sleep (ESES) with a posterior-temporal predominance. He received cochlear implantation in the right ear at 4.7 years of age, which improved his hearing and language skills. The nocturnal focal motor seizures recurred at 4.9 years of age. Then a remarkable inability to respond to calls and reduction in spontaneous speech were noticed. He was treated with methylprednisolone at 5 years old, which controlled the seizures, suppressed ESES, and remarkably improved the language ability. The absence of seizures maintained until the last follow-up at 5.3 years of age, with further improvements in EEG recording and language ability.
Conclusions
The co-existence of LKS and hearing loss caused by SLC26A4 mutations increases the difficulty of LKS diagnosis, especially in the presence of hearing loss and impaired language skills. EEG discharges predominantly in temporoparietal areas, the occurrence of ESES, and language improvement after antiepileptic medications are potential indicators for LKS diagnosis.
Collapse
|
7
|
Stoyell SM, Baxter BS, McLaren J, Kwon H, Chinappen DM, Ostrowski L, Zhu L, Grieco JA, Kramer MA, Morgan AK, Emerton BC, Manoach DS, Chu CJ. Diazepam induced sleep spindle increase correlates with cognitive recovery in a child with epileptic encephalopathy. BMC Neurol 2021; 21:355. [PMID: 34521381 PMCID: PMC8438890 DOI: 10.1186/s12883-021-02376-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 08/31/2021] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Continuous spike and wave of sleep with encephalopathy (CSWS) is a rare and severe developmental electroclinical epileptic encephalopathy characterized by seizures, abundant sleep activated interictal epileptiform discharges, and cognitive regression or deceleration of expected cognitive growth. The cause of the cognitive symptoms is unknown, and efforts to link epileptiform activity to cognitive function have been unrevealing. Converging lines of evidence implicate thalamocortical circuits in these disorders. Sleep spindles are generated and propagated by the same thalamocortical circuits that can generate spikes and, in healthy sleep, support memory consolidation. As such, sleep spindle deficits may provide a physiologically relevant mechanistic biomarker for cognitive dysfunction in epileptic encephalopathies. CASE PRESENTATION We describe the longitudinal course of a child with CSWS with initial cognitive regression followed by dramatic cognitive improvement after treatment. Using validated automated detection algorithms, we analyzed electroencephalograms for epileptiform discharges and sleep spindles alongside contemporaneous neuropsychological evaluations over the course of the patient's disease. We found that sleep spindles increased dramatically with high-dose diazepam treatment, corresponding with marked improvements in cognitive performance. We also found that the sleep spindle rate was anticorrelated to spike rate, consistent with a competitively shared underlying thalamocortical circuitry. CONCLUSIONS Epileptic encephalopathies are challenging electroclinical syndromes characterized by combined seizures and a deceleration or regression in cognitive skills over childhood. This report identifies thalamocortical circuit dysfunction in a case of epileptic encephalopathy and motivates future investigations of sleep spindles as a biomarker of cognitive function and a potential therapeutic target in this challenging disease.
Collapse
Affiliation(s)
- S M Stoyell
- Department of Neurology, Massachusetts General Hospital, 175 Cambridge St, Suite 340, Boston, MA, 02114, USA
| | - B S Baxter
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, 02114, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - J McLaren
- Department of Neurology, Massachusetts General Hospital, 175 Cambridge St, Suite 340, Boston, MA, 02114, USA
| | - H Kwon
- Department of Neurology, Massachusetts General Hospital, 175 Cambridge St, Suite 340, Boston, MA, 02114, USA
| | - D M Chinappen
- Department of Neurology, Massachusetts General Hospital, 175 Cambridge St, Suite 340, Boston, MA, 02114, USA
| | - L Ostrowski
- Department of Neurology, Massachusetts General Hospital, 175 Cambridge St, Suite 340, Boston, MA, 02114, USA
| | - L Zhu
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - J A Grieco
- Massachusetts General Hospital, Psychology Assessment Center, Boston, MA, 02114, USA
| | - M A Kramer
- Department of Mathematics and Statistics, Boston University, Boston, MA, 02115, USA
| | - A K Morgan
- Massachusetts General Hospital, Psychology Assessment Center, Boston, MA, 02114, USA
| | - B C Emerton
- Massachusetts General Hospital, Psychology Assessment Center, Boston, MA, 02114, USA
| | - D S Manoach
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, 02114, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - C J Chu
- Department of Neurology, Massachusetts General Hospital, 175 Cambridge St, Suite 340, Boston, MA, 02114, USA.
- Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
8
|
Sapuppo A, Portale L, Massimino CR, Presti S, Tardino L, Marino S, Polizzi A, Falsaperla R, Praticò AD. GRIN2A and GRIN2B and Their Related Phenotypes. JOURNAL OF PEDIATRIC NEUROLOGY 2021. [DOI: 10.1055/s-0041-1727146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractGlutamate is the most relevant excitatory neurotransmitter of the central nervous system; it binds with several receptors, including N-methyl-D-aspartate receptors (NMDARs), a subtype of ionotropic glutamate receptor that displays voltage-dependent block by Mg2+ and a high permeability to Ca2+. GRIN2A and GRIN2B genes encode the GluN2A and GluN2B subunits of the NMDARs, which play important roles in synaptogenesis, synaptic transmission, and synaptic plasticity, as well as contributing to neuronal loss and dysfunction in several neurological disorders. Recently, individuals with a range of childhood-onset drug-resistant epilepsies, such as Landau–Kleffner or Lennox–Gastaut syndrome, intellectual disability (ID), and other neurodevelopmental abnormalities have been found to carry mutations in GRIN2A and GRIN2B, with high variable expressivity in phenotype. The first one is found mainly in epilepsy-aphasia syndromes, while the second one mainly in autism, schizophrenia, and ID, such as autism spectrum disorders. Brain magnetic resonance imaging alterations are found in some patients, even if without a clear clinical correlation. At the same time, increasing data on genotype–phenotype correlation have been found, but this is still not fully demonstrated. There are no specific therapies for the treatment of correlated NMDARs epilepsy, although some evidence with memantine, an antagonist of glutamate receptor, is reported in the literature in selected cases with mutation determining a gain of function.
Collapse
Affiliation(s)
- Annamaria Sapuppo
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Laura Portale
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Carmela R. Massimino
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Santiago Presti
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Lucia Tardino
- Unit of Pediatrics and Pediatric Emergency, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
| | - Simona Marino
- Unit of Pediatrics and Pediatric Emergency, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
| | - Agata Polizzi
- Chair of Pediatrics, Department of Educational Sciences, University of Catania, Catania, Italy
| | - Raffaele Falsaperla
- Unit of Pediatrics and Pediatric Emergency, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
- Unit of Neonatal Intensive Care and Neonatology, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
| | - Andrea D. Praticò
- Unit of Rare Diseases of the Nervous Systemin Childhood, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| |
Collapse
|
9
|
Kessi M, Yan F, Pan L, Chen B, Olatoutou E, Li D, He F, Rugambwa T, Yang L, Peng J, Yin F. Treatment for the Benign Childhood Epilepsy With Centrotemporal Spikes: A Monocentric Study. Front Neurol 2021; 12:670958. [PMID: 34025572 PMCID: PMC8134665 DOI: 10.3389/fneur.2021.670958] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/09/2021] [Indexed: 11/29/2022] Open
Abstract
Background and Purpose: To date, there is no specific treatment guideline for the benign childhood epilepsy with centrotemporal spikes (BECTS). Several countries recommend levetiracetam, carbamazepine, sodium valproate, oxcarbazepine, and lamotrigine as first-line drugs. Nevertheless, some of these drugs are associated with cognitive decline. Available studies that investigated the efficacy of levetiracetam and sodium valproate on BECTS involved small sample sizes. This study aimed to evaluate the efficacy of levetiracetam and sodium valproate on cognition, and to investigate the prognostic factors for BECTS as whole. Methods: Clinical data and treatment status of all patients with BECTS at Xiangya Hospital, Central South University followed from 2008 to 2013 were analyzed retrospectively. Since electrical status epilepticus in sleep (ESES) has been confirmed to play a role in cognitive deterioration, in order to evaluate the response to drugs and their cognitive effects, we created two groups of patients according to the levels of spike wave index (SWI): group 1; 0–50% SWI and group 2; >50% SWI at the last follow up. Results: A total of 195 cases were enrolled: 49.7% received monotherapies, 24.1% duotherapies and 27.2% polytherapies. Medications included; levetiracetam plus other drug (s) (75.9%), levetiracetam alone (32.8%), sodium valproate plus other drug (s) (31.3%), and sodium valproate alone (5.1%). After 2 years of treatment and follow up, 71% of the cases had a good seizure outcome, 15.9% had an improvement of SWI, and 91.7% had a normal DQ/IQ. Sodium valproate combined with levetiracetam, and sodium valproate alone correlated with good improvement of SWI, whereas, focal spikes were linked with poor improvement. For both groups (group 1 and group 2): monotherapy, levetiracetam alone, and a normal DQ/IQ at seizure onset correlated with good cognitive outcomes, in contrast, polytherapy, sodium valproate plus other drug (s), levetiracetam plus sodium valproate, an initial SWI of ≥85%, and multifocal spikes were linked to cognitive deterioration. Conclusions: Monotherapy, particularly levetiracetam seems to be a good first-line therapy which can help in normalizing the electroencephalograph and preventing cognitive decline. Polytherapy, mostly the administration of sodium valproate seems to relate with poor cognition, therefore, it is recommended to avoid it.
