1
|
Mehta P, Soliman A, Rodriguez-Vera L, Schmidt S, Muniz P, Rodriguez M, Forcadell M, Gonzalez-Perez E, Vozmediano V. Interspecies Brain PBPK Modeling Platform to Predict Passive Transport through the Blood-Brain Barrier and Assess Target Site Disposition. Pharmaceutics 2024; 16:226. [PMID: 38399280 PMCID: PMC10892872 DOI: 10.3390/pharmaceutics16020226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
The high failure rate of central nervous system (CNS) drugs is partly associated with an insufficient understanding of target site exposure. Blood-brain barrier (BBB) permeability evaluation tools are needed to explore drugs' ability to access the CNS. An outstanding aspect of physiologically based pharmacokinetic (PBPK) models is the integration of knowledge on drug-specific and system-specific characteristics, allowing the identification of the relevant factors involved in target site distribution. We aimed to qualify a PBPK platform model to be used as a tool to predict CNS concentrations when significant transporter activity is absent and human data are sparse or unavailable. Data from the literature on the plasma and CNS of rats and humans regarding acetaminophen, oxycodone, lacosamide, ibuprofen, and levetiracetam were collected. Human BBB permeability values were extrapolated from rats using inter-species differences in BBB surface area. The percentage of predicted AUC and Cmax within the 1.25-fold criterion was 85% and 100% for rats and humans, respectively, with an overall GMFE of <1.25 in all cases. This work demonstrated the successful application of the PBPK platform for predicting human CNS concentrations of drugs passively crossing the BBB. Future applications include the selection of promising CNS drug candidates and the evaluation of new posologies for existing drugs.
Collapse
Affiliation(s)
- Parsshava Mehta
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, FL 32827, USA; (P.M.); (A.S.); (S.S.)
| | - Amira Soliman
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, FL 32827, USA; (P.M.); (A.S.); (S.S.)
- Department of Pharmacy Practice, Faculty of Pharmacy, Helwan University, Helwan 11795, Egypt
| | - Leyanis Rodriguez-Vera
- Model Informed Development, CTI Laboratories, Covington, KY 41011, USA; (L.R.-V.); (P.M.); (M.R.)
| | - Stephan Schmidt
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, FL 32827, USA; (P.M.); (A.S.); (S.S.)
| | - Paula Muniz
- Model Informed Development, CTI Laboratories, Covington, KY 41011, USA; (L.R.-V.); (P.M.); (M.R.)
| | - Monica Rodriguez
- Model Informed Development, CTI Laboratories, Covington, KY 41011, USA; (L.R.-V.); (P.M.); (M.R.)
| | - Marta Forcadell
- Neuraxpharm Pharmaceuticals SL, Clinical Research and Evidence-Generation Science, 08970 Barcelona, Spain; (M.F.); (E.G.-P.)
| | - Emili Gonzalez-Perez
- Neuraxpharm Pharmaceuticals SL, Clinical Research and Evidence-Generation Science, 08970 Barcelona, Spain; (M.F.); (E.G.-P.)
| | - Valvanera Vozmediano
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, FL 32827, USA; (P.M.); (A.S.); (S.S.)
- Model Informed Development, CTI Laboratories, Covington, KY 41011, USA; (L.R.-V.); (P.M.); (M.R.)
| |
Collapse
|
2
|
Tulbah AS, Elkomy MH, Zaki RM, Eid HM, Eissa EM, Ali AA, Yassin HA, Aldosari BN, Naguib IA, Hassan AH. Novel nasal niosomes loaded with lacosamide and coated with chitosan: A possible pathway to target the brain to control partial-onset seizures. Int J Pharm X 2023; 6:100206. [PMID: 37637477 PMCID: PMC10458293 DOI: 10.1016/j.ijpx.2023.100206] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 08/29/2023] Open
Abstract
This work aimed to develop and produce lacosamide-loaded niosomes coated with chitosan (LCA-CTS-NSM) using a thin-film hydration method and the Box-Behnken design. The effect of three independent factors (Span 60 amount, chitosan concentration, and cholesterol amount) on vesicle size, entrapment efficiency, zeta potential, and cumulative release (8 h) was studied. The optimal formulation of LCA-CTS-NSM was chosen from the design space and assessed for morphology, in vitro release, nasal diffusion, stability, tolerability, and in vivo biodistribution for brain targeting after intranasal delivery. The vesicle size, entrapment, surface charge, and in vitro release of the optimal formula were found to be 194.3 nm, 58.3%, +35.6 mV, and 81.3%, respectively. Besides, it exhibits sustained release behavior, enhanced nasal diffusion, and improved physical stability. Histopathological testing revealed no evidence of toxicity or structural damage to the nasal mucosa. It demonstrated significantly more brain distribution than the drug solution. Overall, the data is encouraging since it points to the potential for non-invasive intranasal administration of LCA as an alternative to oral or parenteral routes.
