1
|
Nappi M, Alberini G, Berselli A, Roscioni A, Soldovieri MV, Servettini I, Barrese V, Weckhuysen S, Chiu TGA, Scheffer IE, Benfenati F, Maragliano L, Miceli F, Taglialatela M. Constitutive opening of the Kv7.2 pore activation gate causes KCNQ2-developmental encephalopathy. Proc Natl Acad Sci U S A 2024; 121:e2412388121. [PMID: 39602259 PMCID: PMC11626135 DOI: 10.1073/pnas.2412388121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024] Open
Abstract
Pathogenic variants in KCNQ2 encoding Kv7.2 voltage-gated potassium channel subunits cause developmental encephalopathies (KCNQ2-encephalopathies), both with and without epilepsy. We herein describe the clinical, in vitro, and in silico features of two encephalopathy-causing variants (A317T, L318V) in Kv7.2 affecting two consecutive residues in the S6 activation gate that undergoes large structural rearrangements during pore opening; the disease-causing A356T variant in KCNQ3, paralogous to the A317T variant in KCNQ2, was also investigated. Currents through KCNQ2 mutant channels displayed increased density, hyperpolarizing shifts in activation gating, faster activation and slower deactivation kinetics, and resistance to changes in the cellular concentrations of phosphatidylinositol 4,5-bisphosphate (PIP2), a critical regulator of Kv7 channel function; all these features are consistent with a strong gain-of-function effect. An increase in the probability of single-channel opening, with no change in membrane abundance or single-channel conductance, was responsible for the observed gain-of-function effects. All-atom molecular dynamics simulations revealed that the mutations widened the inner pore gate and stabilized a constitutively open channel configuration in the closed state, with minimal effects on the open conformation. Thus, mutation-induced stabilization of the inner pore gate open configuration is a molecular pathogenetic mechanism for KCNQ2-related encephalopathies.
Collapse
Affiliation(s)
- Mario Nappi
- Department of Neuroscience, Section of Pharmacology, University of Naples Federico II, Naples80131, Italy
| | - Giulio Alberini
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova16132, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico Ospedale Policlinico San Martino, Genova16132, Italy
| | - Alessandro Berselli
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova16132, Italy
- Department of Experimental Medicine, Università degli Studi di Genova, Genova16132, Italy
| | - Agnese Roscioni
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova16132, Italy
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona60131, Italy
| | | | - Ilenio Servettini
- Department of Medicine and Health Science, University of Molise, Campobasso86100, Italy
| | - Vincenzo Barrese
- Department of Neuroscience, Section of Pharmacology, University of Naples Federico II, Naples80131, Italy
| | - Sarah Weckhuysen
- Applied & Translational Neurogenomics Group, Vlaams Instituut voor Biotechnology (VIB) Center for Molecular Neurology, Antwerp2610, Belgium
- Translational Neurosciences, Faculty of Medicine and Health Science, University of Antwerp, Antwerp2610, Belgium
- Department of Neurology, Antwerp University Hospital, Antwerp2610, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp2610, Belgium
| | - Ting-Gee Annie Chiu
- Division of Medicine, Dentistry and Health Sciences, University of Melbourne, Austin Health, Melbourne, VIC3084, Australia
| | - Ingrid E. Scheffer
- The Florey Institute of Neuroscience and Mental Health and Murdoch Children’s Research Institutes, University of Melbourne, Austin and Royal Children’s Hospital, Melbourne, VIC3052, Australia
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova16132, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico Ospedale Policlinico San Martino, Genova16132, Italy
| | - Luca Maragliano
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova16132, Italy
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona60131, Italy
| | - Francesco Miceli
- Department of Neuroscience, Section of Pharmacology, University of Naples Federico II, Naples80131, Italy
| | - Maurizio Taglialatela
- Department of Neuroscience, Section of Pharmacology, University of Naples Federico II, Naples80131, Italy
| |
Collapse
|
2
|
