1
|
Aroniadou-Anderjaska V, Figueiredo TH, De Araujo Furtado M, Pidoplichko VI, Lumley LA, Braga MFM. Alterations in GABA A receptor-mediated inhibition triggered by status epilepticus and their role in epileptogenesis and increased anxiety. Neurobiol Dis 2024; 200:106633. [PMID: 39117119 DOI: 10.1016/j.nbd.2024.106633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024] Open
Abstract
The triggers of status epilepticus (SE) in non-epileptic patients can vary widely, from idiopathic causes to exposure to chemoconvulsants. Regardless of its etiology, prolonged SE can cause significant brain damage, commonly resulting in the development of epilepsy, which is often accompanied by increased anxiety. GABAA receptor (GABAAR)-mediated inhibition has a central role among the mechanisms underlying brain damage and the ensuing epilepsy and anxiety. During SE, calcium influx primarily via ionotropic glutamate receptors activates signaling cascades which trigger a rapid internalization of synaptic GABAARs; this weakens inhibition, exacerbating seizures and excitotoxicity. GABAergic interneurons are more susceptible to excitotoxic death than principal neurons. During the latent period of epileptogenesis, the aberrant reorganization in synaptic interactions that follow interneuronal loss in injured brain regions, leads to the formation of hyperexcitable, seizurogenic neuronal circuits, along with disturbances in brain oscillatory rhythms. Reduction in the spontaneous, rhythmic "bursts" of IPSCs in basolateral amygdala neurons is likely to play a central role in anxiogenesis. Protecting interneurons during SE is key to preventing both epilepsy and anxiety. Antiglutamatergic treatments, including antagonism of calcium-permeable AMPA receptors, can be expected to control seizures and reduce excitotoxicity not only by directly suppressing hyperexcitation, but also by counteracting the internalization of synaptic GABAARs. Benzodiazepines, as delayed treatment of SE, have low efficacy due to the reduction and dispersion of their targets (the synaptic GABAARs), but also because themselves contribute to further reduction of available GABAARs at the synapse; furthermore, benzodiazepines may be completely ineffective in the immature brain.
Collapse
Affiliation(s)
- Vassiliki Aroniadou-Anderjaska
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA; Department of Psychiatry, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA.
| | - Taiza H Figueiredo
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA.
| | - Marcio De Araujo Furtado
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Volodymyr I Pidoplichko
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA.
| | - Lucille A Lumley
- U.S. Army Medical Research Institute of Chemical Defense, Aberdeen, Proving Ground, MD, USA.
| | - Maria F M Braga
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA; Department of Psychiatry, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA.
| |
Collapse
|
2
|
Gruenbaum BF, Schonwald A, Boyko M, Zlotnik A. The Role of Glutamate and Blood-Brain Barrier Disruption as a Mechanistic Link between Epilepsy and Depression. Cells 2024; 13:1228. [PMID: 39056809 PMCID: PMC11275034 DOI: 10.3390/cells13141228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/10/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Epilepsy is associated with substantial neuropsychiatric impairments that persist long after the onset of the condition, significantly impacting quality of life. The goal of this review was to uncover how the pathological consequences of epilepsy, such as excessive glutamate release and a disrupted blood-brain barrier (BBB), contribute to the emergence of neuropsychiatric disorders. We hypothesize that epilepsy induces a dysfunctional BBB through hyperexcitation, which then further amplifies post-ictal glutamate levels and, thus, triggers neurodegenerative and neuropsychiatric processes. This review identifies the determinants of glutamate concentration levels in the brain and explores potential therapeutic interventions that restore BBB integrity. Our focus on therapeutic BBB restoration is guided by the premise that it may improve glutamate regulation, consequently mitigating the neurotoxicity that contributes to the onset of neuropsychiatric symptoms.
Collapse
Affiliation(s)
- Benjamin F. Gruenbaum
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | - Matthew Boyko
- Department of Anesthesiology and Critical Care, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer-Sheva 84101, Israel; (M.B.); (A.Z.)
| | - Alexander Zlotnik
- Department of Anesthesiology and Critical Care, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer-Sheva 84101, Israel; (M.B.); (A.Z.)
| |
Collapse
|
3
|
Li S, Wei X, Huang H, Ye L, Ma M, Sun L, Lu Y, Wu Y. Neuroplastin exerts antiepileptic effects through binding to the α1 subunit of GABA type A receptors to inhibit the internalization of the receptors. J Transl Med 2023; 21:707. [PMID: 37814294 PMCID: PMC10563248 DOI: 10.1186/s12967-023-04596-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 10/04/2023] [Indexed: 10/11/2023] Open
Abstract
BACKGROUND Seizures are associated with a decrease in γ-aminobutyric type A acid receptors (GABAaRs) on the neuronal surface, which may be regulated by enhanced internalization of GABAaRs. When interactions between GABAaR subunit α-1 (GABRA1) and postsynaptic scaffold proteins are weakened, the α1-containing GABAaRs leave the postsynaptic membrane and are internalized. Previous evidence suggested that neuroplastin (NPTN) promotes the localization of GABRA1 on the postsynaptic membrane. However, the association between NPTN and GABRA1 in seizures and its effect on the internalization of α1-containing GABAaRs on the neuronal surface has not been studied before. METHODS An in vitro seizure model was constructed using magnesium-free extracellular fluid, and an in vivo model of status epilepticus (SE) was constructed using pentylenetetrazole (PTZ). Additionally, in vitro and in vivo NPTN-overexpression models were constructed. Electrophysiological recordings and internalization assays were performed to evaluate the action potentials and miniature inhibitory postsynaptic currents of neurons, as well as the intracellular accumulation ratio of α1-containing GABAaRs in neurons. Western blot analysis was performed to detect the expression of GABRA1 and NPTN both in vitro and in vivo. Immunofluorescence co-localization analysis and co-immunoprecipitation were performed to evaluate the interaction between GABRA1 and NPTN. RESULTS The expression of GABRA1 was found to be decreased on the neuronal surface both in vivo and in vitro seizure models. In the in vitro seizure model, α1-containing GABAaRs showed increased internalization. NPTN expression was found to be positively correlated with GABRA1 expression on the neuronal surface both in vivo and in vitro seizure models. In addition, NPTN overexpression alleviated seizures and NPTN was shown to bind to GABRA1 to form protein complexes that can be disrupted during seizures in both in vivo and in vitro models. Furthermore, NPTN was found to inhibit the internalization of α1-containing GABAaRs in the in vitro seizure model. CONCLUSION Our findings provide evidence that NPTN may exert antiepileptic effects by binding to GABRA1 to inhibit the internalization of α1-containing GABAaRs.
Collapse
Affiliation(s)
- Sijun Li
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Shuangyong Road No.6, Nanning, Guangxi, China
| | - Xing Wei
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Shuangyong Road No.6, Nanning, Guangxi, China
| | - Hongmi Huang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Shuangyong Road No.6, Nanning, Guangxi, China
| | - Lin Ye
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Shuangyong Road No.6, Nanning, Guangxi, China
| | - Meigang Ma
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Shuangyong Road No.6, Nanning, Guangxi, China
| | - Lanfeng Sun
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Shuangyong Road No.6, Nanning, Guangxi, China
| | - Yuling Lu
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Shuangyong Road No.6, Nanning, Guangxi, China
| | - Yuan Wu
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Shuangyong Road No.6, Nanning, Guangxi, China.
| |
Collapse
|
4
|
Perri RGB, Mantello AG, Rosa DS, Beleboni RO. Silencing of the GluN1-NMDA Glutamate Receptor Subunit by Intranasal siRNA Increases the Latency Time for Seizures in the Pilocarpine Rodent Model of Epilepsy. Pharmaceuticals (Basel) 2022; 15:ph15121470. [PMID: 36558924 PMCID: PMC9785971 DOI: 10.3390/ph15121470] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022] Open
Abstract
Temporal lobe epilepsy (TLE) is the most prevalent and treatment-refractory type of epilepsy. Among the different mechanisms associated with epileptogenesis, overstimulation of glutamatergic neurotransmission has been associated with the onset and progression of seizures in TLE. Experimental evidence indicates that blocking the N-methyl-D-aspartate (NMDA) receptor or suppressing the expression of its subunit, mainly GluN1, may be effective in preventing epileptic seizures. Small interfering RNA (siRNA) has received attention as a potential therapeutic tool due to the inhibition of gene expression in some diseases. The present work evaluated the potential silencing effect of intranasal administration of an siRNA conjugate against the GluN1 subunit in animals submitted to the pilocarpine model of epilepsy. The results showed that the siRNA conjugate transfection system silences the GluN1 subunit in the hippocampus of rats when administered intranasally. As demonstrated by the RT-qPCR and Western blotting approaches, the silencing of GluN1 was specific for this subunit without affecting the amount of mRNA for other subunits. Silencing increased the latency time for the first tonic-clonic seizure when compared to controls. The overlapping of findings and the validation of the intranasal route as a pharmacological route of siRNA targeting the GluN1 subunit give the work a significant biotechnological interest.
Collapse
Affiliation(s)
| | - Anieli Gaverio Mantello
- Department of Biotechnology, University of Ribeirão Preto, Ribeirão Preto 14096-300, SP, Brazil
| | - Daiane Santos Rosa
- Department of Biotechnology, University of Ribeirão Preto, Ribeirão Preto 14096-300, SP, Brazil
| | - Renê Oliveira Beleboni
- Department of Biotechnology, University of Ribeirão Preto, Ribeirão Preto 14096-300, SP, Brazil
- School of Medicine, University of Ribeirão Preto, Ribeirão Preto 14096-300, SP, Brazil
- Correspondence: ; Tel.: +55-16-3603-6827
| |
Collapse
|
5
|
Sivakumar S, Ghasemi M, Schachter SC. Targeting NMDA Receptor Complex in Management of Epilepsy. Pharmaceuticals (Basel) 2022; 15:ph15101297. [PMID: 36297409 PMCID: PMC9609646 DOI: 10.3390/ph15101297] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 11/05/2022] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) are widely distributed in the central nervous system (CNS) and play critical roles in neuronal excitability in the CNS. Both clinical and preclinical studies have revealed that the abnormal expression or function of these receptors can underlie the pathophysiology of seizure disorders and epilepsy. Accordingly, NMDAR modulators have been shown to exert anticonvulsive effects in various preclinical models of seizures, as well as in patients with epilepsy. In this review, we provide an update on the pathologic role of NMDARs in epilepsy and an overview of the NMDAR antagonists that have been evaluated as anticonvulsive agents in clinical studies, as well as in preclinical seizure models.