Collapse
Affiliation(s)
- Alaa S. Tulbah
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Mohammed H. Elkomy
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia
| | - Randa Mohammed Zaki
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Hussein M. Eid
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Essam M. Eissa
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Adel A. Ali
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Heba A. Yassin
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Sinai University (Arish campus), Arish, Egypt
| | - Basmah Nasser Aldosari
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Ibrahim A. Naguib
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Amira H. Hassan
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62511, Egypt
| |
Collapse
|
3
|
Zhao T, Li HJ, Feng J, Zhang HL, Ting-ting W, Ma L, Yu J, Zhao WB, Sun L, Yu LH, Sun Y. Impact of ABCB1 Polymorphisms on Lacosamide Serum Concentrations in Uygur Pediatric Patients With Epilepsy in China. Ther Drug Monit 2022; 44:455-464. [PMID: 34610620 PMCID: PMC9083488 DOI: 10.1097/ftd.0000000000000927] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/12/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND P-glycoprotein, encoded by ABCB1 (or MDR1), may contribute to drug resistance in epilepsy by limiting gastrointestinal absorption and brain access to antiseizure medications. The study aimed to evaluate the impact of ABCB1 polymorphisms on lacosamide (LCM) serum concentrations in Uygur pediatric patients with epilepsy. METHODS The serum concentrations of LCM were determined by ultrahigh performance liquid chromatography, and the ABCB1 polymorphism was analyzed through polymerase chain reaction-fluorescence staining in situ hybridization. The χ2 test and the Fisher exact test were used to analyze the allelic and genotypic distributions of ABCB1 polymorphisms between the drug-resistant and drug-responsive patient groups. Differences in steady-state and dose-corrected LCM serum concentrations between different genotypes were analyzed using the one-way analysis of variance and the Mann-Whitney test. RESULTS A total of 131 Uygur children with epilepsy were analyzed, and of them, 41 demonstrated drug resistance. The frequency of the GT genotype of ABCB1 G2677T/A was significantly higher in the drug-resistant group than that in the drug-responsive group (P < 0.05, OR = 1.966, 95% CI, 1.060-3.647). Patients with the G2677T/A-AT genotype had a statistically significantly lower concentration-to-dose (CD) value than patients with the G2677T/A-GG genotype (mean: 0.6 ± 0.2 versus 0.8 ± 0.5 mcg/mL per mg/kg, P < 0.001). Significantly lower LCM serum concentrations were observed in ABCB1 C3435T CT and TT genotype carriers than those in the CC carriers (P = 0.008 and P = 0.002), and a significantly lower LCM CD value was observed in ABCB1 C3435T CT genotype carriers than that in the CC carriers (P = 0.042). CONCLUSIONS ABCB1 G2677T/A and C3435T polymorphisms may affect LCM serum concentrations and treatment efficacy in Uygur pediatric patients with epilepsy, leading to drug resistance in pediatric patients.