Collapse
Affiliation(s)
- Miriam Kessi
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Fangling Yan
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Langui Pan
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Baiyu Chen
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Eleonore Olatoutou
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Dong Li
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Fang He
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Tibera Rugambwa
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Lifen Yang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Jing Peng
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Fei Yin
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| |
Collapse
|
10
|
Focal Sleep Spindle Deficits Reveal Focal Thalamocortical Dysfunction and Predict Cognitive Deficits in Sleep Activated Developmental Epilepsy. J Neurosci 2021; 41:1816-1829. [PMID: 33468567 DOI: 10.1523/jneurosci.2009-20.2020] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/16/2020] [Accepted: 11/16/2020] [Indexed: 01/08/2023] Open
Abstract
Childhood epilepsy with centrotemporal spikes (CECTS) is the most common focal epilepsy syndrome, yet the cause of this disease remains unknown. Now recognized as a mild epileptic encephalopathy, children exhibit sleep-activated focal epileptiform discharges and cognitive difficulties during the active phase of the disease. The association between the abnormal electrophysiology and sleep suggests disruption to thalamocortical circuits. Thalamocortical circuit dysfunction resulting in pathologic epileptiform activity could hinder the production of sleep spindles, a brain rhythm essential for memory processes. Despite this pathophysiologic connection, the relationship between spindles and cognitive symptoms in epileptic encephalopathies has not been previously evaluated. A significant challenge limiting such work has been the poor performance of available automated spindle detection methods in the setting of sharp activities, such as epileptic spikes. Here, we validate a robust new method to accurately measure sleep spindles in patients with epilepsy. We then apply this detector to a prospective cohort of male and female children with CECTS with combined high-density EEGs during sleep and cognitive testing at varying time points of disease. We show that: (1) children have a transient, focal deficit in spindles during the symptomatic phase of disease; (2) spindle rate anticorrelates with spike rate; and (3) spindle rate, but not spike rate, predicts performance on cognitive tasks. These findings demonstrate focal thalamocortical circuit dysfunction and provide a pathophysiological explanation for the shared seizures and cognitive symptoms in CECTS. Further, this work identifies sleep spindles as a potential treatment target of cognitive dysfunction in this common epileptic encephalopathy.SIGNIFICANCE STATEMENT Childhood epilepsy with centrotemporal spikes is the most common idiopathic focal epilepsy syndrome, characterized by self-limited focal seizures and cognitive symptoms. Here, we provide the first evidence that focal thalamocortical circuit dysfunction underlies the shared seizures and cognitive dysfunction observed. In doing so, we identify sleep spindles as a mechanistic biomarker, and potential treatment target, of cognitive dysfunction in this common developmental epilepsy and provide a novel method to reliably quantify spindles in brain recordings from patients with epilepsy.
Collapse
|
11
|
Li X, Xie LL, Han W, Hong SQ, Ma JN, Wang J, Jiang L. Clinical Forms and GRIN2A Genotype of Severe End of Epileptic-Aphasia Spectrum Disorder. Front Pediatr 2020; 8:574803. [PMID: 33240831 PMCID: PMC7677254 DOI: 10.3389/fped.2020.574803] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 09/28/2020] [Indexed: 11/25/2022] Open
Abstract
Objective: This study aims to analyze the electroclinical characteristics and gene test results of children on the severe end of the epilepsy aphasia spectrum (EAS) and also the correlation of EAS-related GRIN2A genes to explore the genotype-phenotype relationships, as well as potential pathogenic mechanism of EAS. Methods: A retrospective study was conducted on the participants diagnosed with Landau-Kleffner syndrome (LKS), epileptic encephalopathy with continuous spike-and-wave during sleep (CSWS), and atypical benign partial epilepsy (ABPE) at the Children's Hospital of Chongqing Medical University from January 2013 to June 2019. Whole-exome sequencing was performed in six patients, and epileptic panel was carried out in two. In addition, we reviewed all the published literatures reporting EAS patients with pathogenic variants until June 2019 and conducted Gene Ontology (GO) analysis, as well as protein-protein interaction (PPI) network. Results: The mean age at seizure onset was 55.4 ± 27.0 months. The baseline severity of the spike-wave index (SWI) was not significantly correlated with intellectual disability (ID) level. Two pathogenic de novo GRIN2A null variants were identified in patients with ABPE who had less severe ID, despite the electrical status epilepticus during slow-wave sleep (ESES). By literature reviewing, 18 GRIN2A missense mutations and 11 GRIN2A truncating mutations which lead to N-methyl-d-aspartate receptors' loss of function has been reported. Of these mutations, 9 (31.0%) are situated in amino (N)-terminal domain, 6 (20.7%) in linger-binding domain S1, and 10 (34.5%) in linger-binding domain S2. EAS-related genes were enriched in the biological process of chemical synaptic transmission and vocalization (FDR, <0.01). The hub protein in PPI network is GluN2A, which might affect language function via foxp2-srpx2/uPAR signal network. Conclusion: Our data suggested that when children suspected with benign epilepsy of children with centrotemporal spikes (BECTs) have early-onset age, changed seizure semiology, and deterioration of behavior/cognition/motor function, neurologists should be alert of the appearance of ESES. The neuropsychological deterioration in children with EAS might not only be completely affected by electric discharge severity but also genetic etiology. Our finding also enforced the current genotype-phenotype relationship theory about EAS. For EAS children, GRIN2A-FOXP2-SRPX2/uPAR signal network might contribute to the mechanism of their language deficit.
Collapse
Affiliation(s)
- Xiao Li
- Department of Neurology, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,National Clinical Research Center for Child Health and Disorders, Chongqing, China.,China International Science and Technology Cooperation base of Child Development and Critical Disorders, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Ling-Ling Xie
- Department of Neurology, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,National Clinical Research Center for Child Health and Disorders, Chongqing, China.,China International Science and Technology Cooperation base of Child Development and Critical Disorders, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Wei Han
- Department of Neurology, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,National Clinical Research Center for Child Health and Disorders, Chongqing, China.,China International Science and Technology Cooperation base of Child Development and Critical Disorders, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Si-Qi Hong
- Department of Neurology, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,National Clinical Research Center for Child Health and Disorders, Chongqing, China.,China International Science and Technology Cooperation base of Child Development and Critical Disorders, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Jian-Nan Ma
- Department of Neurology, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,National Clinical Research Center for Child Health and Disorders, Chongqing, China.,China International Science and Technology Cooperation base of Child Development and Critical Disorders, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Juan Wang
- Department of Neurology, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,National Clinical Research Center for Child Health and Disorders, Chongqing, China.,China International Science and Technology Cooperation base of Child Development and Critical Disorders, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Li Jiang
- Department of Neurology, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,National Clinical Research Center for Child Health and Disorders, Chongqing, China.,China International Science and Technology Cooperation base of Child Development and Critical Disorders, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, China
| |
Collapse
|
12
|
Kija E, Wilmshurst JM. Approach to a Child with Epilepsy. CLINICAL CHILD NEUROLOGY 2020:795-808. [DOI: 10.1007/978-3-319-43153-6_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
13
|
Saadeldin IY, Kabiraj MM, Salih MAM. Childhood and Adolescent Epileptic Syndromes. CLINICAL CHILD NEUROLOGY 2020:863-915. [DOI: 10.1007/978-3-319-43153-6_29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
14
|
Lee JY, Lee BL. Atypical Benign Partial Epilepsy of Childhood Treated with Prednisolone and Ethosuximide. ANNALS OF CHILD NEUROLOGY 2019. [DOI: 10.26815/acn.2019.00157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
15
|
Myers KA, van 't Hof FNG, Sadleir LG, Legault G, Simard-Tremblay E, Amor DJ, Scheffer IE. Fragile Females: Case Series of Epilepsy in Girls With FMR1 Disruption. Pediatrics 2019; 144:peds.2019-0599. [PMID: 31439621 DOI: 10.1542/peds.2019-0599] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/07/2019] [Indexed: 11/24/2022] Open
Abstract
Girls with pathogenic variants in FMR1, the gene responsible for Fragile X syndrome, have received relatively little attention in the literature. The reports of girls with trinucleotide expansions or deletions affecting FMR1 describe variable phenotypes; having normal intelligence and no severe neurologic sequelae is not uncommon. We reviewed epilepsy genetics research databases for girls with FMR1 pathogenic variants and seizures to characterize the spectrum of epilepsy phenotypes. We identified 4 patients, 3 of whom had drug-resistant focal epilepsy. Two had severe developmental and epileptic encephalopathy with late-onset epileptic spasms. Our findings demonstrate that FMR1 loss-of-function variants can result in severe neurologic phenotypes in girls. Similar cases may be missed because clinicians may not always perform Fragile X testing in girls, particularly those with severe neurodevelopmental impairment or late-onset spasms.