Collapse
Affiliation(s)
- Shravan Sivakumar
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Mehdi Ghasemi
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
- Correspondence: (M.G.); (S.C.S.)
| | - Steven C. Schachter
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02114, USA
- Consortia for Improving Medicine with Innovation & Technology (CIMIT), Boston, MA 02114, USA
- Correspondence: (M.G.); (S.C.S.)
| |
Collapse
|
6
|
Li S, Huang H, Wei X, Ye L, Ma M, Ling M, Wu Y. The recycling of AMPA receptors/GABAa receptors is related to neuronal excitation/inhibition imbalance and may be regulated by KIF5A. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1103. [PMID: 36388788 PMCID: PMC9652568 DOI: 10.21037/atm-22-4337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/30/2022] [Indexed: 09/01/2023]
Abstract
BACKGROUND Excitation/inhibition imbalance (E/I imbalance), which involves an increase of alpha-amino-3-hydroxy-5-methyl-4-isoxazole (AMPA) receptors (AMPARs) and decrease of gamma-aminobutyric acid type A (GABA) type A receptors (GABAaRs) on the neuron surface, has been documented in the pathogenesis of seizures. Notably, it has been established that both the glutamate receptor subunit 2 (GluR2) of AMPARs and beta 2/3 subunits of GABAaRs (Gabrb2+3) participate in the recycling mechanism mediated by the kinesin heavy chain isoform 5A (KIF5A), which determines the number of neuron surface receptors. However, it remains unclear whether receptor recycling is involved in the pathogenesis of seizures. METHODS Twelve adult male Sprague-Dawley rats were randomly allocated to the normal control (Ctl) group (n=6) and the pentylenetetrazol (PTZ)-induced seizure (Sez) group (n=6). The rats in the Ctl group were treated with saline. The rats in the Sez group received an intraperitoneal injection of PTZ at an initial dose of 40 mg/kg. Primary cultured neurons were obtained from newborn rats (24-hour-old). The neurons were exposed to magnesium-free (Mg2+-free) extracellular fluid for 3 hours to establish the seizure model in vitro. We detected the electrophysiology of the seizure model, the expression levels of KIF5A, GluR2, and Gabrb2+3, the recycling ratio of GluR2 and Gabrb2+3, the interaction between KIF5A and GluR2, and the interaction between KIF5A and Gabrb2+3. RESULTS In the Sez group, the expression of GluR2 on the cell surface was increased and the expression of Gabrb2+3 on the cell surface was decreased. The amplitude and frequency of action potentials were significantly increased in the Mg2+-free group. The amplitude and decay time of AMPAR-mediated miniature excitatory postsynaptic currents were increased in the Mg2+-free group. The amplitude and decay time of miniature inhibitory postsynaptic currents were decreased in the Mg2+-free group. The recycling ratio of GluR2 was increased and the recycling ratio of Gabrb2+3 was decreased in the Mg2+-free group. The interaction between KIF5A and GluR2 was increased, and the interaction between KIF5A and Gabrb2+3 was decreased in the seizure model in vivo and in vitro. CONCLUSIONS The recycling of AMPA receptors/GABAa receptors is related to E/I imbalance and may be regulated by KIF5A.
Collapse
Affiliation(s)
- Sijun Li
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Hongmi Huang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xin Wei
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Lin Ye
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Meigang Ma
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Min Ling
- Department of Biotechnology, Guangxi Medical University, Nanning, China
| | - Yuan Wu
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
7
|
Kapur J, Long L, Dixon-Salazar T. Consequences: Bench to home. Epilepsia 2022; 63 Suppl 1:S14-S24. [PMID: 35999173 DOI: 10.1111/epi.17342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/08/2022] [Accepted: 06/08/2022] [Indexed: 01/02/2023]
Abstract
Seizure clusters (also referred to as acute repetitive seizures) consist of several seizures interspersed with brief interictal periods. Seizure clusters can break down γ-aminobutyric acidergic (GABAergic) inhibition of dentate granule cells, leading to hyperactivation. Functional changes to GABAA receptors, which play a vital neuroinhibitory role, can include altered GABAA receptor subunit trafficking and cellular localization, intracellular chloride accumulation, and dysregulation of proteins critical to chloride homeostasis. A reduction in neuroinhibition and potentiation of excitatory neurotransmission in CA1 pyramidal neurons represent pathological mechanisms that underlie seizure clusters. Benzodiazepines are well-established treatments for seizure clusters; however, there remain barriers to appropriate care. At the clinical level, there is variability in seizure cluster definitions, such as the number and/or type of seizures associated with a cluster as well as the interictal duration between seizures. This can lead to delays in diagnosis and timely treatment. There are gaps in understanding between clinicians, their patients, and caregivers regarding acute treatment for seizure clusters, such as the use of rescue medications and emergency services. This lack of consensus to define seizure clusters in addition to a lack of education for appropriate treatment can affect quality of life for patients and place a greater burden on patient families and caregivers. For patients with seizure clusters, the sense of unpredictability can lead to continuous traumatic stress, during which patients and families live with a heightened level of anxiety. Clinicians can affect patient quality of life and clinical outcomes through improved seizure cluster education and treatment, such as the development and implementation of a personalized seizure action plan as well as prescriptions for suitable rescue medications indicated for seizure clusters and instructions for their proper use. In all, the combination of targeted therapy along with patient education and support can improve quality of life.
Collapse
Affiliation(s)
- Jaideep Kapur
- Department of Neurology, University of Virginia, Charlottesville, Virginia, USA
| | - Lucretia Long
- Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| | | |
Collapse
|
8
|
Singh T, Batabyal T, Kapur J. Neuronal circuits sustaining neocortical-injury-induced status epilepticus. Neurobiol Dis 2022; 165:105633. [PMID: 35065250 PMCID: PMC8860889 DOI: 10.1016/j.nbd.2022.105633] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 01/04/2022] [Accepted: 01/16/2022] [Indexed: 01/12/2023] Open
Abstract
OBJECTIVES Acute injuries or insults to the cortex, such as trauma, subarachnoid hemorrhage, lobar hemorrhage, can cause seizures or status epilepticus(SE). Neocortical SE is associated with coma, worse prognosis, delayed recovery, and the development of epilepsy. The anatomical structures progressively recruited during neocortical-onset status epilepticus (SE) is unknown. Therefore, we constructed large-scale maps of brain regions active during neocortical SE. METHODS We used a neocortical injury-induced SE mouse model. We implanted cobalt (Co) in the right supplementary motor cortex (M2). We 16 h later administered a homocysteine injection (845 mg/kg, intraperitoneal) to C57Bl/6 J mice to induce SE and monitored it by video and EEG. We harvested animals for 1 h (early-stage) and 2 h (late-stage) following homocysteine injections. To construct activation maps, we immunolabeled whole-brain sections for cFos and NeuN, imaged them using a confocal microscope and quantified cFos immunoreactivity (IR). RESULTS SE in the early phase consisted of discrete, focal intermittent seizures, which became continuous and bilateral in the late stage. In this early stage, cFos IR was primarily observed in the right hemisphere, ipsilateral to the Co lesion, specifically in the motor cortex, retrosplenial cortex, somatosensory cortex, anterior cingulate cortex, lateral and medial septal nuclei, and amygdala. We observed bilateral cFos IR in brain regions during the late stage, indicating the bilateral spread of focal seizures. We found increased cFOS IR in the bilateral somatosensory cortex and the motor cortex and subcortical regions, including the amygdala, thalamus, and hypothalamus. There was noticeably different, intense cFos IR in the bilateral hippocampus compared to the early stage. In addition, there was higher activity in the cortex ipsilateral to the seizure focus during the late stage compared with the early one. CONCLUSION We present a large-scale, high-resolution map of seizure spread during neocortical injury-induced SE. Cortico-cortical and cortico subcortical re-entrant circuits sustain neocortical SE. Neuronal loss following neocortical SE, distant from the neocortical focus, may result from seizures.
Collapse
Affiliation(s)
- Tanveer Singh
- Department of Neurology, University of Virginia, Charlottesville, VA 22908, USA
| | - Tamal Batabyal
- UVA Brain Institute, University of Virginia, Charlottesville, VA 22908, USA
| | - Jaideep Kapur
- Department of Neurology, University of Virginia, Charlottesville, VA 22908, USA; UVA Brain Institute, University of Virginia, Charlottesville, VA 22908, USA; Department of Neuroscience, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
9
|
Green JL, Dos Santos WF, Fontana ACK. Role of glutamate excitotoxicity and glutamate transporter EAAT2 in epilepsy: Opportunities for novel therapeutics development. Biochem Pharmacol 2021; 193:114786. [PMID: 34571003 DOI: 10.1016/j.bcp.2021.114786] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 12/21/2022]
Abstract
Epilepsy is a complex neurological syndrome characterized by seizures resulting from neuronal hyperexcitability and sudden and synchronized bursts of electrical discharges. Impaired astrocyte function that results in glutamate excitotoxicity has been recognized to play a key role in the pathogenesis of epilepsy. While there are 26 drugs marketed as anti-epileptic drugs no current treatments are disease modifying as they only suppress seizures rather than the development and progression of epilepsy. Excitatory amino acid transporters (EAATs) are critical for maintaining low extracellular glutamate concentrations and preventing excitotoxicity. When extracellular glutamate concentrations rise to abnormal levels, glutamate receptor overactivation and the subsequent excessive influx of calcium into the post-synaptic neuron can trigger cell death pathways. In this review we discuss targeting EAAT2, the predominant glutamate transporter in the CNS, as a promising approach for developing therapies for epilepsy. EAAT2 upregulation via transcriptional and translational regulation has proven successful in vivo in reducing spontaneous recurrent seizures and offering neuroprotective effects. Another approach to regulate EAAT2 activity is through positive allosteric modulation (PAM). Novel PAMs of EAAT2 have recently been identified and are under development, representing a promising approach for the advance of novel therapeutics for epilepsy.
Collapse
Affiliation(s)
- Jennifer Leigh Green
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, United States
| | | | | |
Collapse
|
10
|
Nonperiodic stimulation for the treatment of refractory epilepsy: Applications, mechanisms, and novel insights. Epilepsy Behav 2021; 121:106609. [PMID: 31704250 DOI: 10.1016/j.yebeh.2019.106609] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 10/14/2019] [Accepted: 10/14/2019] [Indexed: 11/21/2022]
Abstract
Electrical stimulation of the central nervous system is a promising alternative for the treatment of pharmacoresistant epilepsy. Successful clinical and experimental stimulation is most usually carried out as continuous trains of current or voltage pulses fired at rates of 100 Hz or above, since lower frequencies yield controversial results. On the other hand, stimulation frequency should be as low as possible, in order to maximize implant safety and battery efficiency. Moreover, the development of stimulation approaches has been largely empirical in general, while they should be engineered with the neurobiology of epilepsy in mind if a more robust, efficient, efficacious, and safe application is intended. In an attempt to reconcile evidence of therapeutic effect with the understanding of the underpinnings of epilepsy, our group has developed a nonstandard form of low-frequency stimulation with randomized interpulse intervals termed nonperiodic stimulation (NPS). The rationale was that an irregular temporal pattern would impair neural hypersynchronization, which is a hallmark of epilepsy. In this review, we start by briefly revisiting the literature on the molecular, cellular, and network level mechanisms of epileptic phenomena in order to highlight this often-overlooked emergent property of cardinal importance in the pathophysiology of the disease. We then review our own studies on the efficacy of NPS against acute and chronic experimental seizures and also on the anatomical and physiological mechanism of the method, paying special attention to the hypothesis that the lack of temporal regularity induces desynchronization. We also put forward a novel insight regarding the temporal structure of NPS that may better encompass the set of findings published by the group: the fact that intervals between stimulation pulses have a distribution that follows a power law and thus may induce natural-like activity that would compete with epileptiform discharge for the recruitment of networks. We end our discussion by mentioning ongoing research and future projects of our lab.
Collapse
|
11
|
Godau J, Bharad K, Rösche J, Nagy G, Kästner S, Weber K, Bösel J. Automated Pupillometry for Assessment of Treatment Success in Nonconvulsive Status Epilepticus. Neurocrit Care 2021; 36:148-156. [PMID: 34331202 DOI: 10.1007/s12028-021-01273-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/11/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Altered pupillary function may reflect nonconvulsive status epilepticus (NCSE). Neurological pupil index (NPi) assessed by automated pupillometry is a surrogate marker of global pupillary function. We aimed to assess NPi changes in relation to NCSE treatment response. METHODS In this prospective observational study, serial automated pupillometry was performed in 68 NCSE episodes. In accordance with local standards, patients were treated with clonazepam (1-2 mg), levetiracetam (40 mg/kg), and lacosamide (5 mg/kg) in a stepwise approach under continuous electroencephalography monitoring until NCSE was terminated. Patients with refractory NCSE received individualized regimens. NPi was assessed bilaterally before and after each treatment step. For statistical analysis, the lower NPi of both sides (minNPi) was used. Nonparametric testing for matched samples and Cohen's d to estimate effect size were performed. Principal component analysis was applied to assess the contribution of baseline minNPi, age, sex, and NCSE duration to treatment outcome. RESULTS In 97.1% of 68 episodes, NCSE could be terminated; in 16.2%, NCSE was refractory. In 85.3% of episodes, an abnormal baseline minNPi ≤ 4.0 was obtained. After NCSE termination, minNPi increased significantly (p < 0.001). Cohen's d showed a strong effect size of 1.24 (95% confidence interval 0.88-1.61). Baseline minNPi was higher in clonazepam nonresponders vs. responders (p = 0.008), minNPi increased in responders (p < 0.001) but not in nonresponders. NCSE refractivity was associated with normal baseline minNPi (principal component analysis, component 1, 32.6% of variance, r = 0.78), male sex, and longer NCSE duration (component 2, 27.1% of variance, r = 0.62 and r = 0.78, respectively). CONCLUSIONS Automated pupillometry may be a helpful noninvasive neuromonitoring tool for the assessment of patients with NCSE and response to treatment.