Collapse
Affiliation(s)
- Ting Zhao
- Department of Pharmacy, People's Hospital of Xinjiang Uygur Autonomous Region
- Institute of Clinical Pharmacy, People's Hospital of Xinjiang Uygur Autonomous Region
| | - Hong-jian Li
- Department of Pharmacy, People's Hospital of Xinjiang Uygur Autonomous Region
- Institute of Clinical Pharmacy, People's Hospital of Xinjiang Uygur Autonomous Region
| | - Jie Feng
- Department of Pharmacy, People's Hospital of Xinjiang Uygur Autonomous Region
- Institute of Clinical Pharmacy, People's Hospital of Xinjiang Uygur Autonomous Region
| | - Hui-lan Zhang
- Department of Pharmacy, People's Hospital of Xinjiang Uygur Autonomous Region
- Institute of Clinical Pharmacy, People's Hospital of Xinjiang Uygur Autonomous Region
| | - Wang Ting-ting
- Department of Pharmacy, People's Hospital of Xinjiang Uygur Autonomous Region
- Institute of Clinical Pharmacy, People's Hospital of Xinjiang Uygur Autonomous Region
| | - Long Ma
- Department of Pediatrics, Children's Hospital of Xinjiang Uygur Autonomous Region; and
| | - Jing Yu
- Department of Pediatrics, Children's Hospital of Xinjiang Uygur Autonomous Region; and
| | - Wen-bo Zhao
- Xinjiang Dingju Biotechnology Co, Ltd, Urumqi, China
| | - Li Sun
- Department of Pharmacy, People's Hospital of Xinjiang Uygur Autonomous Region
- Institute of Clinical Pharmacy, People's Hospital of Xinjiang Uygur Autonomous Region
| | - Lu-hai Yu
- Department of Pharmacy, People's Hospital of Xinjiang Uygur Autonomous Region
- Institute of Clinical Pharmacy, People's Hospital of Xinjiang Uygur Autonomous Region
| | - Yan Sun
- Department of Pediatrics, Children's Hospital of Xinjiang Uygur Autonomous Region; and
| |
Collapse
|
4
|
Blood-brain barrier targeted delivery of lacosamide-conjugated gold nanoparticles: Improving outcomes in absence seizures. Epilepsy Res 2022; 184:106939. [DOI: 10.1016/j.eplepsyres.2022.106939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 04/06/2022] [Accepted: 05/01/2022] [Indexed: 11/19/2022]
|
5
|
Bacillus subtilis Plays a Role in the Inhibition of Transporter ABCB1 in Caco-2 Cells. Epilepsy Res 2022; 183:106925. [DOI: 10.1016/j.eplepsyres.2022.106925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 04/06/2022] [Accepted: 04/11/2022] [Indexed: 11/23/2022]
|
6
|
Kong FC, Lang LQ, Hu J, Zhang XL, Zhong MK, Ma CL. A novel epigenetic marker, Ten-eleven translocation family member 2 (TET2), is identified in the intractable epileptic brain and regulates ATP binding cassette subfamily B member 1 (ABCB1) in the blood-brain barrier. Bioengineered 2022; 13:6638-6649. [PMID: 35235761 PMCID: PMC8974043 DOI: 10.1080/21655979.2022.2045838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Drug-resistant epilepsy (DRE) is a chronic condition derived from spontaneous changes and regulatory effects in the epileptic brain. As demethylation factors, ten-eleven translocation (TET) family members have become a focus in recent studies of neurological disorders. Here, we quantified and localized TET1, TET2 and 5-hydroxymethylcytosine (5-hmC) in the temporal lobe cortex of DRE patients (n = 27) and traumatic brain hemorrhage controls (n = 10) by immunochemical staining. TET2 and ATP binding cassette subfamily B member 1 (ABCB1) expression patterns were determined in the isolated brain capillaries of DRE patients. TET2 expression was significantly increased in the temporal cortical tissue of DRE patients with or without hippocampal sclerosis (HS) compared to control patients, while TET1 and 5-hmC showed no differences in expression. We also found that a particularly strong expression of TET2 in the vascular tissue of DRE patients. ABCB1 and TET2 have evidently higher expression in the vascular endothelium from the neocortex of DRE patients. In blood–brain barrier (BBB) model, TET2 depletion can cause attenuated expression and function of ABCB1. Data from a cohort study and experiments in a BBB model suggest that TET2 has a specific regulatory effect on ABCB1, which may serve as a potential mechanism and target in DRE.
Collapse
Affiliation(s)
- Fan-Cheng Kong
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Li-Qin Lang
- Department of Neurosurgery, Huashan Hospital at Fudan University, Shanghai, China
| | - Jie Hu
- Department of Neurosurgery, Huashan Hospital at Fudan University, Shanghai, China
| | - Xia-Ling Zhang
- Department of Pathology, Huashan Hospital, Fudan University, Shanghai, China
| | - Ming-Kang Zhong
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Chun-Lai Ma
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
7
|
Husain A, Makadia V, Valicherla GR, Riyazuddin M, Gayen JR. Approaches to minimize the effects of P-glycoprotein in drug transport: A review. Drug Dev Res 2022; 83:825-841. [PMID: 35103340 DOI: 10.1002/ddr.21918] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/21/2021] [Accepted: 01/13/2022] [Indexed: 12/20/2022]
Abstract
P-glycoprotein (P-gp) is a transporter protein that is come under the ATP binding cassette family of proteins. It is situated on the surface of the intestine epithelium, where P-gp substrate binds to the transporter and is pumped into the intestine lumen by the ATP-driven energy-dependent process. In this review, we summarize the role of the P-gp efflux transporter situated on the intestine, the clinical importance of P-gp related drug interactions, and approaches to minimize the effect of P-gp in drug transport. This review also focuses on the impact of P-gp on the bioavailability of the orally administered drug. Many drug's oral bioavailabilities can improve by concomitant use of P-gp inhibitors. Multidrug resistance are reduced by using some naturally occurring compounds obtained from plants and several synthetic P-gp inhibitors. Formulation strategies, one of the most important approaches to mimic the P-gp transporter's action, finally enhancing the oral bioavailability of the drug by inhibiting its P-gp efflux. Vitamin E TPGS, Gelucire 44/14 and other pharmaceutical/formulation excipients inhibit the P-gp efflux. A prodrug approach might be a useful strategy to overcome drug resistance. Prodrug helps to enhance the solubility or alter the pharmacokinetic properties but does not diminish the pharmacological action.