Pan M, Li Q, Song J, Li D, Zhang R. Spike-spindle coupling during sleep and its mechanism explanation in childhood focal epilepsy. Cogn Neurodyn 2024; 18:2145-2160. [PMID: 39555302 PMCID: PMC11564472 DOI: 10.1007/s11571-023-10052-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/21/2023] [Accepted: 12/04/2023] [Indexed: 11/19/2024] Open
Abstract
Childhood focal epilepsy (CFE) is a serious neurological disorder characterized by epileptic seizures arising from a focal or multi-focal zone of the brain in clinics. During non-rapid eye movement (NREM) sleep stage, epileptiform discharges become frequent, and sleep spindles are generated through local interaction between thalamic neurons for CFE patients. Recent research has shown that epileptiform spikes significantly induce spindle oscillations within 1 s (say, spike-spindle coupling) during NREM sleep in focal epilepsy, which might damage cognitive function of epilepsy patients. However, the temporal interaction mechanism between spikes and spindles is lack of understanding. In this paper, we first develop a new thalamocortical model of CFE (CFE-TCM) by integrating M-type potassium current, persistent sodium current and NMDAR current into Costa model, where the three types of currents are important for modulating the excitability of thalamocortical system. Then we demonstrate in simulations that: (1) the temporal spike-spindle coupling oscillatory patterns do exist in real CFE-EEGs recorded in clinics; (2) the constructed model CFE-TCM has a capacity of generating spike-spindle coupling discharges, and the corresponding statistical results are consistent with those obtained from real EEGs; (3) the spike-spindle coupling discharges are mediated by the strength of long-range thalamus-cortex connections where the excitable projection from thalamocortical neuron in thalamus to pyramidal neuron in cortex takes a great role. The obtained results reveal that pathological spike-spindle coupling may be a potential marker of thalamocortical circuit dysfunction, which will provide a possible treatment strategy for disease progression and cognition impairment in focal epilepsy.
Collapse
Affiliation(s)
- Min Pan
- Medical Big Data Research Center, Northwest University, Xi’an, China
| | - Qiang Li
- Medical Big Data Research Center, Northwest University, Xi’an, China
| | - Jiangling Song
- Medical Big Data Research Center, Northwest University, Xi’an, China
| | - Duo Li
- Medical Big Data Research Center, Northwest University, Xi’an, China
| | - Rui Zhang
- Medical Big Data Research Center, Northwest University, Xi’an, China
| |
Collapse
|
3
|
Edmond MA, Hinojo-Perez A, Efrem M, Yi-Chun L, Shams I, Hayoz S, de la Cruz A, Perez Rodriguez ME, Diaz-Solares M, Dykxhoorn DM, Luo YL, Barro-Soria R. Lipophilic compounds restore function to neurodevelopmental-associated KCNQ3 mutations. Commun Biol 2024; 7:1181. [PMID: 39300259 DOI: 10.1038/s42003-024-06873-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024] Open
Abstract
A major driver of neuronal hyperexcitability is dysfunction of K+ channels, including voltage-gated KCNQ2/3 channels. Their hyperpolarized midpoint of activation and slow activation and deactivation kinetics produce a current that regulates membrane potential and impedes repetitive firing. Inherited mutations in KCNQ2 and KCNQ3 are linked to a wide spectrum of neurodevelopmental disorders (NDDs), ranging from benign familial neonatal seizures to severe epileptic encephalopathies and autism spectrum disorders. However, the impact of these variants on the molecular mechanisms underlying KCNQ3 channel function remains poorly understood and existing treatments have significant side effects. Here, we use voltage clamp fluorometry, molecular dynamic simulations, and electrophysiology to investigate NDD-associated variants in KCNQ3 channels. We identified two distinctive mechanisms by which loss- and gain-of function NDD-associated mutations in KCNQ3 affect channel gating: one directly affects S4 movement while the other changes S4-to-pore coupling. MD simulations and electrophysiology revealed that polyunsaturated fatty acids (PUFAs) primarily target the voltage-sensing domain in its activated conformation and form a weaker interaction with the channel's pore. Consistently, two such compounds yielded partial and complete functional restoration in R227Q- and R236C-containing channels, respectively. Our results reveal the potential of PUFAs to be developed into therapies for diverse KCNQ3-based channelopathies.