Collapse
Affiliation(s)
- Jana Godau
- Department of Neurology, Klinikum Kassel, Kassel, Germany. .,Emergency Department, Klinikum Kassel, Kassel, Germany.
| | - Kaushal Bharad
- Department of Neurology, Klinikum Kassel, Kassel, Germany.,Emergency Department, Klinikum Kassel, Kassel, Germany
| | - Johannes Rösche
- Department of Neurology, Klinikum Kassel, Kassel, Germany.,Department of Neurology, University of Rostock, Rostock, Germany
| | - Gabor Nagy
- Department of Neurology, Klinikum Kassel, Kassel, Germany.,Department of Neurosurgery, Klinikum Kassel, Kassel, Germany
| | | | - Klaus Weber
- Emergency Department, Klinikum Kassel, Kassel, Germany
| | - Julian Bösel
- Department of Neurology, Klinikum Kassel, Kassel, Germany
| |
Collapse
|
12
|
Zaitsev АV, Amakhin DV, Dyomina AV, Zakharova MV, Ergina JL, Postnikova TY, Diespirov GP, Magazanik LG. Synaptic Dysfunction in Epilepsy. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s002209302103008x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
13
|
Lo AC, Rajan N, Gastaldo D, Telley L, Hilal ML, Buzzi A, Simonato M, Achsel T, Bagni C. Absence of RNA-binding protein FXR2P prevents prolonged phase of kainate-induced seizures. EMBO Rep 2021; 22:e51404. [PMID: 33779029 PMCID: PMC8024897 DOI: 10.15252/embr.202051404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 01/26/2021] [Accepted: 01/29/2021] [Indexed: 12/26/2022] Open
Abstract
Status epilepticus (SE) is a condition in which seizures are not self-terminating and thereby pose a serious threat to the patient's life. The molecular mechanisms underlying SE are likely heterogeneous and not well understood. Here, we reveal a role for the RNA-binding protein Fragile X-Related Protein 2 (FXR2P) in SE. Fxr2 KO mice display reduced sensitivity specifically to kainic acid-induced SE. Immunoprecipitation of FXR2P coupled to next-generation sequencing of associated mRNAs shows that FXR2P targets are enriched in genes that encode glutamatergic post-synaptic components. Of note, the FXR2P target transcriptome has a significant overlap with epilepsy and SE risk genes. In addition, Fxr2 KO mice fail to show sustained ERK1/2 phosphorylation induced by KA and present reduced burst activity in the hippocampus. Taken together, our findings show that the absence of FXR2P decreases the expression of glutamatergic proteins, and this decrease might prevent self-sustained seizures.
Collapse
Affiliation(s)
- Adrian C Lo
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Nicholas Rajan
- Department of Neurosciences and Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Denise Gastaldo
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Ludovic Telley
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Muna L Hilal
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Andrea Buzzi
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Michele Simonato
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy.,Division of Neuroscience, IRCCS San Raffaele Hospital, Milan, Italy
| | - Tilmann Achsel
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Claudia Bagni
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland.,Department of Neurosciences and Leuven Brain Institute, KU Leuven, Leuven, Belgium.,Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
14
|
Sathe AG, Underwood E, Coles LD, Elm JJ, Silbergleit R, Chamberlain JM, Kapur J, Cock HR, Fountain NB, Shinnar S, Lowenstein DH, Rosenthal ES, Conwit RA, Bleck TP, Cloyd JC. Patterns of benzodiazepine underdosing in the Established Status Epilepticus Treatment Trial. Epilepsia 2021; 62:795-806. [PMID: 33567109 DOI: 10.1111/epi.16825] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 12/31/2020] [Accepted: 01/05/2021] [Indexed: 12/15/2022]
Abstract
OBJECTIVE This study was undertaken to describe patterns of benzodiazepine use as first-line treatment of status epilepticus (SE) and test the association of benzodiazepine doses with response to second-line agents in patients enrolled in the Established Status Epilepticus Treatment Trial (ESETT). METHODS Patients refractory to an adequate dose of benzodiazepines for the treatment of SE were enrolled in ESETT. Choice of benzodiazepine, doses given prior to administration of second-line agent, route of administration, setting, and patient weight were characterized. These were compared with guideline-recommended dosing. Logistic regression was used to determine the association of the first dose of benzodiazepine and the cumulative benzodiazepine dose with the response to second-line agent. RESULTS Four hundred sixty patients were administered 1170 doses of benzodiazepines (669 lorazepam, 398 midazolam, 103 diazepam). Lorazepam was most frequently administered intravenously in the emergency department, midazolam intramuscularly or intravenously by the emergency medical services personnel, and diazepam rectally prior to ambulance arrival. The first dose of the first benzodiazepine (N = 460) was lower than guideline recommendations in 76% of midazolam administrations and 81% of lorazepam administrations. Among all administrations, >85% of midazolam and >76% of lorazepam administrations were lower than recommended. Higher first or cumulative benzodiazepine doses were not associated with better outcomes or clinical seizure cessation in response to second-line medications in these benzodiazepine-refractory seizures. SIGNIFICANCE Benzodiazepines as first-line treatment of SE, particularly midazolam and lorazepam, are frequently underdosed throughout the United States. This broad and generalizable cohort confirms prior single site reports that underdosing is both pervasive and difficult to remediate. (ESETT ClinicalTrials.gov identifier: NCT01960075.).
Collapse
Affiliation(s)
- Abhishek G Sathe
- Department of Experimental and Clinical Pharmacology, College of Pharmacy and Center for Orphan Drug Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ellen Underwood
- Department of Public Health Science, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Lisa D Coles
- Department of Experimental and Clinical Pharmacology, College of Pharmacy and Center for Orphan Drug Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jordan J Elm
- Department of Public Health Science, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Robert Silbergleit
- Department of Emergency Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - James M Chamberlain
- Division of Emergency Medicine, Children's National Hospital and Department of Pediatrics and Emergency Medicine, School of Medicine and Health Sciences, George Washington University, Washington, District of Columbia, USA
| | - Jaideep Kapur
- Department of Neurology and Department of Neuroscience, Brain Institute, University of Virginia, Charlottesville, Virginia, USA
| | - Hannah R Cock
- Clinical Neurosciences Academic Group, Institute of Molecular and Clinical Sciences, St. George's University of London, London, UK
| | - Nathan B Fountain
- Department of Neurology, Comprehensive Epilepsy Program, University of Virginia, Charlottesville, Virginia, USA
| | - Shlomo Shinnar
- Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Daniel H Lowenstein
- Department of Neurology, University of California, San Francisco, San Francisco, California, USA
| | - Eric S Rosenthal
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Robin A Conwit
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Thomas P Bleck
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - James C Cloyd
- Department of Experimental and Clinical Pharmacology, College of Pharmacy and Center for Orphan Drug Research, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
15
|
Zou A, Ramanathan S, Dale RC, Brilot F. Single-cell approaches to investigate B cells and antibodies in autoimmune neurological disorders. Cell Mol Immunol 2021; 18:294-306. [PMID: 32728203 PMCID: PMC8027387 DOI: 10.1038/s41423-020-0510-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 07/07/2020] [Indexed: 12/18/2022] Open
Abstract
Autoimmune neurological disorders, including neuromyelitis optica spectrum disorder, anti-N-methyl-D-aspartate receptor encephalitis, anti-MOG antibody-associated disorders, and myasthenia gravis, are clearly defined by the presence of autoantibodies against neurological antigens. Although these autoantibodies have been heavily studied for their biological activities, given the heterogeneity of polyclonal patient samples, the characteristics of a single antibody cannot be definitively assigned. This review details the findings of polyclonal serum and CSF studies and then explores the advances made by single-cell technologies to the field of antibody-mediated neurological disorders. High-resolution single-cell methods have revealed abnormalities in the tolerance mechanisms of several disorders and provided further insight into the B cells responsible for autoantibody production. Ultimately, several factors, including epitope specificity and binding affinity, finely regulate the pathogenic potential of an autoantibody, and a deeper appreciation of these factors may progress the development of targeted immunotherapies for patients.
Collapse
Affiliation(s)
- Alicia Zou
- Brain Autoimmunity Group, Kids Neuroscience Centre, Kids Research at the Children's Hospital at Westmead, Sydney, NSW, Australia
- Discipline of Child and Adolescent Health, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Sudarshini Ramanathan
- Brain Autoimmunity Group, Kids Neuroscience Centre, Kids Research at the Children's Hospital at Westmead, Sydney, NSW, Australia
- Discipline of Child and Adolescent Health, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Russell C Dale
- Brain Autoimmunity Group, Kids Neuroscience Centre, Kids Research at the Children's Hospital at Westmead, Sydney, NSW, Australia
- Discipline of Child and Adolescent Health, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Fabienne Brilot
- Brain Autoimmunity Group, Kids Neuroscience Centre, Kids Research at the Children's Hospital at Westmead, Sydney, NSW, Australia.
- Discipline of Child and Adolescent Health, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia.
- School of Medical Sciences, Discipline of Applied Medical Science, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
16
|
Aroniadou-Anderjaska V, Apland JP, Figueiredo TH, De Araujo Furtado M, Braga MF. Acetylcholinesterase inhibitors (nerve agents) as weapons of mass destruction: History, mechanisms of action, and medical countermeasures. Neuropharmacology 2020; 181:108298. [DOI: 10.1016/j.neuropharm.2020.108298] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 08/21/2020] [Accepted: 09/02/2020] [Indexed: 02/07/2023]
|
17
|
Spampanato J, Bealer SL, Smolik M, Dudek FE. Delayed Adjunctive Treatment of Organophosphate-Induced Status Epilepticus in Rats with Phenobarbital, Memantine, or Dexmedetomidine. J Pharmacol Exp Ther 2020; 375:59-68. [PMID: 32873622 DOI: 10.1124/jpet.120.000175] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 07/16/2020] [Indexed: 12/15/2022] Open
Abstract
Organophosphate (OP) exposure induces status epilepticus (SE), a medical emergency with high morbidity and mortality. Current standard medical countermeasures lose efficacy with time so that treatment delays, in the range of tens of minutes, result in increasingly poor outcomes. As part of the Countermeasures Against Chemical Threats Neurotherapeutics Screening Program, we previously developed a realistic model of delayed treatment of OP-induced SE using the OP diisopropyl fluorophosphate (DFP) to screen compounds for efficacy in the termination of SE and elimination of neuronal death. Male rats were implanted for electroencephalogram (EEG) recordings 7 days prior to experimentation. Rats were then exposed to DFP, and SE was induced for 60 minutes and then treated with midazolam (MDZ) plus one of three antiseizure drugs (ASDs)-phenobarbital (PHB), memantine (MEM), or dexmedetomidine (DMT)-in conjunction with antidotes. EEG was recorded for 24 hours, and brains were stained with Fluoro-Jade B for quantification of degenerating neurons. We found that PHB + MDZ induced a prolonged suppression of SE and reduced neuronal death. MEM + MDZ treatment exacerbated SE and increased mortality; however, surviving rats had fewer degenerating neurons. DMT + MDZ significantly suppressed SE with only a minimal reduction in neuronal death. These data demonstrate that delayed treatment of OP-induced SE with other ASDs, when added to MDZ, can achieve greater seizure suppression with additional reduction in degenerating neurons throughout the brain compared with MDZ alone. The effect of a drug on the severity of seizure activity did not necessarily determine the drug's effect on neuronal death under these conditions. SIGNIFICANCE STATEMENT: This study assesses the relative effectiveness of three different delayed-treatment regimens for the control of organophosphate-induced status epilepticus and reduction of subsequent neuronal death. The data demonstrate the potential for highly effective therapies despite significant treatment delay and a potential disconnect between seizure severity and neuronal death.