Collapse
Affiliation(s)
- Kenneth A Myers
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada; .,Departments of Pediatrics and Neurology and Neurosurgery, McGill University Health Centre, Montreal, Quebec, Canada
| | - Femke N G van 't Hof
- Department of Medicine, Epilepsy Research Centre, The University of Melbourne and Austin Health, Heidelberg, Victoria, Australia.,Department of Neurology and Neurosurgery, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Lynette G Sadleir
- Department of Paediatrics and Child Health, University of Otago, Wellington, Wellington, New Zealand
| | - Geneviève Legault
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.,Departments of Pediatrics and Neurology and Neurosurgery, McGill University Health Centre, Montreal, Quebec, Canada
| | - Elisabeth Simard-Tremblay
- Departments of Pediatrics and Neurology and Neurosurgery, McGill University Health Centre, Montreal, Quebec, Canada
| | - David J Amor
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Department of Paediatrics, The Royal Children's Hospital and University of Melbourne, Parkville, Victoria, Australia; and
| | - Ingrid E Scheffer
- Department of Medicine, Epilepsy Research Centre, The University of Melbourne and Austin Health, Heidelberg, Victoria, Australia.,Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Department of Paediatrics, The Royal Children's Hospital and University of Melbourne, Parkville, Victoria, Australia; and.,The Florey Institute of Neuroscience and Mental Health, Heidelberg, Victoria, Australia
| |
Collapse
|
16
|
Sun Y, Liu YD, Xu ZF, Kong QX, Wang YL. CNKSR2 mutation causes the X-linked epilepsy-aphasia syndrome: A case report and review of literature. World J Clin Cases 2018; 6:570-576. [PMID: 30397616 PMCID: PMC6212609 DOI: 10.12998/wjcc.v6.i12.570] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 08/21/2018] [Accepted: 08/28/2018] [Indexed: 02/05/2023] Open
Abstract
The mutation in CNKSR2 leads to a broad spectrum of phenotypic variability and manifests as an X-linked intellectual disability. However, we reported that the male patient in this study not only had intellectual disability but also epileptic seizures. In addition, there were progressive language impairment, attention deficit hyperactivity disorder and autism. Electroencephalograms showed continuous spike-and-wave during sleep. Genetic testing revealed a de novo mutation of the CNKSR2 gene (c.2185C>T, p.Arg729Ter) in the child that was not detected in the parents. Therefore, the child was diagnosed with X-linked epilepsy aphasia syndrome. Deletion of the CNKSR2 gene has been rarely reported in epilepsy aphasia syndrome, but no de novo mutation has been found in this gene. This report not only adds to the spectrum of epilepsy aphasia syndrome but also helps clinicians in diagnosis and genetic counseling.
Collapse
Affiliation(s)
- Ying Sun
- Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong Province, China
| | - Yi-Dan Liu
- Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong Province, China
| | - Zhi-Feng Xu
- First Hospital of Handan, Handan 056002, Hebei Province, China
| | - Qing-Xia Kong
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining 272000, Shandong Province, China
| | - Yan-Ling Wang
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining 272000, Shandong Province, China
| |
Collapse
|
17
|
Zavadenko NN, Kholin AA, Zavadenko AN, Michurina ES. [Speech and language neurodevelopmental disorders in epilepsy: pathophysiologic mechanisms and therapeutic approaches]. Zh Nevrol Psikhiatr Im S S Korsakova 2018; 118:118-125. [PMID: 30251989 DOI: 10.17116/jnevro2018118081118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Speech and language development may be impaired in all forms of epilepsy involving specialized functional areas in the dominant cerebral hemisphere and their connections. The concept of epilepsy-aphasia clinical spectrum was recently proposed, but the notion of aphasia is quite conditional here as many of these patients demonstrate disorders of speech and language development from their infancy. Those forms of epilepsy are considered as continuum from the most severe Landau-Kleffner syndrome (LKS) and epilepsy with continuous spike-and-wave during sleep (CSWS) (also indicating as electrical status epilepticus during sleep - ESES) to intermediate epilepsy-aphasia disorders (with incomplete correspondence to diagnostic criteria of LKS and epilepsy with CSWS). The mild end of the spectrum is represented by benign childhood epilepsy with centrotemporal spikes (rolandic), which is often associated with speech and language disorders. The importance of genetic factors is discussed, including mutations in SRPX2, GRIN2A and other genes. The perspectives of individualized pharmacotherapy in epilepsy, co-morbid with neurodevelopmental disorders or impairments of speech and language development, are depending on the progress in genetic studies. In the new generation of antiepileptic drugs the positive influence on neuroplasticity mechanisms and higher cerebral functions are supposed for levetiracetam.
Collapse
Affiliation(s)
- N N Zavadenko
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - A A Kholin
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - A N Zavadenko
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - E S Michurina
- Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
18
|
Kessi M, Peng J, Yang L, Xiong J, Duan H, Pang N, Yin F. Genetic etiologies of the electrical status epilepticus during slow wave sleep: systematic review. BMC Genet 2018; 19:40. [PMID: 29976148 PMCID: PMC6034250 DOI: 10.1186/s12863-018-0628-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 06/19/2018] [Indexed: 12/25/2022] Open
Abstract
Background Electrical status epilepticus during slow-wave sleep (ESESS) which is also known as continuous spike-wave of slow sleep (CSWSS) is type of electroencephalographic (EEG) pattern which is seen in ESESS/CSWSS/epilepsy aphasia spectrum. This EEG pattern can occur alone or with other syndromes. Its etiology is not clear, however, brain malformations, immune disorders, and genetic etiologies are suspected to contribute. We aimed to perform a systematic review of all genetic etiologies which have been reported to associate with ESESS/CSWSS/epilepsy-aphasia spectrum. We further aimed to identify the common underlying pathway which can explain it. To our knowledge, there is no available systematic review of genetic etiologies of ESESS/CSWSS/epilepsy-aphasia spectrum. MEDLINE, EMBASE, PubMed and Cochrane review database were searched, using terms specific to electrical status epilepticus during sleep or continuous spike–wave discharges during slow sleep or epilepsy-aphasia spectrum and of studies of genetic etiologies. These included monogenic mutations and copy number variations (CNVs). For each suspected dosage-sensitive gene, further studies were performed through OMIM and PubMed database. Results Twenty-six studies out of the 136 identified studies satisfied our inclusion criteria. I51 cases were identified among those 26 studies. 16 studies reported 11 monogenic mutations: SCN2A (N = 6), NHE6/SLC9A6 (N = 1), DRPLA/ ATN1 (N = 1), Neuroserpin/SRPX2 (N = 1), OPA3 (N = 1), KCNQ2 (N = 2), KCNA2 (N = 5), GRIN2A (N = 34), CNKSR2 (N = 2), SLC6A1 (N = 2) and KCNB1 (N = 5). 10 studies reported 89 CNVs including 9 recurrent ones: Xp22.12 deletion encompassing CNKSR2 (N = 6), 16p13 deletion encompassing GRIN2A (N = 4), 15q11.2–13.1 duplication (N = 15), 3q29 duplication (N = 11), 11p13 duplication (N = 2), 10q21.3 deletion (N = 2), 3q25 deletion (N = 2), 8p23.3 deletion (N = 2) and 9p24.2 (N = 2). 68 of the reported genetic etiologies including monogenic mutations and CNVs were detected in patients with ESESS/CSWSS/epilepsy aphasia spectrum solely. The most common underlying pathway was channelopathy (N = 56). Conclusions Our review suggests that genetic etiologies have a role to play in the occurrence of ESESS/CSWSS/epilepsy-aphasia spectrum. The common underlying pathway is channelopathy. Therefore we propose more genetic studies to be done for more discoveries which can pave a way for proper drug identification. We also suggest development of common cut-off value for spike-wave index to ensure common language among clinicians and researchers. Electronic supplementary material The online version of this article (10.1186/s12863-018-0628-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Miriam Kessi
- Department of Pediatrics, Xiangya Hospital, Central South University, 87 Xiang Ya Road, Changsha, 410008, Hunan Province, China. .,Kilimanjaro Christian Medical University College, 2240, Moshi, Tanzania.
| | - Jing Peng
- Department of Pediatrics, Xiangya Hospital, Central South University, 87 Xiang Ya Road, Changsha, 410008, Hunan Province, China
| | - Lifen Yang
- Department of Pediatrics, Xiangya Hospital, Central South University, 87 Xiang Ya Road, Changsha, 410008, Hunan Province, China
| | - Juan Xiong
- Department of Pediatrics, Xiangya Hospital, Central South University, 87 Xiang Ya Road, Changsha, 410008, Hunan Province, China
| | - Haolin Duan
- Department of Pediatrics, Xiangya Hospital, Central South University, 87 Xiang Ya Road, Changsha, 410008, Hunan Province, China
| | - Nan Pang
- Department of Pediatrics, Xiangya Hospital, Central South University, 87 Xiang Ya Road, Changsha, 410008, Hunan Province, China
| | - Fei Yin
- Department of Pediatrics, Xiangya Hospital, Central South University, 87 Xiang Ya Road, Changsha, 410008, Hunan Province, China.