Collapse
Affiliation(s)
- Athar Husain
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Vishal Makadia
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India.,Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Raibarelly, India
| | - Guru R Valicherla
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Mohammed Riyazuddin
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Jiaur R Gayen
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
8
|
Gonçalves J, Alves G, Fonseca C, Carona A, Bicker J, Falcão A, Fortuna A. Is intranasal administration an opportunity for direct brain delivery of lacosamide? Eur J Pharm Sci 2020; 157:105632. [PMID: 33152466 DOI: 10.1016/j.ejps.2020.105632] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/20/2020] [Accepted: 10/26/2020] [Indexed: 02/06/2023]
Abstract
Lacosamide is well-known as an effective and safe anticonvulsant drug. Nevertheless, there is also evidence of anti-epileptogenic, neuroprotective and antinociceptive properties of lacosamide. It is currently available as oral and intravenous (IV) formulations, and its brain concentrations and therapeutic effects depend on its passage across the blood-brain barrier (BBB). Therefore, to circumvent the restrictive BBB, we herein evaluated the intranasal (IN) administration of lacosamide. Nasal thermoreversible gels were screened in vitro for their influence on the viability of human nasal septum (RPMI 2650) and lung adenocarcinoma (Calu-3) cells. According to the Alamar Blue test, the in situ gel composed of Pluronic F-127 (22.5%, w/v) and Carbopol 974P (0.2%, w/v) did not affect cell viability, which remained higher than 85%, within the concentration range of lacosamide. The in situ gel was intranasally administered to healthy male CD-1 mice (8.33 mg/kg) to describe the pharmacokinetic profiles of lacosamide in plasma, brain, lung and kidney and compare them with those obtained after IV administration of the same dose. Accordingly, IN administration allowed a fast (tmax in plasma: 5 min) and complete systemic absorption of lacosamide (absolute bioavailability: 120.46%). Interestingly, IN lacosamide demonstrated higher exposure (given by the AUCt) in the brain (425.44 µg.min/mL versus 274.49 µg.min/mL), but lower exposure in kidneys (357.56 µg.min/mL versus 762.61 µg.min/mL), in comparison to IV administration. These findings, together with the tmax in brain of 15 min, a drug targeting efficiency (DTE) of 128.67% and a direct transport percentage of 22.28%, evidence that part of lacosamide reaches the brain directly after nasal administration, even though penetration into the brain from the systemic circulation seems to be the major determinant of brain exposure. Importantly, lacosamide concentrations found in lungs following IN administration were considerably higher than those observed after IV injection, until 30 min post-dosing (p < 0.05). Nevertheless, attained drug concentrations were lower than those tested in vitro in the Calu-3 cell line (1-100 µM), indicating that adverse effects are unlikely to occur in vivo. Hence, it seems that the proposed IN route has potential to be a suitable and valuable strategy for the brain delivery of lacosamide in emergency conditions and for the chronic treatment of epilepsy and other neurological diseases.