Collapse
Affiliation(s)
- Michaela A Edmond
- Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, USA
- Texas A&M University Health Science Center, Department of Neuroscience & Experimental Therapeutics, Bryan, USA
| | - Andy Hinojo-Perez
- Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Mekedlawit Efrem
- Department of Biotechnology and Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA, USA
| | - Lin Yi-Chun
- Department of Biotechnology and Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA, USA
| | - Iqra Shams
- Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Sebastien Hayoz
- Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, USA
- Department of Physiology, University of Arizona, Tucson, USA
| | - Alicia de la Cruz
- Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, USA
- Linkoping University, Department of Biomedical and Clinical Sciences (BKV), Linkoping, Sweden
| | | | - Maykelis Diaz-Solares
- Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Derek M Dykxhoorn
- John P. Hussman Institute for Human Genomics, John T. Macdonald Foundation Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Yun Lyna Luo
- Department of Biotechnology and Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA, USA
| | - Rene Barro-Soria
- Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, USA.
| |
Collapse
|
4
|
Mergener R, Nunes MR, Böttcher AK, Siqueira MB, Peruzzo HF, Merola MC, Riegel M, Zen PRG. invdup(8)(8q24.13q24.3)-A Complex Alteration and Its Clinical Consequences. Genes (Basel) 2024; 15:910. [PMID: 39062689 PMCID: PMC11276216 DOI: 10.3390/genes15070910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/12/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Structural variation is a source of genetic variation that, in some cases, may trigger pathogenicity. Here, we describe two cases, a mother and son, with the same partial inverted duplication of the long arm of chromosome 8 [invdup(8)(q24.21q24.21)] of 17.18 Mb, showing different clinical manifestations: microcephaly, dorsal hypertrichosis, seizures and neuropsychomotor development delay in the child, and a cleft lip/palate, down-slanted palpebral fissures and learning disabilities in the mother. The deleterious outcome, in general, is reflected by the gain or loss of genetic material. However, discrepancies among the clinical manifestations raise some concerns about the genomic configuration within the chromosome and other genetic modifiers. With that in mind, we also performed a literature review of research published in the last 20 years about the duplication of the same, or close, chromosome region, seeking the elucidation of at least some relevant clinical features.
Collapse
Affiliation(s)
- Rafaella Mergener
- Post-Graduate Program in Pathology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre 90050-170, RS, Brazil
| | - Marcela Rodrigues Nunes
- Post-Graduate Program in Pathology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre 90050-170, RS, Brazil
- Medical Genetics Resident, Irmandade da Santa Casa de Misericórdia de Porto Alegre (ISCMPA), Porto Alegre 90020-090, RS, Brazil
| | - Ana Kalise Böttcher
- Undergraduate Program in Biomedical Science, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre 90050-170, RS, Brazil
| | - Monique Banik Siqueira
- Undergraduate Program in Biomedical Sciences, Universidade do Vale do Rio dos Sinos (UNISINOS), São Leopoldo 93022-750, RS, Brazil;
| | - Helena Froener Peruzzo
- Undergraduate Program in Biomedical Science, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre 90050-170, RS, Brazil
| | - Milene Carvalho Merola
- Undergraduate Program in Biomedical Science, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre 90050-170, RS, Brazil
| | - Mariluce Riegel
- Casa dos Raros, Center for Comprehensive Care and Training in Rare Diseases, Porto Alegre 90610-261, RS, Brazil
- National Institute of Population Medical Genetics (INAGEMP), Porto Alegre 90035-903, RS, Brazil
| | - Paulo Ricardo Gazzola Zen
- Post-Graduate Program in Pathology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre 90050-170, RS, Brazil
- Medical Genetics, Department of Clinical Medicine, Universidade Federal de Ciências da Saúde de Porto Alegre(UFCSPA), Porto Alegre 90020-090, RS, Brazil
- Irmandade da Santa Casa de Misericórdia de Porto Alegre (ISCMPA), Porto Alegre 90050-170, RS, Brazil
| |
Collapse
|
5
|
Zhao T, Wang L, Chen F. Potassium channel-related epilepsy: Pathogenesis and clinical features. Epilepsia Open 2024; 9:891-905. [PMID: 38560778 PMCID: PMC11145612 DOI: 10.1002/epi4.12934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 03/11/2024] [Accepted: 03/17/2024] [Indexed: 04/04/2024] Open
Abstract