| |
Collapse
|
19
|
Yang X, Qian P, Xu X, Liu X, Wu X, Zhang Y, Yang Z. GRIN2A mutations in epilepsy-aphasia spectrum disorders. Brain Dev 2018; 40:205-210. [PMID: 29056244 DOI: 10.1016/j.braindev.2017.09.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 07/16/2017] [Accepted: 09/26/2017] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Epilepsy-aphasia spectrum (EAS) are a group of epilepsy syndromes denoting an association between epilepsy, speech disorders and the EEG signature of centrotemporal spikes. Mutations in the GRIN2A gene, encoding the NMDA glutamate receptor α2 subunit were reported in focal epilepsy with speech disorder. We aimed to explore the role of GRIN2A mutations in patients with centrotemporal spikes related epileptic syndromes in a Chinese cohort. METHODS Patients with Landau-Kleffner syndrome (LKS), epileptic encephalopathy with continuous spike-and-wave during sleep (ECSWS), atypical benign partial epilepsy (ABPE), and benign epilepsy with centrotemporal spikes (BECTS) were recruited. GRIN2A mutation screening was performed using PCR and Sanger sequencing. RESULTS 122 patients, including 9 LKS, 26 ECSWS, 42 ABPE and 45 BECTS were enrolled. The mean age of seizure or aphasia onset was 5 years, ranging from 10 months to 11 years. Heterozygous GRIN2A mutations were detected in four patients (G760S, D1385Y, C455Y and C231R) GRIN2A mutation was found in 11.1% (1 out of 9 cases) of LKS, and in 7.1% (3 out of 42 cases) of ABPE, but in none with ECSWS and BECTS. No GRIN2A mutation was found in patients with a family history of febrile seizures or epilepsy. CONCLUSION GRIN2A mutation is a genetic cause in less than 11% patients with LKS or ABPE. GRIN2A gene is a rare causative gene in Chinese patients with EAS, suggesting the possibility of other gene involved in the pathogenesis.
Collapse
Affiliation(s)
- Xiaoling Yang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Ping Qian
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Xiaojing Xu
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Xiaoyan Liu
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Xiru Wu
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yuehua Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, China.
| | - Zhixian Yang
- Department of Pediatrics, Peking University First Hospital, Beijing, China.
| |
Collapse
|
20
|
Tuchman R. What is the Relationship Between Autism Spectrum Disorders and Epilepsy? Semin Pediatr Neurol 2017; 24:292-300. [PMID: 29249509 DOI: 10.1016/j.spen.2017.10.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The association of epilepsy and autism spectrum disorders (ASD) is best understood by examining the relationship between social cognition, nonsocial cognition, and epilepsy. The relationship between ASD and epilepsy is bidirectional and is strongly linked to intellectual disability (ID). The risk of developing ASD in children with epilepsy is highest in children with early onset seizures, with a high prevalence in children with infantile spasms. The risk of developing epilepsy in children first diagnosed with ASD is highest in those with ID. The prevalence of seizures in ASD increases with age. When epilepsy and ASD coexist, they share common pathophysiological mechanisms. In epilepsy with and without ID, social-cognitive deficits are an important determinant of neurodevelopmental outcomes. Early recognition of social deficits is an important aspect of the comprehensive management of children with epilepsy. Treating the seizures in individuals with epilepsy and ASD is crucial but interventions that address social-cognitive deficits are necessary to maximize neurodevelopmental outcomes.
Collapse
Affiliation(s)
- Roberto Tuchman
- From the Department of Neurology, Nicklaus Children's Hospital Miami Children's Health System, Miami, FL.
| |
Collapse
|
21
|
Epilepsy-associated GRIN2A mutations reduce NMDA receptor trafficking and agonist potency - molecular profiling and functional rescue. Sci Rep 2017; 7:66. [PMID: 28242877 PMCID: PMC5427847 DOI: 10.1038/s41598-017-00115-w] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 02/06/2017] [Indexed: 12/22/2022] Open
Abstract
Mutations in the N-methyl-D-aspartate receptor (NMDAR) gene GRIN2A cause epilepsy-aphasia syndrome (EAS), a spectrum of epileptic, cognitive and language disorders. Using bioinformatic and patient data we shortlisted 10 diverse missense mutations for characterisation. We used high-throughput calcium-flux assays and patch clamp recordings of transiently transfected HEK-293 cells for electrophysiological characterization, and Western blotting and confocal imaging to assay expression and surface trafficking. Mutations P79R, C231Y, G483R and M705V caused a significant reduction in glutamate and glycine agonist potency, whilst D731N was non-responsive. These mutants, along with E714K, also showed significantly decreased total protein levels and trafficking to the cell surface, whilst C436R was not trafficked at all. Crucially this reduced surface expression did not cause the reduced agonist response. We were able to rescue the phenotype of P79R, C231Y, G483R and M705V after treatment with a GluN2A-selective positive allosteric modulator. With our methodology we were not able to identify any functional deficits in mutations I814T, D933N and N976S located between the glutamate-binding domain and C-terminus. We show GRIN2A mutations affect the expression and function of the receptor in different ways. Careful molecular profiling of patients will be essential for future effective personalised treatment options.
Collapse
|
22
|
Damiano JA, Burgess R, Kivity S, Lerman-Sagie T, Afawi Z, Scheffer IE, Berkovic SF, Hildebrand MS. Frequency of CNKSR2 mutation in the X-linked epilepsy-aphasia spectrum. Epilepsia 2017; 58:e40-e43. [PMID: 28098945 DOI: 10.1111/epi.13666] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2016] [Indexed: 12/27/2022]
Abstract
Synaptic proteins are critical to neuronal function in the brain, and their deficiency can lead to seizures and cognitive impairments. CNKSR2 (connector enhancer of KSR2) is a synaptic protein involved in Ras signaling-mediated neuronal proliferation, migration and differentiation. Mutations in the X-linked gene CNKSR2 have been described in patients with seizures and neurodevelopmental deficits, especially those affecting language. In this study, we sequenced 112 patients with phenotypes within the epilepsy-aphasia spectrum (EAS) to determine the frequency of CNKSR2 mutation within this complex set of disorders. We detected a novel nonsense mutation (c.2314 C>T; p.Arg712*) in one Ashkenazi Jewish family, the male proband of which had a severe epileptic encephalopathy with continuous spike-waves in sleep (ECSWS). His affected brother also had ECSWS with better outcome, whereas the sister had childhood epilepsy with centrotemporal spikes. This mutation segregated in the three affected siblings in an X-linked manner, inherited from their mother who had febrile seizures. Although the frequency of point mutation is low, CNKSR2 sequencing should be considered in families with suspected X-linked EAS because of the specific genetic counseling implications.
Collapse
Affiliation(s)
- John A Damiano
- Department of Medicine, Epilepsy Research Centre, Austin Health, University of Melbourne, Heidelberg, Victoria, Australia
| | - Rosemary Burgess
- Department of Medicine, Epilepsy Research Centre, Austin Health, University of Melbourne, Heidelberg, Victoria, Australia
| | - Sara Kivity
- Department of Pediatric Neurology and Epilepsy Center, Schneider Children's Medical Center of Israel, Petah Tiqva, Israel.,Pediatric Neurology Unit, Epilepsy Clinic, Wolfson Medical Center, Holon, Israel
| | - Tally Lerman-Sagie
- Pediatric Neurology Unit, Epilepsy Clinic, Wolfson Medical Center, Holon, Israel
| | - Zaid Afawi
- Sackler School of Medicine, Tel-Aviv University, Ramat Aviv, Israel
| | - Ingrid E Scheffer
- Department of Medicine, Epilepsy Research Centre, Austin Health, University of Melbourne, Heidelberg, Victoria, Australia.,Department of Paediatrics, Royal Children's Hospital, University of Melbourne, Parkville, Victoria, Australia
| | - Samuel F Berkovic
- Department of Medicine, Epilepsy Research Centre, Austin Health, University of Melbourne, Heidelberg, Victoria, Australia
| | - Michael S Hildebrand
- Department of Medicine, Epilepsy Research Centre, Austin Health, University of Melbourne, Heidelberg, Victoria, Australia
| |
Collapse
|
23
|
Turner SJ, Morgan AT, Perez ER, Scheffer IE. New genes for focal epilepsies with speech and language disorders. Curr Neurol Neurosci Rep 2016; 15:35. [PMID: 25921602 DOI: 10.1007/s11910-015-0554-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The last 2 years have seen exciting advances in the genetics of Landau-Kleffner syndrome and related disorders, encompassed within the epilepsy-aphasia spectrum (EAS). The striking finding of mutations in the N-methyl-D-aspartate (NMDA) receptor subunit gene GRIN2A as the first monogenic cause in up to 20% of patients with EAS suggests that excitatory glutamate receptors play a key role in these disorders. Patients with GRIN2A mutations have a recognizable speech and language phenotype that may assist with diagnosis. Other molecules involved in RNA binding and cell adhesion have been implicated in EAS; copy number variations are also found. The emerging picture highlights the overlap between the genetic determinants of EAS with speech and language disorders, intellectual disability, autism spectrum disorders and more complex developmental phenotypes.