Collapse
Affiliation(s)
- Joana Gonçalves
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
| | - Gilberto Alves
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Carla Fonseca
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Andreia Carona
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
| | - Joana Bicker
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
| | - Amílcar Falcão
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
| | - Ana Fortuna
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
9
|
Gericke B, Römermann K, Noack A, Noack S, Kronenberg J, Blasig IE, Löscher W. A face-to-face comparison of claudin-5 transduced human brain endothelial (hCMEC/D3) cells with porcine brain endothelial cells as blood-brain barrier models for drug transport studies. Fluids Barriers CNS 2020; 17:53. [PMID: 32843059 PMCID: PMC7449095 DOI: 10.1186/s12987-020-00212-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/13/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Predictive in vitro models of the human blood-brain barrier (BBB) are essential in early drug discovery and development. Among available immortalized human brain capillary endothelial cell lines (BCECs), the hCMEC/D3 cell line has become the most widely used in vitro BBB model. However, monolayers of hCMEC/D3 cells form only moderately restrictive barriers, most likely because the major tight junction protein, claudin-5, is markedly downregulated. Thus, hCMEC/D3 monolayers cannot be used for vectorial drug transport experiments, which is a major disadvantage of this model. METHODS Here we transduced hCMEC/D3 cells with a claudin-5 plasmid and compared the characteristics of these cells with those of hCMEC/D3 wildtype cells and primary cultured porcine BCECs. RESULTS The claudin-5 transduced hCMEC/D3 exhibited expression levels (and junctional localization) of claudin-5 similar to those of primary cultured porcine BCECs. The transduced cells exhibited increased TEER values (211 Ω cm2) and reduced paracellular mannitol permeability (8.06%/h), indicating improved BBB properties; however, the barrier properties of porcine BCECs (TEER 1650 Ω cm2; mannitol permeability 3.95%/h) were not reached. Hence, vectorial transport of a selective P-glycoprotein substrate (N-desmethyl-loperamide) was not observed in claudin-5 transduced hCMEC/D3 (or wildtype) cells, whereas such drug transport occurred in porcine BCECs. CONCLUSIONS The claudin-5 transduced hCMEC/D3 cells provide a tool to studying the contribution of claudin-5 to barrier tightness and how this can be further enhanced by additional transfections or other manipulations of this widely used in vitro model of the BBB.
Collapse
Affiliation(s)
- Birthe Gericke
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Kerstin Römermann
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Andreas Noack
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Sandra Noack
- Department of Trauma Surgery, Hannover Medical School, Hannover, Germany
| | - Jessica Kronenberg
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany
| | | | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany. .,Center for Systems Neuroscience, Hannover, Germany.
| |
Collapse
|
10
|
Xie Y, Wang M, Shao Y, Deng X, Chen Y. Long Non-coding RNA KCNQ1OT1 Contributes to Antiepileptic Drug Resistance Through the miR-138-5p/ABCB1 Axis in vitro. Front Neurosci 2019; 13:1358. [PMID: 31920517 PMCID: PMC6928106 DOI: 10.3389/fnins.2019.01358] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 12/02/2019] [Indexed: 12/17/2022] Open
Abstract
Compelling evidence has verified that long non-coding RNAs (lncRNAs) play a critical role on drug resistance in various diseases, especially cancer. However, the role of lncRNAs underlying multidrug resistance in epilepsy remains to be clarified. In the present study, we investigated the potential regulatory mechanism of the lncRNA KCNQ1OT1 in regulating antiepileptic drug (AED) resistance in human brain microvascular endothelial cells (HBMECs). The results revealed that expression of P-glycoprotein (P-gp) and KCNQ1OT1 was significantly elevated in phenytoin-resistant HBMECs (HBMEC/PHT). Meanwhile, the activity of nuclear factor-kappa B (NF-κB) was increased in HBMECs/PHT cells. Microarray analysis indicated that miR-138-5p was downregulated in HBMEC/PHT cells. Interestingly, bioinformatics prediction tools indicated miR-138-5p could directly target the transcripts of KCNQ1OT1 and NF-κB p65, and these results were confirmed by luciferase assays. Moreover, KCNQ1OT1 downregulation or miR-138-5p upregulation in vitro could inhibit P-gp expression and suppress NF-κB signaling pathway activation. Additionally, knockdown of KCNQ1OT1 or overexpression of miR-138-5p could increase the accumulation of rhodamine 123 (Rh123) and AEDs in HBMEC/PHT cells. Collectively, our results suggested that KCNQ1OT1 contributes to AED resistance through the miR-138-5p/NF-κB/ABCB1 axis in HBMEC/PHT cells, and these results provide a promising therapeutic target for the treatment of medically intractable epilepsy.