Variants in potassium channel-related genes are one of the most important mechanisms underlying abnormal neuronal excitation and disturbances in the cellular resting membrane potential. These variants can cause different forms of epilepsy, which can seriously affect the physical and mental health of patients, especially those with refractory epilepsy or status epilepticus, which are common among pediatric patients and are potentially life-threatening. Variants in potassium ion channel-related genes have been reported in few studies; however, to our knowledge, no systematic review has been published. This study aimed to summarize the epilepsy phenotypes, functional studies, and pharmacological advances associated with different potassium channel gene variants to assist clinical practitioners and drug development teams to develop evidence-based medicine and guide research strategies. PubMed and Google Scholar were searched for relevant literature on potassium channel-related epilepsy reported in the past 5-10 years. Various common potassium ion channel gene variants can lead to heterogeneous epilepsy phenotypes, and functional effects can result from gene deletions and compound effects. Administration of select anti-seizure medications is the primary treatment for this type of epilepsy. Most patients are refractory to anti-seizure medications, and some novel anti-seizure medications have been found to improve seizures. Use of targeted drugs to correct aberrant channel function based on the type of potassium channel gene variant can be used as an evidence-based pathway to achieve precise and individualized treatment for children with epilepsy. PLAIN LANGUAGE SUMMARY: In this article, the pathogenesis and clinical characteristics of epilepsy caused by different types of potassium channel gene variants are reviewed in the light of the latest research literature at home and abroad, with the expectation of providing a certain theoretical basis for the diagnosis and treatment of children with this type of disease.
Collapse
Affiliation(s)
- Tong Zhao
- Hebei Children's HospitalShijiazhuangHebeiChina
| | - Le Wang
- Hebei Children's HospitalShijiazhuangHebeiChina
| | - Fang Chen
- Hebei Children's HospitalShijiazhuangHebeiChina
| |
Collapse
|
6
|
Ng ACH, Chahine M, Scantlebury MH, Appendino JP. Channelopathies in epilepsy: an overview of clinical presentations, pathogenic mechanisms, and therapeutic insights. J Neurol 2024; 271:3063-3094. [PMID: 38607431 DOI: 10.1007/s00415-024-12352-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/13/2024]
Abstract
Pathogenic variants in genes encoding ion channels are causal for various pediatric and adult neurological conditions. In particular, several epilepsy syndromes have been identified to be caused by specific channelopathies. These encompass a spectrum from self-limited epilepsies to developmental and epileptic encephalopathies spanning genetic and acquired causes. Several of these channelopathies have exquisite responses to specific antiseizure medications (ASMs), while others ASMs may prove ineffective or even worsen seizures. Some channelopathies demonstrate phenotypic pleiotropy and can cause other neurological conditions outside of epilepsy. This review aims to provide a comprehensive exploration of the pathophysiology of seizure generation, ion channels implicated in epilepsy, and several genetic epilepsies due to ion channel dysfunction. We outline the clinical presentation, pathogenesis, and the current state of basic science and clinical research for these channelopathies. In addition, we briefly look at potential precision therapy approaches emerging for these disorders.
Collapse
Affiliation(s)
- Andy Cheuk-Him Ng
- Clinical Neuroscience and Pediatric Neurology, Department of Pediatrics, Cumming School of Medicine, Alberta Children's Hospital, University of Calgary, 28 Oki Drive NW, Calgary, AB, T3B 6A8, Canada
- Division of Neurology, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta and Stollery Children's Hospital, Edmonton, AB, Canada
| | - Mohamed Chahine
- Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
- CERVO, Brain Research Centre, Quebec City, Canada
| | - Morris H Scantlebury
- Clinical Neuroscience and Pediatric Neurology, Department of Pediatrics, Cumming School of Medicine, Alberta Children's Hospital, University of Calgary, 28 Oki Drive NW, Calgary, AB, T3B 6A8, Canada
- Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Calgary, Canada
| | - Juan P Appendino
- Clinical Neuroscience and Pediatric Neurology, Department of Pediatrics, Cumming School of Medicine, Alberta Children's Hospital, University of Calgary, 28 Oki Drive NW, Calgary, AB, T3B 6A8, Canada.