Collapse
Affiliation(s)
- Samantha J Turner
- Department of Paediatrics, The University of Melbourne, The Royal Children's Hospital, Parkville, Australia,
| | | | | | | |
Collapse
|
24
|
Allen NM, Conroy J, Deonna T, McCreary D, McGettigan P, Madigan C, Carter I, Ennis S, Lynch SA, Shahwan A, King MD. Atypical benign partial epilepsy of childhood with acquired neurocognitive, lexical semantic, and autistic spectrum disorder. EPILEPSY & BEHAVIOR CASE REPORTS 2016; 6:42-8. [PMID: 27504264 PMCID: PMC4969243 DOI: 10.1016/j.ebcr.2016.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 04/10/2016] [Accepted: 04/11/2016] [Indexed: 12/02/2022]
Abstract
Atypical benign partial epilepsy (ABPE) of childhood or pseudo-Lennox syndrome is a form of idiopathic focal epilepsy characterized by multiple seizure types, focal and/or generalized epileptiform discharges, continuous spike–wave during sleep (CSWS), and sometimes reversible neurocognitive deficits. There are few reported cases of ABPE describing detailed correlative longitudinal follow-up of the various associated neurocognitive, language, social communicative, or motor deficits, in parallel with the epilepsy. Furthermore, the molecular inheritance pattern for ABPE and the wider spectrum of epilepsy aphasia disorders have yet to be fully elucidated. We describe the phenotype–genotype study of a boy with ABPE with follow-up from ages 5 to 13 years showing acquired oromotor and, later, a specific lexical semantic and pervasive developmental disorder. Exome sequencing identified variants in SCN9A, CPA6, and SCNM1. A direct role of the epilepsy in the pathogenesis of the oromotor and neurocognitive deficits is apparent.
Collapse
Affiliation(s)
- Nicholas M Allen
- Department of Paediatrics, National University of Ireland Galway & Galway University Hospital, Ireland; Department of Paediatric Neurology and Clinical Neurophysiology, Temple Street Children's University Hospital, Dublin 1, Ireland
| | - Judith Conroy
- Academic Centre on Rare Diseases, School of Medicine and Medical Science, University College Dublin, Ireland
| | - Thierry Deonna
- Unité de Neurologie et de Neuroréhabilitation Pédiatrique, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Dara McCreary
- Academic Centre on Rare Diseases, School of Medicine and Medical Science, University College Dublin, Ireland
| | - Paul McGettigan
- Academic Centre on Rare Diseases, School of Medicine and Medical Science, University College Dublin, Ireland
| | - Cathy Madigan
- Department of Paediatric Neurology and Clinical Neurophysiology, Temple Street Children's University Hospital, Dublin 1, Ireland
| | - Imogen Carter
- Department of Paediatric Neurology and Clinical Neurophysiology, Temple Street Children's University Hospital, Dublin 1, Ireland
| | - Sean Ennis
- Academic Centre on Rare Diseases, School of Medicine and Medical Science, University College Dublin, Ireland
| | - Sally A Lynch
- Academic Centre on Rare Diseases, School of Medicine and Medical Science, University College Dublin, Ireland
| | - Amre Shahwan
- Department of Paediatric Neurology and Clinical Neurophysiology, Temple Street Children's University Hospital, Dublin 1, Ireland
| | - Mary D King
- Department of Paediatric Neurology and Clinical Neurophysiology, Temple Street Children's University Hospital, Dublin 1, Ireland; Academic Centre on Rare Diseases, School of Medicine and Medical Science, University College Dublin, Ireland
| |
Collapse
|
25
|
|
26
|
Impaired functional differentiation for categories of objects in the ventral visual stream: A case of developmental visual impairment. Neuropsychologia 2015; 77:52-61. [DOI: 10.1016/j.neuropsychologia.2015.08.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 07/17/2015] [Accepted: 08/09/2015] [Indexed: 11/22/2022]
|
27
|
Koelewijn L, Hamandi K, Brindley LM, Brookes MJ, Routley BC, Muthukumaraswamy SD, Williams N, Thomas MA, Kirby A, Te Water Naudé J, Gibbon F, Singh KD. Resting-state oscillatory dynamics in sensorimotor cortex in benign epilepsy with centro-temporal spikes and typical brain development. Hum Brain Mapp 2015; 36:3935-49. [PMID: 26177579 DOI: 10.1002/hbm.22888] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 05/29/2015] [Accepted: 06/15/2015] [Indexed: 12/29/2022] Open
Abstract
Benign Epilepsy with Centro-Temporal Spikes (BECTS) is a common childhood epilepsy associated with deficits in several neurocognitive domains. Neurophysiological studies in BECTS often focus on centro-temporal spikes, but these correlate poorly with morphology and cognitive impairments. To better understand the neural profile of BECTS, we studied background brain oscillations, thought to be integrally involved in neural network communication, in sensorimotor areas. We used independent component analysis of temporally correlated sources on magnetoencephalography recordings to assess sensorimotor resting-state network activity in BECTS patients and typically developing controls. We also investigated the variability of oscillatory characteristics within focal primary motor cortex (M1), localized with a separate finger abduction task. We hypothesized that background oscillations would differ between patients and controls in the sensorimotor network but not elsewhere, especially in the beta band (13-30 Hz) because of its role in network communication and motor processing. The results support our hypothesis: in the sensorimotor network, patients had a greater variability in oscillatory amplitude compared to controls, whereas there was no difference in the visual network. Network measures did not correlate with age. The coefficient of variation of resting M1 peak frequency correlated negatively with age in the beta band only, and was greater than average for a number of patients. Our results point toward a "disorganized" functional sensorimotor network in BECTS, supporting a neurodevelopmental delay in sensorimotor cortex. Our findings further suggest that investigating the variability of oscillatory peak frequency may be a useful tool to investigate deficits of disorganization in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Loes Koelewijn
- CUBRIC, School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Khalid Hamandi
- CUBRIC, School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Lisa M Brindley
- CUBRIC, School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Matthew J Brookes
- Sir Peter Mansfield Magnetic Resonance Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom
| | - Bethany C Routley
- CUBRIC, School of Psychology, Cardiff University, Cardiff, United Kingdom
| | | | - Natalie Williams
- Dyscovery Centre, University of South Wales, Newport, United Kingdom
| | - Marie A Thomas
- Dyscovery Centre, University of South Wales, Newport, United Kingdom
| | - Amanda Kirby
- Dyscovery Centre, University of South Wales, Newport, United Kingdom
| | | | - Frances Gibbon
- Child Health, University Hospital of Wales, Cardiff, United Kingdom
| | - Krish D Singh
- CUBRIC, School of Psychology, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
28
|
Baker K, Astle DE, Scerif G, Barnes J, Smith J, Moffat G, Gillard J, Baldeweg T, Raymond FL. Epilepsy, cognitive deficits and neuroanatomy in males with ZDHHC9 mutations. Ann Clin Transl Neurol 2015; 2:559-69. [PMID: 26000327 PMCID: PMC4435709 DOI: 10.1002/acn3.196] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 02/13/2015] [Accepted: 02/27/2015] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE Systematic investigation of individuals with intellectual disability after genetic diagnosis can illuminate specific phenotypes and mechanisms relevant to common neurodevelopmental disorders. We report the neurological, cognitive and neuroanatomical characteristics of nine males from three families with loss-of-function mutations in ZDHHC9 (OMIM #300799). METHODS All known cases of X-linked intellectual disability (XLID) due to ZDHHC9 mutation in the United Kingdom were invited to participate in a study of neurocognitive and neuroimaging phenotypes. RESULTS Seven out of nine males with ZDHHC9 mutations had been diagnosed with epilepsy, exceeding epilepsy risk in XLID comparison subjects (P = 0.01). Seizure histories and EEG features amongst ZDHHC9 mutation cases shared characteristics with rolandic epilepsy (RE). Specific cognitive deficits differentiated males with ZDHHC9 mutations from XLID comparison subjects and converged with reported linguistic and nonlinguistic deficits in idiopathic RE: impaired oromotor control, reduced verbal fluency, and impaired inhibitory control on visual attention tasks. Consistent neuroanatomical abnormalities included thalamic and striatal volume reductions and hypoplasia of the corpus callosum. INTERPRETATION Mutations in ZDHHC9 are associated with susceptibility to focal seizures and specific cognitive impairments intersecting with the RE spectrum. Neurocognitive deficits are accompanied by consistent abnormalities of subcortical structures and inter-hemispheric connectivity. The biochemical, cellular and network-level mechanisms responsible for the ZDHHC9-associated neurocognitive phenotype may be relevant to cognitive outcomes in RE.