Collapse
Affiliation(s)
- Jay Spampanato
- Department of Neurosurgery, University of Utah School of Medicine, Salt Lake City, Utah
| | - Steven L Bealer
- Department of Neurosurgery, University of Utah School of Medicine, Salt Lake City, Utah
| | - Melissa Smolik
- Department of Neurosurgery, University of Utah School of Medicine, Salt Lake City, Utah
| | - F Edward Dudek
- Department of Neurosurgery, University of Utah School of Medicine, Salt Lake City, Utah
| |
Collapse
|
18
|
Gelfuso EA, Reis SL, Pereira AMS, Aguiar DSR, Beleboni RO. Neuroprotective effects and improvement of learning and memory elicited by erythravine and 11α-hydroxy-erythravine against the pilocarpine model of epilepsy. Life Sci 2020; 240:117072. [PMID: 31751584 DOI: 10.1016/j.lfs.2019.117072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 12/19/2022]
Abstract
Deficits in cognitive functions are often observed in epileptic patients, particularly in temporal lobe epilepsy (TLE). Evidence suggests that this cognitive decline can be associated with the occurrence of focal brain lesions, especially on hippocampus and cortex regions. We previously demonstrated that the erythrinian alkaloids, (+)-erythravine and (+)-11α-hydroxy-erythravine, inhibit seizures evoked in rats by different chemoconvulsants. AIMS The current study evaluated if these alkaloids would be acting in a neuroprotective way, reducing hippocampal sclerosis, and consequently, improving learning/memory performance. MAIN METHODS Here we confirmed the anticonvulsant effect of both alkaloids by means of the pilocarpine seizure-induced model and also showed that they enhanced spatial learning of rats submitted to the Morris Water Maze test reverting the cognition deficit. Additionally, immunohistochemistry assays showed that neuronal death and glial activation were prevented by the alkaloids in the hippocampus CA1, CA3 and dentate gyrus regions at both hemispheres indistinctly 15 days after status epilepticus induction. KEY FINDINGS Our results show, for the first-time, the improvement on memory/learning elicited by these erythrinian alkaloids. Furthermore, data presented herein explain, at least partially, the cellular mechanism of action of these alkaloids. Together, (+)-erythravine and (+)-11α-hydroxy-erythravine seem to be a promising protective strategy against TLE, comprising three main aspects: neuroprotection, control of epileptic seizures and cognitive improvement. SIGNIFICANCE Moreover, our findings on neuroprotection corroborate the view that seizure frequency and severity, hippocampal lesions and memory deficits are interconnected events.
Collapse
Affiliation(s)
- Erica Aparecida Gelfuso
- Department of Biotechnology, University of Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil
| | - Suelen Lorenzato Reis
- Department of Biotechnology, University of Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil
| | | | | | - Renê Oliveira Beleboni
- Department of Biotechnology, University of Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil; School of Medicine, University of Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
19
|
Status Epilepticus Increases Cell Proliferation and Neurogenesis in the Developing Rat Cerebellum. THE CEREBELLUM 2019; 19:48-57. [PMID: 31656012 DOI: 10.1007/s12311-019-01078-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Status epilepticus (SE) promotes neuronal proliferation and differentiation in the adult and developing rodent hippocampus. However, the effect of SE on other neurogenic brain regions such as the cerebellum has been less explored. To determine whether SE induced by pentylentetrazole (PTZ-SE) and lithium-pilocarpine (Li-Pilo-SE) increases cell proliferation and neurogenesis in the developing rat cerebellum. SE was induced in 14-day-old (P14) Wistar rat pups (both sexes). One hour after SE and the following day rats were injected intraperitoneally with 5-bromo-2'-deoxyuridine (BrdU, 50 mg/kg). Seven days after SE, immunohistochemistry was performed to detect BrdU-positive (BrdU+) cells or BrdU/NeuN+ cells in the cerebellar vermis. SE induced by PTZ or Li-Pilo statistically significant increased the number of cerebellar BrdU+ cells when compared with the control group (58% and 40%, respectively); maximal cell proliferation occurred in lobules II, III, VIb, VIc, VIII, IXa, and IXb of PTZ-SE group and II, V, VIc, VII, and X of Li-Pilo-SE group. An increased number of BrdU/NeuN+ cells was detected in lobules V (17 ± 1.9), VIc (25.8 ± 2.7), and VII (26.2 ± 3.4) after Li-Pilo-SE compared to their control group (9.8 ± 1.7, 12.8 ± 2.8, and 11 ± 1.7, respectively), while the number of BrdU/NeuN+ cells remained the same after PTZ-induced SE or control conditions. SE induced in the developing rat by different experimental models increases cell proliferation in the granular layer of the cerebellar vermis, but only SE of limbic seizures increases neurogenesis in specific cerebellar lobes.
Collapse
|
20
|
Lumley L, Miller D, Muse WT, Marrero‐Rosado B, de Araujo Furtado M, Stone M, McGuire J, Whalley C. Neurosteroid and benzodiazepine combination therapy reduces status epilepticus and long-term effects of whole-body sarin exposure in rats. Epilepsia Open 2019; 4:382-396. [PMID: 31440720 PMCID: PMC6698686 DOI: 10.1002/epi4.12344] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 04/26/2019] [Accepted: 05/19/2019] [Indexed: 01/04/2023] Open
Abstract
OBJECTIVE Our objective was to evaluate the protective efficacy of the neurosteroid pregnanolone (3α-hydroxy-5β pregnan-20-one), a GABAA receptor-positive allosteric modulator, as an adjunct to benzodiazepine therapy against the chemical warfare nerve agent (CWNA) sarin (GB), using whole-body exposure, an operationally relevant route of exposure to volatile GB. METHODS Rats implanted with telemetry transmitters for the continuous measurement of cortical electroencephalographic (EEG) activity were exposed for 60 minutes to 3.0 LCt50 of GB via whole-body exposure. At the onset of toxic signs, rats were administered an intramuscular injection of atropine sulfate (2 mg/kg) and the oxime HI-6 (93.6 mg/kg) to increase survival rate and, 30 minutes after seizure onset, treated subcutaneously with diazepam (10 mg/kg) and intravenously with pregnanolone (4 mg/kg) or vehicle. Animals were evaluated for GB-induced status epilepticus (SE), spontaneous recurrent seizures (SRS), impairment in spatial memory acquisition, and brain pathology, and treatment groups were compared. RESULTS Delayed dual therapy with pregnanolone and diazepam reduced time in SE in GB-exposed rats compared to those treated with delayed diazepam monotherapy. The combination therapy of pregnanolone with diazepam also prevented impairment in the Morris water maze and reduced the neuronal loss and neuronal degeneration, evaluated at one and three months after exposure. SIGNIFICANCE Neurosteroid administration as an adjunct to benzodiazepine therapy offers an effective means to treat benzodiazepine-refractory SE, such as occurs following delayed treatment of GB exposure. This study is the first to present data on the efficacy of delayed pregnanolone and diazepam dual therapy in reducing seizure activity, performance deficits and brain pathology following an operationally relevant route of exposure to GB and supports the use of a neurosteroid as an adjunct to standard anticonvulsant therapy for the treatment of CWNA-induced SE.
Collapse
Affiliation(s)
- Lucille Lumley
- US Army Medical Research Institute of Chemical DefenseAberdeen Proving GroundMaryland
| | - Dennis Miller
- US Army Combat Capabilities Development Command Chemical Biological CenterAberdeen Proving GroundMaryland
| | - William T. Muse
- US Army Combat Capabilities Development Command Chemical Biological CenterAberdeen Proving GroundMaryland
| | - Brenda Marrero‐Rosado
- US Army Medical Research Institute of Chemical DefenseAberdeen Proving GroundMaryland
| | | | - Michael Stone
- US Army Medical Research Institute of Chemical DefenseAberdeen Proving GroundMaryland
| | - Jeffrey McGuire
- US Army Combat Capabilities Development Command Chemical Biological CenterAberdeen Proving GroundMaryland
| | - Christopher Whalley
- US Army Combat Capabilities Development Command Chemical Biological CenterAberdeen Proving GroundMaryland
| |
Collapse
|
21
|
The Reactive Plasticity of Hippocampal Ionotropic Glutamate Receptors in Animal Epilepsies. Int J Mol Sci 2019; 20:ijms20051030. [PMID: 30818767 PMCID: PMC6429472 DOI: 10.3390/ijms20051030] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/18/2019] [Accepted: 02/22/2019] [Indexed: 12/21/2022] Open
Abstract
Ionotropic glutamate receptors (iGluRs) mediate the synaptic and metabolic actions of glutamate. These iGluRs are classified within the α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)-type, kainate-type, and N-methyl-d-aspartate (NMDA)-type functional receptor families. The iGluR assemblies are regulated by transcription, alternative splicing, and cytoplasmic post-translational modifications. The iGluR subunit proteins are transported from the endoplasmic reticulum, inserted into the synaptic membranes, and anchored at their action site by different scaffolding and interacting proteins. The functional properties of iGluRs depend on their subunit composition, the amino acid sequence of the protein domains, and the scaffolding proteins in the synaptic membranes. The iGluRs are removed from the membranes by enzymatic action and endocytosis. Hippocampal iGluRs are rearranged through the upregulation and downregulation of the subunits following deafferentation and epileptic seizures. The rearrangement of iGluRs and the alteration of their subunit composition transform neurons into “pathological” cells, determining the further plasticity or pathology of the hippocampal formation. In the present review, we summarize the expression of AMPA, kainate, and NMDA receptor subunits following deafferentation, repeated mild seizures, and status epilepticus. We compare our results to literature descriptions, and draw conclusions as to the reactive plasticity of iGluRs in the hippocampus.
Collapse
|
22
|
Aroniadou-Anderjaska V, Figueiredo TH, Apland JP, Braga MF. Targeting the glutamatergic system to counteract organophosphate poisoning: A novel therapeutic strategy. Neurobiol Dis 2019; 133:104406. [PMID: 30798006 DOI: 10.1016/j.nbd.2019.02.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 01/23/2019] [Accepted: 02/20/2019] [Indexed: 12/15/2022] Open
Abstract
One of the devastating effects of acute exposure to organophosphates, like nerve agents, is the induction of severe and prolonged status epilepticus (SE), which can cause death, or brain damage if death is prevented. Seizures after exposure are initiated by muscarinic receptor hyperstimulation-after inhibition of acetylcholinesterase by the organophosphorus agent and subsequent elevation of acetylcholine-but they are reinforced and sustained by glutamatergic hyperexcitation, which is the primary cause of brain damage. Diazepam is the FDA-approved anticonvulsant for the treatment of nerve agent-induced SE, and its replacement by midazolam is currently under consideration. However, clinical data derived from the treatment of SE of any etiology, as well as studies on the control of nerve agent-induced SE in animal models, have indicated that diazepam and midazolam control seizures only temporarily, their antiseizure efficacy is reduced as the latency of treatment from the onset of SE increases, and their neuroprotective efficacy is limited or absent. Here, we review data on the discovery of a novel anticonvulsant and neuroprotectant, LY293558, an AMPA/GluK1 receptor antagonist. Treatment of soman-exposed immature, young-adult, and aged rats with LY293558, terminates SE with limited recurrence of seizures, significantly protects from brain damage, and prevents long-term behavioral deficits, even when LY293558 is administered 1 h post-exposure. More beneficial effects and complete neuroprotection is obtained when LY293558 administration is combined with caramiphen, which antagonizes NMDA receptors. Further efficacy studies may bring the LY293558 + caramiphen combination therapy on the pathway to approval for human use.