| |
Collapse
|
7
|
Romero VI, Sáenz S, Arias-Almeida B, DiCapua D, Hosomichi K. AARS and CACNA1A mutations: diagnostic insights into a case report of uncommon epileptic encephalopathy phenotypes in two siblings. Front Neurol 2024; 15:1376643. [PMID: 38689878 PMCID: PMC11059961 DOI: 10.3389/fneur.2024.1376643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/04/2024] [Indexed: 05/02/2024] Open
Abstract
Epilepsy, characterized by recurrent seizures, impacts 70-80% of patients, leading to cognitive deficits. The intricate relationship between seizure control and cognitive impairment remains complex. Epileptic encephalopathy (EE), an intensified form often rooted in genetic factors, is detectable through next-generation sequencing, aiding in precise diagnoses, family counseling, and potential treatment strategies. We present a case involving two sisters with refractory generalized seizures evolving into dysarthria, dysphagia, ataxia, and cognitive decline. Despite normal physical exams, abnormal electroencephalogram results consistent with epilepsy were noted. Whole Exome Sequencing identified heterozygous variants in the alanyl-tRNA synthetase (AARS) and Calcium Voltage-Gated Channel Subunit Alpha 1 (CACNA1A) genes. The AARS variant (c.C2083T, p.R695*) was maternal, while the CACNA1A variant (c.G7400C, p.R2467P) was paternal. Patients A and B exhibited a unique blend of neurological and psychiatric conditions, distinct from common disorders that begin adolescence, like Juvenile Myoclonic Epilepsy. Whole Exome Sequencing uncovered an AARS gene and CACNA1A gene, linked to various autosomal dominant phenotypes. Presence in both parents, coupled with familial reports of migraines and seizures, provides insight into accelerated symptom progression. This study underscores the importance of genetic testing in decoding complex phenotypes and emphasizes the value of documenting family history for anticipating related symptoms and future health risks.
Collapse
Affiliation(s)
- Vanessa I. Romero
- School of Medicine, Universidad San Francisco de Quito, Quito, Ecuador
| | - Samantha Sáenz
- School of Medicine, Universidad San Francisco de Quito, Quito, Ecuador
| | | | - Daniela DiCapua
- School of Medicine, Universidad San Francisco de Quito, Quito, Ecuador
- Neurology Service, Hospital de Especialidades Eugenio Espejo, Quito, Ecuador
| | - Kazuyoshi Hosomichi
- Laboratory of Computational Genomics, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| |
Collapse
|
8
|
Innes EA, Marne FAL, Macintosh R, Nevin SM, Briggs NE, Vivekanandarajah S, Webster RI, Sachdev RK, Bye AME. Neurodevelopmental outcomes in a cohort of Australian families with self-limited familial epilepsy of neonatal/infantile onset. Seizure 2024; 115:1-13. [PMID: 38160512 DOI: 10.1016/j.seizure.2023.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/27/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024] Open
Abstract
OBJECTIVES To determine: i) seizure recurrence; ii) developmental disability; iii) co-morbidities and risk factors in self-limited familial neonatal and/or infantile epilepsy (SeLFE) in a multigenerational study. METHODS Families were retrospectively recruited from epilepsy databases (2021-2022) in 2 paediatric hospitals, Sydney, Australia. Eligible families had 2 first degree relatives with seizures and underwent genetic testing. Demographics/clinical data were collected from interviews and medical records. Vineland Adaptive Behaviour Scales-Third Edition measured adaptive function. RESULTS Fifteen families participated. Fourteen had a genetic diagnosis (93%): 11 pathogenic; PRRT2 (n=4), KCNQ2 (n=3), SCN2A (n=4), 3 likely pathogenic; KCNQ2 (n=1), SCN8A (n=2). Seizures affected 73 individuals (ages 1-76 years); 30 children and 20 adults had in-depth phenotyping. Ten of 50 individuals (20%) had seizure recurrence, aged 8-65 years. Median time from last neonatal/infantile seizure was 11.8/12.8 years. Predictors of recurrence were high seizure number (p=0.05) and longer treatment duration (p=0.03). Seven children had global developmental delay (GDD): mild (n=4), moderate (n=1) and severe (n=2). Vineland-3 identified 3 had low-average and 3 had mild-moderately impaired functioning. The majority (82%) were average. GDD was associated with older age at last seizure (p=0.03), longer epilepsy duration (p=0.02), and higher number of anti-seizure medications (p=0.05). Four children had speech delay, 5 (10%) had Autism Spectrum Disorder. Paroxysmal kinesiogenic dyskinesia (n=5) occurred in 4 families and hemiplegic migraine (n=8) in 3 families. CONCLUSIONS Individuals with SeLFE have a small risk of recurrent seizures (20%) and neurodevelopmental disability. Significant predictors are higher seizure number and longer epilepsy duration. Developmental surveillance is imperative.