Collapse
Affiliation(s)
- Kate Baker
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge Cambridge, United Kingdom ; MRC Cognitive and Brain Sciences Unit Cambridge, United Kingdom
| | - Duncan E Astle
- MRC Cognitive and Brain Sciences Unit Cambridge, United Kingdom
| | - Gaia Scerif
- Department of Experimental Psychology, University of Oxford Oxford, United Kingdom
| | - Jessica Barnes
- MRC Cognitive and Brain Sciences Unit Cambridge, United Kingdom
| | - Jennie Smith
- Speech and Language Therapy Team, Cleft.Net.East, Addenbrookes Hospital Cambridge, United Kingdom
| | - Georgina Moffat
- Speech and Language Therapy Team, Cleft.Net.East, Addenbrookes Hospital Cambridge, United Kingdom
| | - Jonathan Gillard
- Department of Radiology, University of Cambridge Cambridge, United Kingdom
| | - Torsten Baldeweg
- Developmental Neuroscience Programme, Institute of Child Health, University College London London, United Kingdom
| | - F Lucy Raymond
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge Cambridge, United Kingdom
| |
Collapse
|
29
|
Abstract
A 9-year-old boy presented with intolerance to noise that was a trigger for violent temper tantrums that occasionally resembled complex partial seizures. The condition was also a cause for withdrawal from all activities and settings that could potentially be associated with noise. Both electroencephalography and magnetoencephalography clearly demonstrated a left temporal (T5) epileptic focus, although the child never had convulsive seizures. Genetic studies failed to reveal a GRIN2A mutation. We suggest that the hyperacusis in the reported child is another variation of the Landau-Kleffner spectrum.
Collapse
Affiliation(s)
- Avinoam Shuper
- Department of Pediatric Neurology and Epilepsy Center, Schneider Children's Medical Center of Israel, Petah Tiqva, Israel, affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | - Sara Kivity
- Department of Pediatric Neurology and Epilepsy Center, Schneider Children's Medical Center of Israel, Petah Tiqva, Israel, affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
30
|
Turner SJ, Mayes AK, Verhoeven A, Mandelstam SA, Morgan AT, Scheffer IE. GRIN2A: an aptly named gene for speech dysfunction. Neurology 2015; 84:586-93. [PMID: 25596506 DOI: 10.1212/wnl.0000000000001228] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
OBJECTIVE To delineate the specific speech deficits in individuals with epilepsy-aphasia syndromes associated with mutations in the glutamate receptor subunit gene GRIN2A. METHODS We analyzed the speech phenotype associated with GRIN2A mutations in 11 individuals, aged 16 to 64 years, from 3 families. Standardized clinical speech assessments and perceptual analyses of conversational samples were conducted. RESULTS Individuals showed a characteristic phenotype of dysarthria and dyspraxia with lifelong impact on speech intelligibility in some. Speech was typified by imprecise articulation (11/11, 100%), impaired pitch (monopitch 10/11, 91%) and prosody (stress errors 7/11, 64%), and hypernasality (7/11, 64%). Oral motor impairments and poor performance on maximum vowel duration (8/11, 73%) and repetition of monosyllables (10/11, 91%) and trisyllables (7/11, 64%) supported conversational speech findings. The speech phenotype was present in one individual who did not have seizures. CONCLUSIONS Distinctive features of dysarthria and dyspraxia are found in individuals with GRIN2A mutations, often in the setting of epilepsy-aphasia syndromes; dysarthria has not been previously recognized in these disorders. Of note, the speech phenotype may occur in the absence of a seizure disorder, reinforcing an important role for GRIN2A in motor speech function. Our findings highlight the need for precise clinical speech assessment and intervention in this group. By understanding the mechanisms involved in GRIN2A disorders, targeted therapy may be designed to improve chronic lifelong deficits in intelligibility.
Collapse
Affiliation(s)
- Samantha J Turner
- From the Department of Paediatrics (S.J.T., S.A.M., A.T.M., I.E.S.), The University of Melbourne, The Royal Children's Hospital, Parkville; Language and Literacy Group (A.K.M., A.T.M.), Population Health Theme, Murdoch Childrens Research Institute, Parkville; Speech Pathology Department (A.V.), The Royal Children's Hospital, Parkville; Department of Radiology (S.A.M.), The University of Melbourne, Parkville; Epilepsy Research Centre (I.E.S.), Department of Medicine, The University of Melbourne, Austin Health, Melbourne; and Florey Institute of Neuroscience and Mental Health (S.A.M., I.E.S.), Melbourne, Australia
| | - Angela K Mayes
- From the Department of Paediatrics (S.J.T., S.A.M., A.T.M., I.E.S.), The University of Melbourne, The Royal Children's Hospital, Parkville; Language and Literacy Group (A.K.M., A.T.M.), Population Health Theme, Murdoch Childrens Research Institute, Parkville; Speech Pathology Department (A.V.), The Royal Children's Hospital, Parkville; Department of Radiology (S.A.M.), The University of Melbourne, Parkville; Epilepsy Research Centre (I.E.S.), Department of Medicine, The University of Melbourne, Austin Health, Melbourne; and Florey Institute of Neuroscience and Mental Health (S.A.M., I.E.S.), Melbourne, Australia
| | - Andrea Verhoeven
- From the Department of Paediatrics (S.J.T., S.A.M., A.T.M., I.E.S.), The University of Melbourne, The Royal Children's Hospital, Parkville; Language and Literacy Group (A.K.M., A.T.M.), Population Health Theme, Murdoch Childrens Research Institute, Parkville; Speech Pathology Department (A.V.), The Royal Children's Hospital, Parkville; Department of Radiology (S.A.M.), The University of Melbourne, Parkville; Epilepsy Research Centre (I.E.S.), Department of Medicine, The University of Melbourne, Austin Health, Melbourne; and Florey Institute of Neuroscience and Mental Health (S.A.M., I.E.S.), Melbourne, Australia
| | - Simone A Mandelstam
- From the Department of Paediatrics (S.J.T., S.A.M., A.T.M., I.E.S.), The University of Melbourne, The Royal Children's Hospital, Parkville; Language and Literacy Group (A.K.M., A.T.M.), Population Health Theme, Murdoch Childrens Research Institute, Parkville; Speech Pathology Department (A.V.), The Royal Children's Hospital, Parkville; Department of Radiology (S.A.M.), The University of Melbourne, Parkville; Epilepsy Research Centre (I.E.S.), Department of Medicine, The University of Melbourne, Austin Health, Melbourne; and Florey Institute of Neuroscience and Mental Health (S.A.M., I.E.S.), Melbourne, Australia
| | - Angela T Morgan
- From the Department of Paediatrics (S.J.T., S.A.M., A.T.M., I.E.S.), The University of Melbourne, The Royal Children's Hospital, Parkville; Language and Literacy Group (A.K.M., A.T.M.), Population Health Theme, Murdoch Childrens Research Institute, Parkville; Speech Pathology Department (A.V.), The Royal Children's Hospital, Parkville; Department of Radiology (S.A.M.), The University of Melbourne, Parkville; Epilepsy Research Centre (I.E.S.), Department of Medicine, The University of Melbourne, Austin Health, Melbourne; and Florey Institute of Neuroscience and Mental Health (S.A.M., I.E.S.), Melbourne, Australia
| | - Ingrid E Scheffer
- From the Department of Paediatrics (S.J.T., S.A.M., A.T.M., I.E.S.), The University of Melbourne, The Royal Children's Hospital, Parkville; Language and Literacy Group (A.K.M., A.T.M.), Population Health Theme, Murdoch Childrens Research Institute, Parkville; Speech Pathology Department (A.V.), The Royal Children's Hospital, Parkville; Department of Radiology (S.A.M.), The University of Melbourne, Parkville; Epilepsy Research Centre (I.E.S.), Department of Medicine, The University of Melbourne, Austin Health, Melbourne; and Florey Institute of Neuroscience and Mental Health (S.A.M., I.E.S.), Melbourne, Australia.
| |
Collapse
|
31
|
Vaags AK, Bowdin S, Smith ML, Gilbert-Dussardier B, Brocke-Holmefjord KS, Sinopoli K, Gilles C, Haaland TB, Vincent-Delorme C, Lagrue E, Harbuz R, Walker S, Marshall CR, Houge G, Kalscheuer VM, Scherer SW, Minassian BA. Absent CNKSR2 causes seizures and intellectual, attention, and language deficits. Ann Neurol 2014; 76:758-64. [PMID: 25223753 DOI: 10.1002/ana.24274] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 09/11/2014] [Accepted: 09/11/2014] [Indexed: 12/30/2022]
Abstract
Synaptic function is central to brain function. Understanding the synapse is aided by studies of patients lacking individual synaptic proteins. Common neurological diseases are genetically complex. Their understanding is likewise simplified by studies of less common monogenic forms. We detail the disease caused by absence of the synaptic protein CNKSR2 in 8 patients ranging from 6 to 62 years old. The disease is characterized by intellectual disability, attention problems, and abrupt lifelong language loss following a brief early childhood epilepsy with continuous spike-waves in sleep. This study describes the phenotype of CNKSR2 deficiency and its involvement in systems underlying common neurological disorders.