Collapse
Affiliation(s)
- Vassiliki Aroniadou-Anderjaska
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, United States of America; Department of Psychiatry, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, United States of America.
| | - Taiza H Figueiredo
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, United States of America.
| | - James P Apland
- Neuroscience Program, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD 21010, United States of America.
| | - Maria F Braga
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, United States of America; Department of Psychiatry, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, United States of America.
| |
Collapse
|
23
|
Contreras-García IJ, Pichardo-Macías LA, Santana-Gómez CE, Sánchez-Huerta K, Ramírez-Hernández R, Gómez-González B, Rocha L, Mendoza Torreblanca JG. Differential expression of synaptic vesicle protein 2A after status epilepticus and during epilepsy in a lithium-pilocarpine model. Epilepsy Behav 2018; 88:283-294. [PMID: 30336420 DOI: 10.1016/j.yebeh.2018.08.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 07/04/2018] [Accepted: 08/17/2018] [Indexed: 11/25/2022]
Abstract
Synaptic vesicle protein 2A (SV2A) has become an attractive target of investigation because of its role in the pathophysiology of epilepsy; SV2A is expressed ubiquitously throughout the brain in all nerve terminals independently of their neurotransmitter content and plays an important but poorly defined role in neurotransmission. Previous studies have shown that modifications in the SV2A protein expression could be a direct consequence of disease severity. Furthermore, these SV2A modifications may depend on specific changes in the nerve tissue following the induction of epilepsy and might be present in both excitatory and inhibitory terminals. Thus, we evaluated SV2A protein expression throughout the hippocampi of lithium-pilocarpine rats after status epilepticus (SE) and during early and late epilepsy. In addition, we determined the γ-aminobutyric acid (GABA)ergic or glutamatergic nature associated with SV2A modifications. Wistar rats were treated with lithium-pilocarpine to induce SE and subsequently were shown to present spontaneous recurrent seizures (SRS). Later, we conducted an exhaustive semi-quantitative analysis of SV2A optical density (OD) throughout the hippocampus by immunohistochemistry. Levels of the SV2A protein were substantially increased in layers formed by principal neurons after SE, mainly because of GABAergic activity. No changes were observed in the early stage of epilepsy. In the late stage of epilepsy, there were minor changes in SV2A OD compared with the robust modifications of SE; however, SV2A protein expression generally showed an increment reaching significant differences in two dendritic layers and hilus, without clear modifications of GABAergic or glutamatergic systems. Our results suggest that the SV2A variations may depend on several factors, such as neuronal activity, and might appear in both excitatory and inhibitory systems depending on the epilepsy stage.
Collapse
Affiliation(s)
- Itzel Jatziri Contreras-García
- Instituto Nacional de Pediatría, Subdirección de Medicina experimental, Laboratorio de Neurociencias, México; Posgrado en Biología Experimental, Universidad Autónoma Metropolitana, Unidad Iztapalapa, México
| | - Luz Adriana Pichardo-Macías
- Instituto Nacional de Pediatría, Subdirección de Medicina experimental, Laboratorio de Neurociencias, México; Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Departamento de Fisiología, México
| | - César Emmanuel Santana-Gómez
- Centro de Investigación y de Estudios Avanzados, del Instituto Politécnico Nacional, Sede Sur México, Departamento de Farmacobiología
| | - Karla Sánchez-Huerta
- Instituto Nacional de Pediatría, Subdirección de Medicina experimental, Laboratorio de Neurociencias, México
| | - Rogelio Ramírez-Hernández
- Instituto Nacional de Pediatría, Subdirección de Medicina experimental, Laboratorio de Neurociencias, México
| | | | - Luisa Rocha
- Centro de Investigación y de Estudios Avanzados, del Instituto Politécnico Nacional, Sede Sur México, Departamento de Farmacobiología
| | | |
Collapse
|
24
|
Marawar R, Basha M, Mahulikar A, Desai A, Suchdev K, Shah A. Updates in Refractory Status Epilepticus. Crit Care Res Pract 2018; 2018:9768949. [PMID: 29854452 PMCID: PMC5964484 DOI: 10.1155/2018/9768949] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/19/2018] [Indexed: 01/01/2023] Open
Abstract
Refractory status epilepticus is defined as persistent seizures despite appropriate use of two intravenous medications, one of which is a benzodiazepine. It can be seen in up to 40% of cases of status epilepticus with an acute symptomatic etiology as the most likely cause. New-onset refractory status epilepticus (NORSE) is a recently coined term for refractory status epilepticus where no apparent cause is found after initial testing. A large proportion of NORSE cases are eventually found to have an autoimmune etiology needing immunomodulatory treatment. Management of refractory status epilepticus involves treatment of an underlying etiology in addition to intravenous anesthetics and antiepileptic drugs. Alternative treatment options including diet therapies, electroconvulsive therapy, and surgical resection in case of a focal lesion should be considered. Short-term and long-term outcomes tend to be poor with significant morbidity and mortality with only one-third of patients reaching baseline neurological status.
Collapse
Affiliation(s)
- Rohit Marawar
- Department of Neurology, Detroit Medical Center and Wayne State University, Detroit, MI 48201, USA
| | - Maysaa Basha
- Department of Neurology, Detroit Medical Center and Wayne State University, Detroit, MI 48201, USA
| | - Advait Mahulikar
- Department of Neurology, Detroit Medical Center and Wayne State University, Detroit, MI 48201, USA
| | - Aaron Desai
- Department of Neurology, Detroit Medical Center and Wayne State University, Detroit, MI 48201, USA
| | - Kushak Suchdev
- Department of Neurology, Detroit Medical Center and Wayne State University, Detroit, MI 48201, USA
| | - Aashit Shah
- Department of Neurology, Detroit Medical Center and Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
25
|
Apland JP, Aroniadou-Anderjaska V, Figueiredo TH, Pidoplichko VI, Rossetti K, Braga MFM. Comparing the Antiseizure and Neuroprotective Efficacy of LY293558, Diazepam, Caramiphen, and LY293558-Caramiphen Combination against Soman in a Rat Model Relevant to the Pediatric Population. J Pharmacol Exp Ther 2018; 365:314-326. [PMID: 29467308 PMCID: PMC5878669 DOI: 10.1124/jpet.117.245969] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 02/08/2018] [Indexed: 12/13/2022] Open
Abstract
The currently Food and Drug Administration-approved anticonvulsant for the treatment of status epilepticus (SE) induced by nerve agents is the benzodiazepine diazepam; however, diazepam does not appear to offer neuroprotective benefits. This is of particular concern with respect to the protection of children because, in the developing brain, synaptic transmission mediated via GABAA receptors, the target of diazepam, is weak. In the present study, we exposed 21-day-old male rats to 1.2 × LD50 soman and compared the antiseizure, antilethality, and neuroprotective efficacy of diazepam (10 mg/kg), LY293558 (an AMPA/GluK1 receptor antagonist; 15 mg/kg), caramiphen (CRM, an antimuscarinic with NMDA receptor-antagonistic properties; 50 mg/kg), and LY293558 (15 mg/kg) + CRM (50 mg/kg), administered 1 hour after exposure. Diazepam, LY293558, and LY293558 + CRM, but not CRM alone, terminated SE; LY293558 + CRM treatment acted significantly faster and produced a survival rate greater than 85%. Thirty days after soman exposure, neurodegeneration in limbic regions was most severe in the CRM-treated group, minimal to severe-depending on the region-in the diazepam group, absent to moderate in the LY293558-treated group, and totally absent in the LY293558 + CRM group. Amygdala and hippocampal atrophy, a severe reduction in spontaneous inhibitory activity in the basolateral amygdala, and increased anxiety-like behavior in the open-field and acoustic startle response tests were present in the diazepam and CRM groups, whereas the LY293558 and LY293558 + CRM groups did not differ from controls. The combined administration of LY293558 and CRM, by blocking mainly AMPA, GluK1, and NMDA receptors, is a very effective anticonvulsant and neuroprotective therapy against soman in young rats.
Collapse
Affiliation(s)
- James P Apland
- Neuroscience Branch, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland (J.P.A.); and Departments of Anatomy, Physiology, and Genetics (V.A.-A., T.H.F., V.I.P., K.R., M.F.M.B.) and Psychiatry (V.A.-A., M.F.M.B.), F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Vassiliki Aroniadou-Anderjaska
- Neuroscience Branch, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland (J.P.A.); and Departments of Anatomy, Physiology, and Genetics (V.A.-A., T.H.F., V.I.P., K.R., M.F.M.B.) and Psychiatry (V.A.-A., M.F.M.B.), F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Taiza H Figueiredo
- Neuroscience Branch, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland (J.P.A.); and Departments of Anatomy, Physiology, and Genetics (V.A.-A., T.H.F., V.I.P., K.R., M.F.M.B.) and Psychiatry (V.A.-A., M.F.M.B.), F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Volodymyr I Pidoplichko
- Neuroscience Branch, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland (J.P.A.); and Departments of Anatomy, Physiology, and Genetics (V.A.-A., T.H.F., V.I.P., K.R., M.F.M.B.) and Psychiatry (V.A.-A., M.F.M.B.), F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Katia Rossetti
- Neuroscience Branch, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland (J.P.A.); and Departments of Anatomy, Physiology, and Genetics (V.A.-A., T.H.F., V.I.P., K.R., M.F.M.B.) and Psychiatry (V.A.-A., M.F.M.B.), F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Maria F M Braga
- Neuroscience Branch, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland (J.P.A.); and Departments of Anatomy, Physiology, and Genetics (V.A.-A., T.H.F., V.I.P., K.R., M.F.M.B.) and Psychiatry (V.A.-A., M.F.M.B.), F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| |
Collapse
|
26
|
Myhrer T, Mariussen E, Aas P. Development of neuropathology following soman poisoning and medical countermeasures. Neurotoxicology 2018; 65:144-165. [DOI: 10.1016/j.neuro.2018.02.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 02/12/2018] [Accepted: 02/14/2018] [Indexed: 01/12/2023]
|
27
|
Abbasova K, Kubová H, Mareš P. Does status epilepticus modify the effect of ifenprodil on cortical epileptic afterdischarges in immature rats? Pharmacol Rep 2018; 70:126-132. [PMID: 29355816 DOI: 10.1016/j.pharep.2017.08.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 07/26/2017] [Accepted: 08/23/2017] [Indexed: 10/19/2022]
Abstract
BACKGROUND Ifenprodil as a specific antagonist of NMDA receptors containing a dominant NR2B subunit exhibits age-dependent anticonvulsant action. Possible changes of this action due to status epilepticus (SE) elicited at early stage of development were studied using cortical epileptic afterdischarges (ADs) as a model. METHODS Lithium-pilocarpine SE was induced at postnatal day 12 and effects of ifenprodil were studied 3, 6, 9, and 13 days after SE in rat pups with implanted epidural electrodes. Controls (LiPAR) received saline instead of pilocarpine. ADs were elicited by low frequency stimulation of sensorimotor cortex. Intensity of stimulation current increased in 18 steps from 0.2 to 15 mA. Ifenprodil (20 mg/kg) was administered intraperitoneally (ip) after the stimulation with 3.5-mA current. Threshold for four different phenomena as well as duration of ADs were evaluated. RESULTS The threshold for the transition into the limbic type of ADs was higher in 15-day-old SE rats than in LiPAR controls. Opposite difference was found in 18-day-old animals, older rats did not exhibit any difference. Isolated significant changes in total duration of ADs were found after high stimulation intensities. These changes appeared in 18-day-old rats where ADs were shorter in SE than in control LiPAR rats. CONCLUSIONS Changes in ifenprodil action were found only in the first week after SE but not in the second week. Interpretation of the results is complicated by failure of significant differences between SE and LiPAR rats probably due to a high dose of paraldehyde.