Collapse
Affiliation(s)
- Yangmei Xie
- Department of Neurology, Jinshan Hospital, Fudan University, Shanghai, China.,Department of Neurology, Huashan Hospital North, Fudan University, Shanghai, China
| | - Ming Wang
- Department of Neurology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Yiye Shao
- Department of Neurology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Xiaolin Deng
- Department of Neurology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Yinghui Chen
- Department of Neurology, Jinshan Hospital, Fudan University, Shanghai, China.,Department of Neurology, Huashan Hospital North, Fudan University, Shanghai, China
| |
Collapse
|
11
|
Fei Z, Hu M, Baum L, Kwan P, Hong T, Zhang C. The potential role of human multidrug resistance protein 1 (MDR1) and multidrug resistance-associated protein 2 (MRP2) in the transport of Huperzine A in vitro. Xenobiotica 2019; 50:354-362. [PMID: 31132291 DOI: 10.1080/00498254.2019.1623935] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Ziyan Fei
- School of Pharmacy, Nanchang University, Nanchang, PR China
- Provincial Key Laboratory for Drug Targeting and Drug Screening Research, Nanchang, PR China
| | - Mengyun Hu
- School of Pharmacy, Nanchang University, Nanchang, PR China
- Provincial Key Laboratory for Drug Targeting and Drug Screening Research, Nanchang, PR China
| | - Larry Baum
- The State Key Laboratory of Brain and Cognitive Sciences, University of Hong Kong, Pokfulam, Hong Kong, PR China
- Centre for Genomic Sciences, University of Hong Kong, Pokfulam, Hong Kong, PR China
| | - Patrick Kwan
- Department of Neuroscience, Alfred Hospital, Monash University, Melbourne, Australia
- Departments of Medicine and Neurology, Royal Melbourne Hospital, The University of Melbourne, Melbourne, Australia
| | - Tao Hong
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, PR China
| | - Chunbo Zhang
- School of Pharmacy, Nanchang University, Nanchang, PR China
- Provincial Key Laboratory for Drug Targeting and Drug Screening Research, Nanchang, PR China
| |
Collapse
|
12
|
Gáll Z, Vancea S. Distribution of lacosamide in the rat brain assessed by in vitro slice technique. Arch Pharm Res 2017; 41:79-86. [PMID: 29019022 DOI: 10.1007/s12272-017-0966-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 09/28/2017] [Indexed: 12/29/2022]
Abstract
Lacosamide is a newer anticonvulsant and is the only one that enhances the slow inactivation of voltage gated sodium channels. It is also claimed to have disease-modifying potential, but its pharmacokinetic properties have been much less discussed in the literature. In rats, lacosamide shows restricted distribution to tissues, and the brain-to-plasma partition coefficient (Kp) is only 0.553. In this study, the brain disposition of lacosamide was evaluated in rat brains, and its neuropharmacokinetic parameters (i.e., protein binding and intracellular accumulation) were assessed using in vitro methods. Brain slice experiments and brain homogenate binding studies were performed for several drugs acting on the central nervous system, and drugs were assayed by using a liquid chromatography-mass spectrometry system. By applying a combined approach, it was found that (1) the unbound volume of distribution in the brain for lacosamide (Vu,brain = 1.37) was lower than that of other classical anticonvulsants; (2) the unbound fraction of lacosamide in the brain (0.899) was slightly lower than its unbound fraction in plasma (0.96); (3) the unbound intracellular-to-extracellular concentration ratio of lacosamide was 1.233, meaning that lacosamide was accumulated in the intracellular space because of its physicochemical properties and zwitterionic structure; and (4) the unbound brain-to-plasma concentration ratio of lacosamide was lower than the total brain-to-plasma concentration ratio (Kp,uu,brain = 0.42 vs. Kp = 0.553). In conclusion, the limited brain distribution of lacosamide is not related to its nonspecific protein-binding capacity; rather, an active transport mechanism across the blood-brain barrier may be involved, which reduces the anticonvulsant and/or antiepileptogenic actions of this drug.
Collapse
Affiliation(s)
- Zsolt Gáll
- Faculty of Pharmacy, Department of Pharmacology and Clinical Pharmacy, University of Medicine and Pharmacy of Tîrgu Mureş, Gh. Marinescu Street, 38, 540139, Târgu Mureş, Romania.