Collapse
Affiliation(s)
- Emily A Innes
- Department of Neurology, Sydney Children's Hospital Network, Randwick, Australia; TY Nelson Department of Neurology and Neurosurgery, Sydney Children's Hospital Network, Westmead, Australia; School of Medicine Sydney, The University of Notre Dame, Australia; Kids Research Centre, The Children's Hospital at Westmead, Australia.
| | - Fleur Annette Le Marne
- Department of Neurology, Sydney Children's Hospital Network, Randwick, Australia; School of Clinical Medicine, UNSW Medicine & Health, Randwick Clinical Campus, Discipline of Paediatrics, UNSW Sydney, Australia
| | - Rebecca Macintosh
- School of Clinical Medicine, UNSW Medicine & Health, Randwick Clinical Campus, Discipline of Paediatrics, UNSW Sydney, Australia; Centre for Clinical Genetics, Sydney Children's Hospital Network, Randwick, Australia
| | - Suzanne M Nevin
- Department of Neurology, Sydney Children's Hospital Network, Randwick, Australia; School of Clinical Medicine, UNSW Medicine & Health, Randwick Clinical Campus, Discipline of Paediatrics, UNSW Sydney, Australia; Centre for Clinical Genetics, Sydney Children's Hospital Network, Randwick, Australia
| | - Nancy E Briggs
- Stats Central, Mark Wainwright Analytical Centre, UNSW Sydney, Australia
| | - Sinthu Vivekanandarajah
- School of Clinical Medicine, UNSW Medicine & Health, Randwick Clinical Campus, Discipline of Paediatrics, UNSW Sydney, Australia; Liverpool Community Paediatrics, Liverpool Community Health Centre, Liverpool, Australia
| | - Richard I Webster
- TY Nelson Department of Neurology and Neurosurgery, Sydney Children's Hospital Network, Westmead, Australia; Kids Research Centre, The Children's Hospital at Westmead, Australia; Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Australia
| | - Rani K Sachdev
- School of Clinical Medicine, UNSW Medicine & Health, Randwick Clinical Campus, Discipline of Paediatrics, UNSW Sydney, Australia; Centre for Clinical Genetics, Sydney Children's Hospital Network, Randwick, Australia
| | - Ann M E Bye
- Department of Neurology, Sydney Children's Hospital Network, Randwick, Australia; School of Clinical Medicine, UNSW Medicine & Health, Randwick Clinical Campus, Discipline of Paediatrics, UNSW Sydney, Australia
| |
Collapse
|
9
|
Khan R, Chaturvedi P, Sahu P, Ludhiadch A, Singh P, Singh G, Munshi A. Role of Potassium Ion Channels in Epilepsy: Focus on Current Therapeutic Strategies. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:67-87. [PMID: 36578258 DOI: 10.2174/1871527322666221227112621] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND Epilepsy is one of the prevalent neurological disorders characterized by disrupted synchronization between inhibitory and excitatory neurons. Disturbed membrane potential due to abnormal regulation of neurotransmitters and ion transport across the neural cell membrane significantly contributes to the pathophysiology of epilepsy. Potassium ion channels (KCN) regulate the resting membrane potential and are involved in neuronal excitability. Genetic alterations in the potassium ion channels (KCN) have been reported to result in the enhancement of the release of neurotransmitters, the excitability of neurons, and abnormal rapid firing rate, which lead to epileptic phenotypes, making these ion channels a potential therapeutic target for epilepsy. The aim of this study is to explore the variations reported in different classes of potassium ion channels (KCN) in epilepsy patients, their functional evaluation, and therapeutic strategies to treat epilepsy targeting KCN. METHODOLOGY A review of all the relevant literature was carried out to compile this article. RESULTS A large number of variations have been reported in different genes encoding various classes of KCN. These genetic alterations in KCN have been shown to be responsible for disrupted firing properties of neurons. Antiepileptic drugs (AEDs) are the main therapeutic strategy to treat epilepsy. Some patients do not respond favorably to the AEDs treatment, resulting in pharmacoresistant epilepsy. CONCLUSION Further to address the challenges faced in treating epilepsy, recent approaches like optogenetics, chemogenetics, and genome editing, such as clustered regularly interspaced short palindromic repeats (CRISPR), are emerging as target-specific therapeutic strategies.