Collapse
Affiliation(s)
- Kenul Abbasova
- Department of Developmental Epileptology, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic; Faculty of Biology, Moscow State University, Moscow, Russia
| | - Hana Kubová
- Department of Developmental Epileptology, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Pavel Mareš
- Department of Developmental Epileptology, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| |
Collapse
|
28
|
Status epilepticus alters hippocampal long-term synaptic potentiation in a rat lithium-pilocarpine model. Neuroreport 2018; 27:1191-5. [PMID: 27495218 DOI: 10.1097/wnr.0000000000000656] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Seizure-induced memory deficits are frequent in patients with temporal lobe epilepsy. However, the neural mechanisms responsible for this memory impairment are not entirely clear. Persistent changes in synaptic efficacy, long-term potentiation (LTP), and depression are considered a cellular substrate underlying the learning and memory processes. Using a lithium-pilocarpine model to induce status epilepticus (SE) in rats, the present study investigated whether the induction of LTP was altered in hippocampal slices obtained 3 h, 1, 3, and 7 days after SE. One week after SE, LTP induction was decreased in hippocampal slices. The reduced plasticity in post-SE tissue was attributable to N-methyl-D-aspartate receptor-dependent LTP. In contrast to control tissue, ifenprodil, a GluN2B-selective antagonist, did not reduce the LTP level in post-SE tissue, suggesting that SE disturbs the functional properties of GluN2B-containing N-methyl-D-aspartate receptors. These changes in synaptic transmission may contribute toward the genesis of epilepsy and seizure-associated memory deficits.
Collapse
|
29
|
Cho YJ, Kim H, Kim WJ, Chung S, Kim YH, Cho I, Lee BI, Heo K. Trafficking patterns of NMDA and GABA A receptors in a Mg 2+-free cultured hippocampal neuron model of status epilepticus. Epilepsy Res 2017; 136:143-148. [PMID: 28858777 DOI: 10.1016/j.eplepsyres.2017.08.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 07/01/2017] [Accepted: 08/12/2017] [Indexed: 11/27/2022]
Abstract
An altered pattern of receptor trafficking is one of the pathophysiologic mechanisms of status epilepticus (SE). The gradual internalization of GABAA receptors (GABARs) occurs in both in vitro and in vivo models of SE and is thought to be a cause of decreased GABAergic inhibition. Unlike GABARs, little is known about alterations in NMDA receptor (NMDAR) trafficking during SE, even though increased activity of NMDARs is indispensable for the induction and maintenance of SE. Therefore, we aimed to simultaneously investigate the changes in the trafficking patterns of GABARs and NMDARs in an in vitro cultured hippocampal neuron model of SE. For induction of epileptiform discharges, hippocampal neurons were exposed to external medium without Mg2+. Biotinylation assay and immunofluorescence staining for GABAR β2,3 and NMDAR NR1 subunits were performed to quantify and visualize surface GABARs and NMDARs, respectively. The frequency of spontaneous action potentials increased more than 4-fold after Mg2+-free induction. The level of surface GABARs decreased over time after Mg2+-free induction, dropping to approximately 50% of control levels an hour after Mg2+-free induction. By contrast, the trafficking of NMDARs to the surface was enhanced after a slight time lag, increasing by 30% of control levels an hour after Mg2+-free induction. Our data showed the changes of both NMDAR and GABAR trafficking during prolonged SE induced by a Mg2+-free extracellular environment and confirmed that this in vitro SE model is suitable for examining alterations in the receptor trafficking pattern by prolonged seizure activity. These results suggest that targeting of surface NMDAR could be a promising method in controlling benzodiazepine-resistant SE.
Collapse
Affiliation(s)
- Yang-Je Cho
- Department of Neurology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Hyunjeong Kim
- Department of Neurology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Won-Joo Kim
- Department of Neurology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Seungsoo Chung
- Department of Physiology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Young-Hwan Kim
- Department of Physiology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Inja Cho
- Department of Neurology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea; Brain Korea 21 Plus Project for Medical Science, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Byung In Lee
- Department of Neurology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea; Department of Neurology, Inje University Haeundae Paik Hospital, 875 Haeun-daero, Haeundae-gu, Busan 48108, Republic of Korea
| | - Kyoung Heo
- Department of Neurology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
| |
Collapse
|
30
|
Intranasal MSC-derived A1-exosomes ease inflammation, and prevent abnormal neurogenesis and memory dysfunction after status epilepticus. Proc Natl Acad Sci U S A 2017; 114:E3536-E3545. [PMID: 28396435 DOI: 10.1073/pnas.1703920114] [Citation(s) in RCA: 280] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Status epilepticus (SE), a medical emergency that is typically terminated through antiepileptic drug treatment, leads to hippocampus dysfunction typified by neurodegeneration, inflammation, altered neurogenesis, as well as cognitive and memory deficits. Here, we examined the effects of intranasal (IN) administration of extracellular vesicles (EVs) secreted from human bone marrow-derived mesenchymal stem cells (MSCs) on SE-induced adverse changes. The EVs used in this study are referred to as A1-exosomes because of their robust antiinflammatory properties. We subjected young mice to pilocarpine-induced SE for 2 h and then administered A1-exosomes or vehicle IN twice over 24 h. The A1-exosomes reached the hippocampus within 6 h of administration, and animals receiving them exhibited diminished loss of glutamatergic and GABAergic neurons and greatly reduced inflammation in the hippocampus. Moreover, the neuroprotective and antiinflammatory effects of A1-exosomes were coupled with long-term preservation of normal hippocampal neurogenesis and cognitive and memory function, in contrast to waned and abnormal neurogenesis, persistent inflammation, and functional deficits in animals receiving vehicle. These results provide evidence that IN administration of A1-exosomes is efficient for minimizing the adverse effects of SE in the hippocampus and preventing SE-induced cognitive and memory impairments.
Collapse
|
31
|
Postnikova TY, Zubareva OE, Kovalenko AA, Kim KK, Magazanik LG, Zaitsev AV. Status epilepticus impairs synaptic plasticity in rat hippocampus and is followed by changes in expression of NMDA receptors. BIOCHEMISTRY (MOSCOW) 2017; 82:282-290. [DOI: 10.1134/s0006297917030063] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
32
|
Cota VR, Drabowski BMB, de Oliveira JC, Moraes MFD. The epileptic amygdala: Toward the development of a neural prosthesis by temporally coded electrical stimulation. J Neurosci Res 2017; 94:463-85. [PMID: 27091311 DOI: 10.1002/jnr.23741] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 03/09/2016] [Accepted: 03/09/2016] [Indexed: 02/06/2023]
Abstract
Many patients with epilepsy do not obtain proper control of their seizures through conventional treatment. We review aspects of the pathophysiology underlying epileptic phenomena, with a special interest in the role of the amygdala, stressing the importance of hypersynchronism in both ictogenesis and epileptogenesis. We then review experimental studies on electrical stimulation of mesiotemporal epileptogenic areas, the amygdala included, as a means to treat medically refractory epilepsy. Regular high-frequency stimulation (HFS) commonly has anticonvulsant effects and sparse antiepileptogenic properties. On the other hand, HFS is related to acute and long-term increases in excitability related to direct neuronal activation, long-term potentiation, and kindling, raising concerns regarding its safety and jeopardizing in-depth understanding of its mechanisms. In turn, the safer regular low-frequency stimulation (LFS) has a robust antiepileptogenic effect, but its pro- or anticonvulsant effect seems to vary at random among studies. As an alternative, studies by our group on the development and investigation of temporally unstructured electrical stimulation applied to the amygdala have shown that nonperiodic stimulation (NPS), which is a nonstandard form of LFS, is capable of suppressing both acute and chronic spontaneous seizures. We hypothesize two noncompetitive mechanisms for the therapeutic role of amygdala in NPS, 1) a direct desynchronization of epileptic circuitry in the forebrain and brainstem and 2) an indirect desynchronization/inhibition through nucleus accumbens activation. We conclude by reintroducing the idea that hypersynchronism, rather than hyperexcitability, may be the key for epileptic phenomena and epilepsy treatment.
Collapse
Affiliation(s)
- Vinícius Rosa Cota
- Laboratório Interdisciplinar de Neuroengenharia e Neurociências, Departamento de Engenharia Elétrica (DEPEL), Universidade Federal de São João Del-Rei, São João Del-Rei, Minas Gerais, Brazil
| | - Bruna Marcela Bacellar Drabowski
- Laboratório Interdisciplinar de Neuroengenharia e Neurociências, Departamento de Engenharia Elétrica (DEPEL), Universidade Federal de São João Del-Rei, São João Del-Rei, Minas Gerais, Brazil
| | - Jasiara Carla de Oliveira
- Laboratório Interdisciplinar de Neuroengenharia e Neurociências, Departamento de Engenharia Elétrica (DEPEL), Universidade Federal de São João Del-Rei, São João Del-Rei, Minas Gerais, Brazil
| | - Márcio Flávio Dutra Moraes
- Núcleo de Neurociências, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
33
|
Pilocarpine-Induced Status Epilepticus Is Associated with Changes in the Actin-Modulating Protein Synaptopodin and Alterations in Long-Term Potentiation in the Mouse Hippocampus. Neural Plast 2017; 2017:2652560. [PMID: 28154762 PMCID: PMC5244022 DOI: 10.1155/2017/2652560] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/12/2016] [Accepted: 10/13/2016] [Indexed: 12/28/2022] Open
Abstract
Epilepsy is a complex neurological disorder which can severely affect neuronal function. Some patients may experience status epilepticus, a life-threatening state of ongoing seizure activity associated with postictal cognitive dysfunction. However, the molecular mechanisms by which status epilepticus influences brain function beyond seizure activity remain not well understood. Here, we addressed the question of whether pilocarpine-induced status epilepticus affects synaptopodin (SP), an actin-binding protein, which regulates the ability of neurons to express synaptic plasticity. This makes SP an interesting marker for epilepsy-associated alterations in synaptic function. Indeed, single dose intraperitoneal pilocarpine injection (250 mg/kg) in three-month-old male C57BL/6J mice leads to a rapid reduction in hippocampal SP-cluster sizes and numbers (in CA1 stratum radiatum of the dorsal hippocampus; 90 min after injection). In line with this observation (and previous work using SP-deficient mice), a defect in the ability to induce long-term potentiation (LTP) of Schaffer collateral-CA1 synapses is observed. Based on these findings we propose that status epilepticus could exert its aftereffects on cognition at least in part by perturbing SP-dependent mechanisms of synaptic plasticity.