| | - Szende Vancea
- Faculty of Pharmacy, Department of Physical Chemistry, University of Medicine and Pharmacy of Tîrgu Mureş, Gh. Marinescu Street, 38, 540139, Târgu Mureş, Romania
| |
Collapse
|
13
|
Abstract
Transporters in proximal renal tubules contribute to the disposition of numerous drugs. Furthermore, the molecular mechanisms of tubular secretion have been progressively elucidated during the past decades. Organic anions tend to be secreted by the transport proteins OAT1, OAT3 and OATP4C1 on the basolateral side of tubular cells, and multidrug resistance protein (MRP) 2, MRP4, OATP1A2 and breast cancer resistance protein (BCRP) on the apical side. Organic cations are secreted by organic cation transporter (OCT) 2 on the basolateral side, and multidrug and toxic compound extrusion (MATE) proteins MATE1, MATE2/2-K, P-glycoprotein, organic cation and carnitine transporter (OCTN) 1 and OCTN2 on the apical side. Significant drug-drug interactions (DDIs) may affect any of these transporters, altering the clearance and, consequently, the efficacy and/or toxicity of substrate drugs. Interactions at the level of basolateral transporters typically decrease the clearance of the victim drug, causing higher systemic exposure. Interactions at the apical level can also lower drug clearance, but may be associated with higher renal toxicity, due to intracellular accumulation. Whereas the importance of glomerular filtration in drug disposition is largely appreciated among clinicians, DDIs involving renal transporters are less well recognized. This review summarizes current knowledge on the roles, quantitative importance and clinical relevance of these transporters in drug therapy. It proposes an approach based on substrate-inhibitor associations for predicting potential tubular-based DDIs and preventing their adverse consequences. We provide a comprehensive list of known drug interactions with renally-expressed transporters. While many of these interactions have limited clinical consequences, some involving high-risk drugs (e.g. methotrexate) definitely deserve the attention of prescribers.
Collapse
Affiliation(s)
- Anton Ivanyuk
- Division of Clinical Pharmacology, Lausanne University Hospital (CHUV), Bugnon 17, 1011, Lausanne, Switzerland.
| | - Françoise Livio
- Division of Clinical Pharmacology, Lausanne University Hospital (CHUV), Bugnon 17, 1011, Lausanne, Switzerland
| | - Jérôme Biollaz
- Division of Clinical Pharmacology, Lausanne University Hospital (CHUV), Bugnon 17, 1011, Lausanne, Switzerland
| | - Thierry Buclin
- Division of Clinical Pharmacology, Lausanne University Hospital (CHUV), Bugnon 17, 1011, Lausanne, Switzerland
| |
Collapse
|
14
|
Barar J, Rafi MA, Pourseif MM, Omidi Y. Blood-brain barrier transport machineries and targeted therapy of brain diseases. ACTA ACUST UNITED AC 2016; 6:225-248. [PMID: 28265539 PMCID: PMC5326671 DOI: 10.15171/bi.2016.30] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 10/02/2016] [Accepted: 10/08/2016] [Indexed: 12/24/2022]
Abstract
![]()
Introduction: Desired clinical outcome of pharmacotherapy of brain diseases largely depends upon the safe drug delivery into the brain parenchyma. However, due to the robust blockade function of the blood-brain barrier (BBB), drug transport into the brain is selectively controlled by the BBB formed by brain capillary endothelial cells and supported by astrocytes and pericytes.
Methods: In the current study, we have reviewed the most recent literature on the subject to provide an insight upon the role and impacts of BBB on brain drug delivery and targeting.
Results: All drugs, either small molecules or macromolecules, designated to treat brain diseases must adequately cross the BBB to provide their therapeutic properties on biological targets within the central nervous system (CNS). However, most of these pharmaceuticals do not sufficiently penetrate into CNS, failing to meet the intended therapeutic outcomes. Most lipophilic drugs capable of penetrating BBB are prone to the efflux functionality of BBB. In contrast, all hydrophilic drugs are facing severe infiltration blockage imposed by the tight cellular junctions of the BBB. Hence, a number of strategies have been devised to improve the efficiency of brain drug delivery and targeted therapy of CNS disorders using multimodal nanosystems (NSs).
Conclusions: In order to improve the therapeutic outcomes of CNS drug transfer and targeted delivery, the discriminatory permeability of BBB needs to be taken under control. The carrier-mediated transport machineries of brain capillary endothelial cells (BCECs) can be exploited for the discovery, development and delivery of small molecules into the brain. Further, the receptor-mediated transport systems can be recruited for the delivery of macromolecular biologics and multimodal NSs into the brain.