Collapse
Affiliation(s)
- Andrea K Vaags
- Centre for Applied Genomics, Hospital for Sick Children, Toronto, Ontario, Canada; Cytogenetics Laboratory, Alberta Children's Hospital, Calgary, Alberta, Canada; Department of Anatomical Pathology and Cytopathology, Calgary Laboratory Services, Calgary, Alberta, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Akman O, Moshé SL, Galanopoulou AS. Sex-specific consequences of early life seizures. Neurobiol Dis 2014; 72 Pt B:153-66. [PMID: 24874547 DOI: 10.1016/j.nbd.2014.05.021] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 05/07/2014] [Accepted: 05/17/2014] [Indexed: 12/29/2022] Open
Abstract
Seizures are very common in the early periods of life and are often associated with poor neurologic outcome in humans. Animal studies have provided evidence that early life seizures may disrupt neuronal differentiation and connectivity, signaling pathways, and the function of various neuronal networks. There is growing experimental evidence that many signaling pathways, like GABAA receptor signaling, the cellular physiology and differentiation, or the functional maturation of certain brain regions, including those involved in seizure control, mature differently in males and females. However, most experimental studies of early life seizures have not directly investigated the importance of sex on the consequences of early life seizures. The sexual dimorphism of the developing brain raises the question that early seizures could have distinct effects in immature females and males that are subjected to seizures. We will first discuss the evidence for sex-specific features of the developing brain that could be involved in modifying the susceptibility and consequences of early life seizures. We will then review how sex-related biological factors could modify the age-specific consequences of induced seizures in the immature animals. These include signaling pathways (e.g., GABAA receptors), steroid hormones, growth factors. Overall, there are very few studies that have specifically addressed seizure outcomes in developing animals as a function of sex. The available literature indicates that a variety of outcomes (histopathological, behavioral, molecular, epileptogenesis) may be affected in a sex-, age-, region-specific manner after seizures during development. Obtaining a better understanding for the gender-related mechanisms underlying epileptogenesis and seizure comorbidities will be necessary to develop better gender and age appropriate therapies.
Collapse
Affiliation(s)
- Ozlem Akman
- Department of Physiology, Faculty of Medicine, Istanbul Bilim University, 34394 Istanbul, Turkey.
| | - Solomon L Moshé
- Saul R. Korey Department of Neurology, Laboratory of Developmental Epilepsy, Montefiore Epilepsy Management Center, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, 10461, USA; Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, 10461, USA; Department of Pediatrics, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, 10461, USA
| | - Aristea S Galanopoulou
- Saul R. Korey Department of Neurology, Laboratory of Developmental Epilepsy, Montefiore Epilepsy Management Center, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, 10461, USA; Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, 10461, USA
| |
Collapse
|
33
|
Conroy J, McGettigan PA, McCreary D, Shah N, Collins K, Parry-Fielder B, Moran M, Hanrahan D, Deonna TW, Korff CM, Webb D, Ennis S, Lynch SA, King MD. Towards the identification of a genetic basis for Landau-Kleffner syndrome. Epilepsia 2014; 55:858-65. [DOI: 10.1111/epi.12645] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2014] [Indexed: 01/15/2023]
Affiliation(s)
- Judith Conroy
- Department of Genetics; Children's University Hospital; Dublin Ireland
- Academic Centre on Rare Diseases; School of Medicine and Medical Science; University College Dublin; Dublin Ireland
| | - Paul A. McGettigan
- Academic Centre on Rare Diseases; School of Medicine and Medical Science; University College Dublin; Dublin Ireland
- School of Agriculture and Food Science; University College Dublin; Dublin Ireland
| | - Dara McCreary
- Department of Neurology; Children's University Hospital; Dublin Ireland
| | - Naisha Shah
- School of Medicine and Medical Science; University College Dublin; Dublin Ireland
| | | | | | - Margaret Moran
- Department of Neurology; Children's University Hospital; Dublin Ireland
- Royal Children's Hospital; Melbourne VIC Australia
| | - Donncha Hanrahan
- Royal Belfast Hospital for Sick Children; Belfast United Kingdom
| | | | | | - David Webb
- Department of Neurology; Our Lady's Children's Hospital Crumlin; Dublin Ireland
| | - Sean Ennis
- Academic Centre on Rare Diseases; School of Medicine and Medical Science; University College Dublin; Dublin Ireland
- The National Centre for Medical Genetics; Our Lady's Children's Hospital Crumlin; Dublin Ireland
| | - Sally A. Lynch
- Department of Genetics; Children's University Hospital; Dublin Ireland
- Academic Centre on Rare Diseases; School of Medicine and Medical Science; University College Dublin; Dublin Ireland
- The National Centre for Medical Genetics; Our Lady's Children's Hospital Crumlin; Dublin Ireland
| | - Mary D. King
- Academic Centre on Rare Diseases; School of Medicine and Medical Science; University College Dublin; Dublin Ireland
- Department of Neurology; Children's University Hospital; Dublin Ireland
| |
Collapse
|
34
|
Caraballo RH, Cejas N, Chamorro N, Kaltenmeier MC, Fortini S, Soprano AM. Landau-Kleffner syndrome: a study of 29 patients. Seizure 2013; 23:98-104. [PMID: 24315829 DOI: 10.1016/j.seizure.2013.09.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 09/24/2013] [Accepted: 09/30/2013] [Indexed: 10/26/2022] Open
Abstract
PURPOSE The aim of the study was to retrospectively analyze the electroclinical features, etiology, treatment, and prognosis of 29 patients with Landau-Kleffner syndrome (LKS) with a long-term follow-up. METHODS Inclusion criteria were a diagnosis of LKS with: (1) acquired aphasia or verbal auditory aphasia; (2) with or without focal seizures, secondarily generalized tonic-clonic seizures, absences, or atonic seizures. RESULTS Mean follow-up was 12 years. All cases except six had seizures. Before the onset of aphasia, developmental language and behavioral disturbances were present in 19 and 14 patients, respectively. All patients had verbal auditory agnosia. Aphasia was severe in 24 patients and moderate in five. Nonlinguistic cognitive dysfunctions were moderate in 14 patients. Behavioral disturbances were found in 16 patients. During the continuous spike-and-wave discharges during slow sleep phase, the spike-wave index was >85% in 15, 50-85% in eight, and 30-50% in four. In two patients, the EEG recording showed occasional bilateral spikes, without continuous spike-and-wave discharges during slow sleep. In this phase, the awake EEG recording showed more frequent interictal abnormalities, predominantly in the temporal regions. Eight patients recovered language completely, but the remaining patients continue to have language deficits of different degrees. CONCLUSION Landau-Kleffner syndrome is an epileptic encephalopathy characterized by acquired verbal auditory aphasia and seizures in most of the patients associated with continuous or almost continuous spike-and-wave discharges during slow wave sleep. The most commonly used treatments were clobazam, ethosuximide, sulthiame. High-dose steroids were also administered. Adequate and early management may avoid language and cognitive deterioration.
Collapse
Affiliation(s)
- Roberto Horacio Caraballo
- Department of Neurology, Hospital de Pediatría "Prof. Dr. Juan P. Garrahan", Buenos Aires, Argentina.
| | - Natalia Cejas
- Department of Neurology, Hospital de Pediatría "Prof. Dr. Juan P. Garrahan", Buenos Aires, Argentina
| | - Noelia Chamorro
- Department of Neurology, Hospital de Pediatría "Prof. Dr. Juan P. Garrahan", Buenos Aires, Argentina
| | - María C Kaltenmeier
- Department of Neurology, Hospital de Pediatría "Prof. Dr. Juan P. Garrahan", Buenos Aires, Argentina
| | - Sebastian Fortini
- Department of Neurology, Hospital de Pediatría "Prof. Dr. Juan P. Garrahan", Buenos Aires, Argentina
| | - Ana María Soprano
- Department of Neurology, Hospital de Pediatría "Prof. Dr. Juan P. Garrahan", Buenos Aires, Argentina
| |
Collapse
|
35
|
GRIN2A mutations cause epilepsy-aphasia spectrum disorders. Nat Genet 2013; 45:1073-6. [PMID: 23933818 PMCID: PMC3868952 DOI: 10.1038/ng.2727] [Citation(s) in RCA: 273] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 07/18/2013] [Indexed: 12/18/2022]
|
36
|
Mirandola L, Cantalupo G, Vaudano AE, Avanzini P, Ruggieri A, Pisani F, Cossu G, Tassinari CA, Nichelli PF, Benuzzi F, Meletti S. Centrotemporal spikes during NREM sleep: The promoting action of thalamus revealed by simultaneous EEG and fMRI coregistration. EPILEPSY & BEHAVIOR CASE REPORTS 2013; 1:106-9. [PMID: 25667840 PMCID: PMC4150635 DOI: 10.1016/j.ebcr.2013.06.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Revised: 06/18/2013] [Accepted: 06/21/2013] [Indexed: 11/21/2022]
Abstract
Benign childhood epilepsy with centrotemporal spikes (BECTS) has been investigated through EEG-fMRI with the aim of localizing the generators of the epileptic activity, revealing, in most cases, the activation of the sensory-motor cortex ipsilateral to the centrotemporal spikes (CTS). In this case report, we investigated the brain circuits hemodynamically involved by CTS recorded during wakefulness and sleep in one boy with CTS and a language disorder but without epilepsy. For this purpose, the patient underwent EEG-fMRI coregistration. During the "awake session", fMRI analysis of right-sided CTS showed increments of BOLD signal in the bilateral sensory-motor cortex. During the "sleep session", BOLD increments related to right-sided CTS were observed in a widespread bilateral cortical-subcortical network involving the thalamus, basal ganglia, sensory-motor cortex, perisylvian cortex, and cerebellum. In this patient, who fulfilled neither the diagnostic criteria for BECTS nor that for electrical status epilepticus in sleep (ESES), the transition from wakefulness to sleep was related to the involvement of a widespread cortical-subcortical network related to CTS. In particular, the involvement of a thalamic-perisylvian neural network similar to the one previously observed in patients with ESES suggests a common sleep-related network dysfunction even in cases with milder phenotypes without seizures. This finding, if confirmed in a larger cohort of patients, could have relevant therapeutic implication.