Collapse
|
34
|
Mechanisms of Excessive Extracellular Glutamate Accumulation in Temporal Lobe Epilepsy. Neurochem Res 2016; 42:1724-1734. [DOI: 10.1007/s11064-016-2105-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 11/08/2016] [Accepted: 11/09/2016] [Indexed: 12/17/2022]
|
35
|
Anticonvulsant activity of the antidepressant drug, tianeptine, against pentylenetetrazole-induced seizures mitigates cognitive impairment in rats. Behav Pharmacol 2016; 27:623-32. [DOI: 10.1097/fbp.0000000000000257] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
36
|
Kreye J, Wenke NK, Chayka M, Leubner J, Murugan R, Maier N, Jurek B, Ly LT, Brandl D, Rost BR, Stumpf A, Schulz P, Radbruch H, Hauser AE, Pache F, Meisel A, Harms L, Paul F, Dirnagl U, Garner C, Schmitz D, Wardemann H, Prüss H. Human cerebrospinal fluid monoclonal N-methyl-D-aspartate receptor autoantibodies are sufficient for encephalitis pathogenesis. Brain 2016; 139:2641-2652. [PMID: 27543972 DOI: 10.1093/brain/aww208] [Citation(s) in RCA: 176] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Accepted: 07/05/2016] [Indexed: 11/13/2022] Open
Abstract
SEE ZEKERIDOU AND LENNON DOI101093/AWW213 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE: Anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis is a recently discovered autoimmune syndrome associated with psychosis, dyskinesias, and seizures. Little is known about the cerebrospinal fluid autoantibody repertoire. Antibodies against the NR1 subunit of the NMDAR are thought to be pathogenic; however, direct proof is lacking as previous experiments could not distinguish the contribution of further anti-neuronal antibodies. Using single cell cloning of full-length immunoglobulin heavy and light chain genes, we generated a panel of recombinant monoclonal NR1 antibodies from cerebrospinal fluid memory B cells and antibody secreting cells of NMDAR encephalitis patients. Cells typically carried somatically mutated immunoglobulin genes and had undergone class-switching to immunoglobulin G, clonally expanded cells carried identical somatic hypermutation patterns. A fraction of NR1 antibodies were non-mutated, thus resembling 'naturally occurring antibodies' and indicating that tolerance induction against NMDAR was incomplete and somatic hypermutation not essential for functional antibodies. However, only a small percentage of cerebrospinal fluid-derived antibodies reacted against NR1. Instead, nearly all further antibodies bound specifically to diverse brain-expressed epitopes including neuronal surfaces, suggesting that a broad repertoire of antibody-secreting cells enrich in the central nervous system during encephalitis. Our functional data using primary hippocampal neurons indicate that human cerebrospinal fluid-derived monoclonal NR1 antibodies alone are sufficient to cause neuronal surface receptor downregulation and subsequent impairment of NMDAR-mediated currents, thus providing ultimate proof of antibody pathogenicity. The observed formation of immunological memory might be relevant for clinical relapses.
Collapse
Affiliation(s)
- Jakob Kreye
- 1German Center for Neurodegenerative Diseases (DZNE) Berlin, Germany 2Department of Neurology and Experimental Neurology, Charité, Universitätsmedizin Berlin, Germany
| | - Nina K Wenke
- 1German Center for Neurodegenerative Diseases (DZNE) Berlin, Germany
| | - Mariya Chayka
- 1German Center for Neurodegenerative Diseases (DZNE) Berlin, Germany
| | - Jonas Leubner
- 1German Center for Neurodegenerative Diseases (DZNE) Berlin, Germany 2Department of Neurology and Experimental Neurology, Charité, Universitätsmedizin Berlin, Germany
| | - Rajagopal Murugan
- 3Max Planck Institute (MPI) for Infection Biology, Berlin, Germany 4German Cancer Research Center (DKFZ), B Cell Immunology, Heidelberg, Germany
| | - Nikolaus Maier
- 5Neuroscience Research Center, Charité, Universitätsmedizin Berlin, Germany
| | - Betty Jurek
- 1German Center for Neurodegenerative Diseases (DZNE) Berlin, Germany
| | - Lam-Thanh Ly
- 1German Center for Neurodegenerative Diseases (DZNE) Berlin, Germany
| | - Doreen Brandl
- 1German Center for Neurodegenerative Diseases (DZNE) Berlin, Germany
| | - Benjamin R Rost
- 1German Center for Neurodegenerative Diseases (DZNE) Berlin, Germany 5Neuroscience Research Center, Charité, Universitätsmedizin Berlin, Germany
| | - Alexander Stumpf
- 5Neuroscience Research Center, Charité, Universitätsmedizin Berlin, Germany
| | - Paulina Schulz
- 1German Center for Neurodegenerative Diseases (DZNE) Berlin, Germany 2Department of Neurology and Experimental Neurology, Charité, Universitätsmedizin Berlin, Germany
| | - Helena Radbruch
- 6German Rheumatism Research Centre Berlin (DRFZ), Germany 7Department of Neuropathology, Charité, Universitätsmedizin Berlin, Germany
| | - Anja E Hauser
- 6German Rheumatism Research Centre Berlin (DRFZ), Germany 8NeuroCure Clinical Research Center, Charité, Universitätsmedizin Berlin, Germany
| | - Florence Pache
- 2Department of Neurology and Experimental Neurology, Charité, Universitätsmedizin Berlin, Germany 6German Rheumatism Research Centre Berlin (DRFZ), Germany 8NeuroCure Clinical Research Center, Charité, Universitätsmedizin Berlin, Germany
| | - Andreas Meisel
- 2Department of Neurology and Experimental Neurology, Charité, Universitätsmedizin Berlin, Germany 8NeuroCure Clinical Research Center, Charité, Universitätsmedizin Berlin, Germany 9Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité Universitätsmedizin Berlin, Germany
| | - Lutz Harms
- 2Department of Neurology and Experimental Neurology, Charité, Universitätsmedizin Berlin, Germany
| | - Friedemann Paul
- 2Department of Neurology and Experimental Neurology, Charité, Universitätsmedizin Berlin, Germany 8NeuroCure Clinical Research Center, Charité, Universitätsmedizin Berlin, Germany 9Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité Universitätsmedizin Berlin, Germany
| | - Ulrich Dirnagl
- 1German Center for Neurodegenerative Diseases (DZNE) Berlin, Germany 2Department of Neurology and Experimental Neurology, Charité, Universitätsmedizin Berlin, Germany 10Center for Stroke Research (CSB) Berlin, Germany
| | - Craig Garner
- 1German Center for Neurodegenerative Diseases (DZNE) Berlin, Germany
| | - Dietmar Schmitz
- 1German Center for Neurodegenerative Diseases (DZNE) Berlin, Germany 5Neuroscience Research Center, Charité, Universitätsmedizin Berlin, Germany 11Einstein Center for Neurosciences Berlin, Germany
| | - Hedda Wardemann
- 3Max Planck Institute (MPI) for Infection Biology, Berlin, Germany 4German Cancer Research Center (DKFZ), B Cell Immunology, Heidelberg, Germany
| | - Harald Prüss
- 1German Center for Neurodegenerative Diseases (DZNE) Berlin, Germany 2Department of Neurology and Experimental Neurology, Charité, Universitätsmedizin Berlin, Germany
| |
Collapse
|
37
|
|
38
|
Abstract
Although the majority of seizures are brief and cause no long-term consequences, a subset is sufficiently prolonged that long-term consequences can result. These very prolonged seizures are termed "status epilepticus" (SE) and are considered a neurological emergency. The clinical presentation of SE can be diverse. SE can occur at any age but most commonly occurs in the very young and the very old. There are numerous studies on SE in animals in which the pathophysiology, medication responses, and pathology can be rigorously studied in a controlled fashion. Human data are consistent with the animal data. In particular, febrile status epilepticus (FSE), a form of SE common in young children, is associated with injury to the hippocampus and subsequent temporal lobe epilepsy (TLE) in both animals and humans.
Collapse
Affiliation(s)
- Syndi Seinfeld
- Virginia Commonwealth University, Richmond, Virginia 23298-0211
| | | | - Shlomo Shinnar
- Comprehensive Epilepsy Management Center, Montefiore Medical Center, Albert Einstein College of Medicine, New York, New York 10467
| |
Collapse
|
39
|
Berdyyeva TK, Frady EP, Nassi JJ, Aluisio L, Cherkas Y, Otte S, Wyatt RM, Dugovic C, Ghosh KK, Schnitzer MJ, Lovenberg T, Bonaventure P. Direct Imaging of Hippocampal Epileptiform Calcium Motifs Following Kainic Acid Administration in Freely Behaving Mice. Front Neurosci 2016; 10:53. [PMID: 26973444 PMCID: PMC4770289 DOI: 10.3389/fnins.2016.00053] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 02/05/2016] [Indexed: 12/24/2022] Open
Abstract
Prolonged exposure to abnormally high calcium concentrations is thought to be a core mechanism underlying hippocampal damage in epileptic patients; however, no prior study has characterized calcium activity during seizures in the live, intact hippocampus. We have directly investigated this possibility by combining whole-brain electroencephalographic (EEG) measurements with microendoscopic calcium imaging of pyramidal cells in the CA1 hippocampal region of freely behaving mice treated with the pro-convulsant kainic acid (KA). We observed that KA administration led to systematic patterns of epileptiform calcium activity: a series of large-scale, intensifying flashes of increased calcium fluorescence concurrent with a cluster of low-amplitude EEG waveforms. This was accompanied by a steady increase in cellular calcium levels (>5 fold increase relative to the baseline), followed by an intense spreading calcium wave characterized by a 218% increase in global mean intensity of calcium fluorescence (n = 8, range [114–349%], p < 10−4; t-test). The wave had no consistent EEG phenotype and occurred before the onset of motor convulsions. Similar changes in calcium activity were also observed in animals treated with 2 different proconvulsant agents, N-methyl-D-aspartate (NMDA) and pentylenetetrazol (PTZ), suggesting the measured changes in calcium dynamics are a signature of seizure activity rather than a KA-specific pathology. Additionally, despite reducing the behavioral severity of KA-induced seizures, the anticonvulsant drug valproate (VA, 300 mg/kg) did not modify the observed abnormalities in calcium dynamics. These results confirm the presence of pathological calcium activity preceding convulsive motor seizures and support calcium as a candidate signaling molecule in a pathway connecting seizures to subsequent cellular damage. Integrating in vivo calcium imaging with traditional assessment of seizures could potentially increase translatability of pharmacological intervention, leading to novel drug screening paradigms and therapeutics designed to target and abolish abnormal patterns of both electrical and calcium excitation.
Collapse
Affiliation(s)
| | - E Paxon Frady
- InscopixPalo Alto, CA, USA; Redwood Center for Theoretical Neuroscience, University of California, BerkeleyBerkeley, CA, USA
| | | | - Leah Aluisio
- Janssen Research & Development, LLC San Diego, CA, USA
| | | | | | - Ryan M Wyatt
- Janssen Research & Development, LLC San Diego, CA, USA
| | | | | | | | | | | |
Collapse
|
40
|
Trinka E, Höfler J, Leitinger M, Rohracher A, Kalss G, Brigo F. Pharmacologic treatment of status epilepticus. Expert Opin Pharmacother 2016; 17:513-34. [DOI: 10.1517/14656566.2016.1127354] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
41
|
Lee K, Goodman L, Fourie C, Schenk S, Leitch B, Montgomery JM. AMPA Receptors as Therapeutic Targets for Neurological Disorders. ION CHANNELS AS THERAPEUTIC TARGETS, PART A 2016; 103:203-61. [DOI: 10.1016/bs.apcsb.2015.10.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
42
|
Mishra V, Shuai B, Kodali M, Shetty GA, Hattiangady B, Rao X, Shetty AK. Resveratrol Treatment after Status Epilepticus Restrains Neurodegeneration and Abnormal Neurogenesis with Suppression of Oxidative Stress and Inflammation. Sci Rep 2015; 5:17807. [PMID: 26639668 PMCID: PMC4671086 DOI: 10.1038/srep17807] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 11/06/2015] [Indexed: 12/18/2022] Open
Abstract
Antiepileptic drug therapy, though beneficial for restraining seizures, cannot thwart status epilepticus (SE) induced neurodegeneration or down-stream detrimental changes. We investigated the efficacy of resveratrol (RESV) for preventing SE-induced neurodegeneration, abnormal neurogenesis, oxidative stress and inflammation in the hippocampus. We induced SE in young rats and treated with either vehicle or RESV, commencing an hour after SE induction and continuing every hour for three-hours on SE day and twice daily thereafter for 3 days. Seizures were terminated in both groups two-hours after SE with a diazepam injection. In contrast to the vehicle-treated group, the hippocampus of animals receiving RESV during and after SE presented no loss of glutamatergic neurons in hippocampal cell layers, diminished loss of inhibitory interneurons expressing parvalbumin, somatostatin and neuropeptide Y in the dentate gyrus, reduced aberrant neurogenesis with preservation of reelin + interneurons, lowered concentration of oxidative stress byproduct malondialdehyde and pro-inflammatory cytokine tumor necrosis factor-alpha, normalized expression of oxidative stress responsive genes and diminished numbers of activated microglia. Thus, 4 days of RESV treatment after SE is efficacious for thwarting glutamatergic neuron degeneration, alleviating interneuron loss and abnormal neurogenesis, and suppressing oxidative stress and inflammation. These results have implications for restraining SE-induced chronic temporal lobe epilepsy.