Collapse
Affiliation(s)
- Jaleh Barar
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran ; Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad A Rafi
- Department of Neurology, Sidney Kimmel College of Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Mohammad M Pourseif
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yadollah Omidi
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran ; Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
15
|
Holtkamp D, Opitz T, Niespodziany I, Wolff C, Beck H. Activity of the anticonvulsant lacosamide in experimental and human epilepsy via selective effects on slow Na+channel inactivation. Epilepsia 2016; 58:27-41. [DOI: 10.1111/epi.13602] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2016] [Indexed: 11/30/2022]
Affiliation(s)
- Dominik Holtkamp
- Department of Epileptology; Laboratory for Experimental Epileptology and Cognition Research; University of Bonn; Bonn Germany
| | - Thoralf Opitz
- Department of Epileptology; Laboratory for Experimental Epileptology and Cognition Research; University of Bonn; Bonn Germany
| | | | | | - Heinz Beck
- Department of Epileptology; Laboratory for Experimental Epileptology and Cognition Research; University of Bonn; Bonn Germany
- German Center for Neurodegenerative Diseases (DZNE); Bonn Germany
| |
Collapse
|
16
|
Abstract
Epilepsy is a serious neurological disorder that affects more than 60 million people worldwide. Intractable epilepsy (IE) refers to approximately 20%-30% of epileptic patients who fail to achieve seizure control with antiepileptic drug (AED) treatment. Although the mechanisms underlying IE are not well understood, it has been hypothesized that multidrug transporters such as P-glycoprotein (P-gp) play a major role in drug efflux at the blood-brain barrier, and may be the underlying factor in the variable responses of patients to AEDs. The main goal of the present review is to show evidence from different areas that support the idea that the overexpression of P-gp is associated with IE. We discuss here evidence from animal studies, pharmacology, clinical cases and genetic studies.
Collapse
Affiliation(s)
- Guang-Xin Wang
- a Medical Institute of Paediatrics , Qilu Children's Hospital of Shandong University , Jinan , P.R. China
| | - Da-Wei Wang
- b Department of Biochemistry and Molecular Biology , School of Medicine, Shandong University , Jinan , P.R. China
| | - Yong Liu
- a Medical Institute of Paediatrics , Qilu Children's Hospital of Shandong University , Jinan , P.R. China
| | - Yan-Hui Ma
- a Medical Institute of Paediatrics , Qilu Children's Hospital of Shandong University , Jinan , P.R. China
| |
Collapse
|
17
|
Zellinger C, Salvamoser JD, Soerensen J, van Vliet EA, Aronica E, Gorter J, Potschka H. Pre-treatment with the NMDA receptor glycine-binding site antagonist L-701,324 improves pharmacosensitivity in a mouse kindling model. Epilepsy Res 2014; 108:634-43. [DOI: 10.1016/j.eplepsyres.2014.02.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 02/06/2014] [Accepted: 02/20/2014] [Indexed: 01/16/2023]
|
18
|
Effect of Lacosamide on the Steady-State Pharmacokinetics of Digoxin: Results from a Phase I, Multiple-Dose, Double-Blind, Randomised, Placebo-Controlled, Crossover Trial. Clin Drug Investig 2014; 34:327-34. [DOI: 10.1007/s40261-014-0180-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Hoy SM. Lacosamide: a review of its use as adjunctive therapy in the management of partial-onset seizures. CNS Drugs 2013; 27:1125-42. [PMID: 24203890 DOI: 10.1007/s40263-013-0123-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Lacosamide (Vimpat(®)) is a functionalized amino acid available orally (as a syrup or tablet) and as an intravenous infusion. It is believed to exert its antiepileptic effect by selectively enhancing the slow inactivation of voltage-gated sodium channels. Lacosamide is approved in several countries worldwide as an adjunctive therapy for the treatment of partial-onset seizures; however, prescribing regulations differ between countries. This article reviews the use of lacosamide as indicated in adults and adolescents (aged 16-18 years) in the EU, where it is approved in this patient population as an adjunctive therapy to other AEDs in the treatment of partial-onset seizures, with or without secondary generalization. In three randomized, double-blind, placebo-controlled, multicentre studies in adults and adolescents (aged 16-18 years) with partial-onset seizures, adjunctive therapy with oral lacosamide (administered for an initial titration period followed by 12 weeks' maintenance therapy) generally reduced the frequency of seizures to a significantly greater extent than placebo, with antiepileptic efficacy sustained following longer-term treatment (up to 8 years) in this patient population. Oral and intravenous lacosamide were generally well tolerated in clinical studies, with the majority of adverse events being mild or moderate in severity. Very common adverse reactions following adjunctive therapy with oral lacosamide included diplopia, dizziness, headache and nausea; the tolerability profile of intravenous lacosamide appeared consistent with that of oral lacosamide, although intravenous administration was associated with local adverse events, such as injection site discomfort or pain, irritation and erythema. Thus, oral and intravenous lacosamide as an adjunctive therapy to other AEDs provides a useful option in the treatment of patients with partial-onset seizures.
Collapse
Affiliation(s)
- Sheridan M Hoy
- Adis, 41 Centorian Drive, Private Bag 65901, Mairangi Bay, North Shore, 0754, Auckland, New Zealand,
| |
Collapse
|