Collapse
Affiliation(s)
- Laura Mirandola
- Department of Biomedical Sciences, Metabolism, and Neuroscience, University of Modena and Reggio Emilia, Italy
| | - Gaetano Cantalupo
- Child Neuropsychiatry Unit, Department of Neuroscience, University-Hospital of Parma, Italy
- Department of Life and Reproduction Sciences, University of Verona, Italy
| | - Anna Elisabetta Vaudano
- Department of Biomedical Sciences, Metabolism, and Neuroscience, University of Modena and Reggio Emilia, Italy
| | - Pietro Avanzini
- Department of Biomedical Sciences, Metabolism, and Neuroscience, University of Modena and Reggio Emilia, Italy
- Department of Neuroscience, University of Parma, Italy
| | - Andrea Ruggieri
- Department of Biomedical Sciences, Metabolism, and Neuroscience, University of Modena and Reggio Emilia, Italy
| | - Francesco Pisani
- Child Neuropsychiatry Unit, Department of Neuroscience, University-Hospital of Parma, Italy
| | - Giuseppe Cossu
- Child Neuropsychiatry Unit, Department of Neuroscience, University-Hospital of Parma, Italy
- Department of Neuroscience, University of Parma, Italy
| | | | - Paolo Frigio Nichelli
- Department of Biomedical Sciences, Metabolism, and Neuroscience, University of Modena and Reggio Emilia, Italy
| | - Francesca Benuzzi
- Department of Biomedical Sciences, Metabolism, and Neuroscience, University of Modena and Reggio Emilia, Italy
| | - Stefano Meletti
- Department of Biomedical Sciences, Metabolism, and Neuroscience, University of Modena and Reggio Emilia, Italy
| |
Collapse
|
37
|
Carvill GL, Heavin SB, Yendle SC, McMahon JM, O’Roak BJ, Cook J, Khan A, Dorschner MO, Weaver M, Calvert S, Malone S, Wallace G, Stanley T, Bye AME, Bleasel A, Howell KB, Kivity S, Mackay MT, Rodriguez-Casero V, Webster R, Korczyn A, Afawi Z, Zelnick N, Lerman-Sagie T, Lev D, Møller RS, Gill D, Andrade DM, Freeman JL, Sadleir LG, Shendure J, Berkovic SF, Scheffer IE, Mefford HC. Targeted resequencing in epileptic encephalopathies identifies de novo mutations in CHD2 and SYNGAP1. Nat Genet 2013; 45:825-30. [PMID: 23708187 PMCID: PMC3704157 DOI: 10.1038/ng.2646] [Citation(s) in RCA: 492] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 05/01/2013] [Indexed: 12/16/2022]
Abstract
Epileptic encephalopathies are a devastating group of epilepsies with poor prognosis, of which the majority are of unknown etiology. We perform targeted massively parallel resequencing of 19 known and 46 candidate genes for epileptic encephalopathy in 500 affected individuals (cases) to identify new genes involved and to investigate the phenotypic spectrum associated with mutations in known genes. Overall, we identified pathogenic mutations in 10% of our cohort. Six of the 46 candidate genes had 1 or more pathogenic variants, collectively accounting for 3% of our cohort. We show that de novo CHD2 and SYNGAP1 mutations are new causes of epileptic encephalopathies, accounting for 1.2% and 1% of cases, respectively. We also expand the phenotypic spectra explained by SCN1A, SCN2A and SCN8A mutations. To our knowledge, this is the largest cohort of cases with epileptic encephalopathies to undergo targeted resequencing. Implementation of this rapid and efficient method will change diagnosis and understanding of the molecular etiologies of these disorders.
Collapse
Affiliation(s)
- Gemma L. Carvill
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, Washington, 98195, USA
| | - Sinéad B. Heavin
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Melbourne, Victoria, Australia
| | - Simone C. Yendle
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Melbourne, Victoria, Australia
| | - Jacinta M. McMahon
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Melbourne, Victoria, Australia
| | - Brian J. O’Roak
- Department of Genome Sciences, University of Washington, Seattle, Washington, 98195, USA
| | - Joseph Cook
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, Washington, 98195, USA
| | - Adiba Khan
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, Washington, 98195, USA
| | - Michael O Dorschner
- Department of Psychiatry & Behavioral Sciences, University of Washington, Seattle, Washington, 98195, USA
- Veteran Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Molly Weaver
- Department of Psychiatry & Behavioral Sciences, University of Washington, Seattle, Washington, 98195, USA
- Veteran Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Sophie Calvert
- Neurosciences Children’s Health Queensland, Royal and Mater Children’s Hospitals, Brisbane, Queensland, Australia
| | - Stephen Malone
- Neurosciences Children’s Health Queensland, Royal and Mater Children’s Hospitals, Brisbane, Queensland, Australia
| | - Geoffrey Wallace
- Neurosciences Children’s Health Queensland, Royal and Mater Children’s Hospitals, Brisbane, Queensland, Australia
| | - Thorsten Stanley
- Department of Paediatrics, School of Medicine and Health Sciences, University of Otago, Wellington, New Zealand
| | - Ann M. E. Bye
- Department of Paediatric Neurology, University of New South Wales, Sydney Children’s Hospital, Sydney, New South Wales, Australia
| | - Andrew Bleasel
- Westmead Hospital, University of Sydney, Sydney, New South Wales, Australia
| | - Katherine B. Howell
- Department of Neurology, The Royal Children’s Hospital, Parkville, Melbourne, Victoria, Australia
| | - Sara Kivity
- Epilepsy Unit, Schneider Children’s Medical Center of Israel, Petach Tikvah, Israel
| | - Mark T. Mackay
- Department of Neurology, The Royal Children’s Hospital, Parkville, Melbourne, Victoria, Australia
- Critical Care & Neurosciences Theme, Murdoch Childrens Research Institute, Melbourne, Victoria, Australia
- Department of Paediatrics, The University of Melbourne, The Royal Children’s Hospital, Melbourne, Victoria, Australia
| | | | - Richard Webster
- TY Nelson Department of Neurology, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Amos Korczyn
- Department of Neurology, Tel-Aviv University, Tel-Aviv, Israel
| | - Zaid Afawi
- Tel-Aviv University Medical School, Tel-Aviv, Israel
| | - Nathanel Zelnick
- Department of Pediatrics, Carmel Medical Center, Technion Faculty of Medicine, Haifa, Israel
| | - Tally Lerman-Sagie
- Metabolic-Neurogenetic Service, Wolfson Medical Center, Holon, and Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Dorit Lev
- Metabolic-Neurogenetic Service, Wolfson Medical Center, Holon, and Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | | | - Deepak Gill
- TY Nelson Department of Neurology, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Danielle M. Andrade
- Division of Neurology, Department of Medicine, University of Toronto, Toronto Western Hospital, Krembil Neurosciences Program. Toronto, Canada
| | - Jeremy L. Freeman
- Department of Neurology, The Royal Children’s Hospital, Parkville, Melbourne, Victoria, Australia
- Critical Care & Neurosciences Theme, Murdoch Childrens Research Institute, Melbourne, Victoria, Australia
| | - Lynette G. Sadleir
- Department of Paediatrics, School of Medicine and Health Sciences, University of Otago, Wellington, New Zealand
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, Washington, 98195, USA
| | - Samuel F. Berkovic
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Melbourne, Victoria, Australia
| | - Ingrid E. Scheffer
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Melbourne, Victoria, Australia
- Department of Neurology, The Royal Children’s Hospital, Parkville, Melbourne, Victoria, Australia
- Department of Paediatrics, The University of Melbourne, The Royal Children’s Hospital, Melbourne, Victoria, Australia
- Florey Institute, Melbourne, Victoria, Australia
| | - Heather C. Mefford
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, Washington, 98195, USA
| |
Collapse
|