Collapse
Affiliation(s)
- Vikas Mishra
- Institute for Regenerative Medicine, Texas A & M Health Science Center College of Medicine at Scott & White, Temple, Texas, USA
- Research Service, Olin E. Teague Veterans’ Affairs Medical Center, Central Texas Veterans Health Care System, Temple, Texas, USA
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, College Station, Texas, USA
| | - Bing Shuai
- Institute for Regenerative Medicine, Texas A & M Health Science Center College of Medicine at Scott & White, Temple, Texas, USA
- Research Service, Olin E. Teague Veterans’ Affairs Medical Center, Central Texas Veterans Health Care System, Temple, Texas, USA
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, College Station, Texas, USA
| | - Maheedhar Kodali
- Institute for Regenerative Medicine, Texas A & M Health Science Center College of Medicine at Scott & White, Temple, Texas, USA
- Research Service, Olin E. Teague Veterans’ Affairs Medical Center, Central Texas Veterans Health Care System, Temple, Texas, USA
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, College Station, Texas, USA
| | - Geetha A. Shetty
- Institute for Regenerative Medicine, Texas A & M Health Science Center College of Medicine at Scott & White, Temple, Texas, USA
- Research Service, Olin E. Teague Veterans’ Affairs Medical Center, Central Texas Veterans Health Care System, Temple, Texas, USA
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, College Station, Texas, USA
| | - Bharathi Hattiangady
- Institute for Regenerative Medicine, Texas A & M Health Science Center College of Medicine at Scott & White, Temple, Texas, USA
- Research Service, Olin E. Teague Veterans’ Affairs Medical Center, Central Texas Veterans Health Care System, Temple, Texas, USA
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, College Station, Texas, USA
| | - Xiaolan Rao
- Institute for Regenerative Medicine, Texas A & M Health Science Center College of Medicine at Scott & White, Temple, Texas, USA
- Research Service, Olin E. Teague Veterans’ Affairs Medical Center, Central Texas Veterans Health Care System, Temple, Texas, USA
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, College Station, Texas, USA
| | - Ashok K. Shetty
- Institute for Regenerative Medicine, Texas A & M Health Science Center College of Medicine at Scott & White, Temple, Texas, USA
- Research Service, Olin E. Teague Veterans’ Affairs Medical Center, Central Texas Veterans Health Care System, Temple, Texas, USA
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, College Station, Texas, USA
| |
Collapse
|
43
|
Breuer L, Kasper BS, Schwarze B, Gschossmann JM, Kornhuber J, Müller HH. "Herbal seizures"--atypical symptoms after ibogaine intoxication: a case report. J Med Case Rep 2015; 9:243. [PMID: 26518760 PMCID: PMC4628299 DOI: 10.1186/s13256-015-0731-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 10/08/2015] [Indexed: 05/28/2023] Open
Abstract
Introduction Misuse of various new psychotropic substances such as ibogaine is increasing rapidly. Knowledge of their negative side effects is sparse. Case presentation We present a case of intoxication with the herbal substance ibogaine in a 22-year-old white man. After taking a cumulative dose of 38 g (taken in two doses), he developed visual memories, nausea and vomiting. He developed a generalized tonic–clonic seizure with additional grand mal seizures. He was treated with midazolam and levetiracetam. Extended drug screenings and computed tomography and magnetic resonance imaging findings were all negative. Conclusions Knowledge of the side effects of ibogaine has mainly come from reports of cardiovascular complications; seizures are rarely mentioned and experimental findings are inconsistent. It seems that ibogaine acts like a proconvulsive drug at high doses.
Collapse
Affiliation(s)
- Lorenz Breuer
- Department of Neurology, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany.,Department of Psychiatry and Psychotherapy, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany
| | - Burkhard S Kasper
- Department of Neurology, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany.,Epilepsy Center, Department of Neurology, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany
| | - Bernd Schwarze
- Department of Forensic Medicine, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Juergen M Gschossmann
- Department of Internal Medicine, Klinikum Forchheim/Friedrich-Alexander Universität Erlangen-Nuremberg, Erlangen, Germany
| | - Johannes Kornhuber
- Department of Neurology, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany
| | - Helge H Müller
- Medical Campus University of OldenburgSchool of Medicine and Health Sciences Psychiatry and Psychotherapy, University Hospital Karl-Jaspers-Klinik , Hermann-Ehlers-Strasse 7, Bad Zwischenahn, D-26160, Germany. .,Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany.
| |
Collapse
|
44
|
Barker-Haliski M, White HS. Glutamatergic Mechanisms Associated with Seizures and Epilepsy. Cold Spring Harb Perspect Med 2015; 5:a022863. [PMID: 26101204 PMCID: PMC4526718 DOI: 10.1101/cshperspect.a022863] [Citation(s) in RCA: 236] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Epilepsy is broadly characterized by aberrant neuronal excitability. Glutamate is the predominant excitatory neurotransmitter in the adult mammalian brain; thus, much of past epilepsy research has attempted to understand the role of glutamate in seizures and epilepsy. Seizures induce elevations in extracellular glutamate, which then contribute to excitotoxic damage. Chronic seizures can alter neuronal and glial expression of glutamate receptors and uptake transporters, further contributing to epileptogenesis. Evidence points to a shared glutamate pathology for epilepsy and other central nervous system (CNS) disorders, including depression, which is often a comorbidity of epilepsy. Therapies that target glutamatergic neurotransmission are available, but many have met with difficulty because of untoward adverse effects. Better understanding of this system has generated novel therapeutic targets that directly and indirectly modulate glutamatergic signaling. Thus, future efforts to manage the epileptic patient with glutamatergic-centric treatments now hold greater potential.
Collapse
Affiliation(s)
- Melissa Barker-Haliski
- Anticonvulsant Drug Development Program, Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah 84108
| | - H Steve White
- Anticonvulsant Drug Development Program, Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah 84108
| |
Collapse
|
45
|
Basha MM, Alqallaf A, Shah AK. Drug-induced EEG pattern predicts effectiveness of ketamine in treating refractory status epilepticus. Epilepsia 2015; 56:e44-8. [DOI: 10.1111/epi.12947] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Maysaa M. Basha
- Department of Neurology; Detroit Medical Center; Wayne State University; Detroit Michigan U.S.A
| | - Abdulradha Alqallaf
- Department of Neurology; Detroit Medical Center; Wayne State University; Detroit Michigan U.S.A
| | - Aashit K. Shah
- Department of Neurology; Detroit Medical Center; Wayne State University; Detroit Michigan U.S.A
| |
Collapse
|
46
|
Wen M, Yan Y, Yan N, Chen XS, Liu SY, Feng ZH. Upregulation of RBFOX1 in the malformed cortex of patients with intractable epilepsy and in cultured rat neurons. Int J Mol Med 2015; 35:597-606. [PMID: 25571999 PMCID: PMC4314424 DOI: 10.3892/ijmm.2015.2061] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Accepted: 12/22/2014] [Indexed: 02/07/2023] Open
Abstract
Mutations in RNA-binding Fox 1 (RBFOX1) are known to be associated with neurodevelopmental disorders including epilepsy, mental retardation and autism spectrum disorder. The deletion of the Rbfox1 gene in mice has been shown to result in heightened susceptibility to seizures. However, other studies have revealed mutations or the downregulation of RBFOX1 in specimens obtained from patients with epilepsy or malformations of cortical development (MCD). Generally, the expression of RBFOX1 varies according to tissue type. In this study, we demonstrated the upregulation of RBFOX1 protein in the cortex of patients with MCD and intractable epilepsy. Electrophysiological recordings of cultured rat cortical neurons with increased Rbfox1 expression also revealed a significantly increased amplitude of action potential (AP) and Na+ current density. Some of these neurons (26.32%) even displayed spontaneous, recurrent, epileptiform discharges (SREDs). Additionally, certain Rbfox1 target transcripts associated with epilepsy, including glutamate receptor, ionotropic, N-methyl D-aspartate 1 [Grin1, also known as N-methyl-D-aspartate receptor subunit NR1 (NMDAR1)], synaptosomal-associated protein, 25 kDa (SNAP-25 or Snap25) and sodium channel, voltage gated, type VIII, alpha subunit (Scn8a, also known as Nav1.6) were identified to be upregulated in these cultured cortical neurons with an upregulated Rbfox1 expression. These data suggest that the upregulation of RBFOX1 contributes to neuronal hyperexcitation and seizures. The upregulation of NMDAR1 (Grin1), SNAP-25 (Snap25) and Scn8a may thus be involved in Rbfox1-related neuronal hyperexcitation.
Collapse
Affiliation(s)
- Ming Wen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing 400016, P.R. China
| | - Yong Yan
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing 400016, P.R. China
| | - Ning Yan
- Department of Neurology, University‑Town Hospital of Chongqing Medical University, Chongqing 401331, P.R. China
| | - Xiao Shan Chen
- Department of Neurology, Xi'an Central Hospital, Xi'an 710003, P.R. China
| | - Shi Yong Liu
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Zhan Hui Feng
- Department of Neurology, Affiliated Hospital of Guiyang Medical University, Guiyang 550004, P.R. China
| |
Collapse
|
47
|
Subunit composition of neurotransmitter receptors in the immature and in the epileptic brain. BIOMED RESEARCH INTERNATIONAL 2014; 2014:301950. [PMID: 25295256 PMCID: PMC4180637 DOI: 10.1155/2014/301950] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 07/24/2014] [Accepted: 08/26/2014] [Indexed: 12/17/2022]
Abstract
Neuronal activity is critical for synaptogenesis and the development of neuronal networks. In the immature brain excitation predominates over inhibition facilitating the development of normal brain circuits, but also rendering it more susceptible to seizures. In this paper, we review the evolution of the subunit composition of neurotransmitter receptors during development, how it promotes excitation in the immature brain, and how this subunit composition of neurotransmission receptors may be also present in the epileptic brain. During normal brain development, excitatory glutamate receptors peak in function and gamma-aminobutiric acid (GABA) receptors are mainly excitatory rather than inhibitory. A growing body of evidence from animal models of epilepsy and status epilepticus has demonstrated that the brain exposed to repeated seizures presents a subunit composition of neurotransmitter receptors that mirrors that of the immature brain and promotes further seizures and epileptogenesis. Studies performed in samples from the epileptic human brain have also found a subunit composition pattern of neurotransmitter receptors similar to the one found in the immature brain. These findings provide a solid rationale for tailoring antiepileptic treatments to the specific subunit composition of neurotransmitter receptors and they provide potential targets for the development of antiepileptogenic treatments.
Collapse
|