Collapse
Affiliation(s)
- Rahul Khan
- Department of Human Genetics and Molecular Medicine Central University of Punjab, Bathinda 151401, India
| | - Pragya Chaturvedi
- Department of Human Genetics and Molecular Medicine Central University of Punjab, Bathinda 151401, India
| | - Prachi Sahu
- Department of Human Genetics and Molecular Medicine Central University of Punjab, Bathinda 151401, India
| | - Abhilash Ludhiadch
- Department of Human Genetics and Molecular Medicine Central University of Punjab, Bathinda 151401, India
| | - Paramdeep Singh
- Department of Radiology, All India Institute of Medical Sciences, Bathinda, Punjab, 151001 India
| | - Gagandeep Singh
- Department of Neurology, Dayanand Medical College and Hospital, Ludhiana, Punjab, India
| | - Anjana Munshi
- Department of Human Genetics and Molecular Medicine Central University of Punjab, Bathinda 151401, India
| |
Collapse
|
10
|
Millevert C, Weckhuysen S. ILAE Genetic Literacy Series: Self-limited familial epilepsy syndromes with onset in neonatal age and infancy. Epileptic Disord 2023; 25:445-453. [PMID: 36939707 DOI: 10.1002/epd2.20026] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/13/2022] [Accepted: 12/22/2022] [Indexed: 03/21/2023]
Abstract
The self-limited (familial) epilepsies with onset in neonates or infants, formerly called benign familial neonatal and/or infantile epilepsies, are autosomal dominant disorders characterized by neonatal- or infantile-onset focal motor seizures and the absence of neurodevelopmental complications. Seizures tend to remit during infancy or early childhood and are therefore called "self-limited". A positive family history for epilepsy usually suggests the genetic etiology, but incomplete penetrance and de novo inheritance occur. Here, we review the phenotypic spectrum and the genetic architecture of self-limited (familial) epilepsies with onset in neonates or infants. Using an illustrative case study, we describe important clues in recognition of these syndromes, diagnostic steps including genetic testing, management, and genetic counseling.
Collapse
Affiliation(s)
- Charissa Millevert
- Applied & Translational Neurogenomics Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Neurology, University Hospital, Antwerp, Belgium
| | - Sarah Weckhuysen
- Applied & Translational Neurogenomics Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Neurology, University Hospital, Antwerp, Belgium
- μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Translational Neurosciences, Faculty of Medicine and Health Science, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
11
|
Potassium channelopathies associated with epilepsy-related syndromes and directions for therapeutic intervention. Biochem Pharmacol 2023; 208:115413. [PMID: 36646291 DOI: 10.1016/j.bcp.2023.115413] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023]
Abstract
A number of mutations to members of several CNS potassium (K) channel families have been identified which result in rare forms of neonatal onset epilepsy, or syndromes of which one prominent characteristic is a form of epilepsy. Benign Familial Neonatal Convulsions or Seizures (BFNC or BFNS), also referred to as Self-Limited Familial Neonatal Epilepsy (SeLNE), results from mutations in 2 members of the KV7 family (KCNQ) of K channels; while generally self-resolving by about 15 weeks of age, these mutations significantly increase the probability of generalized seizure disorders in the adult, in some cases they result in more severe developmental syndromes. Epilepsy of Infancy with Migrating Focal Seizures (EIMSF), or Migrating Partial Seizures of Infancy (MMPSI), is a rare severe form of epilepsy linked primarily to gain of function mutations in a member of the sodium-dependent K channel family, KCNT1 or SLACK. Finally, KCNMA1 channelopathies, including Liang-Wang syndrome (LIWAS), are rare combinations of neurological symptoms including seizure, movement abnormalities, delayed development and intellectual disabilities, with Liang-Wang syndrome an extremely serious polymalformative syndrome with a number of neurological sequelae including epilepsy. These are caused by mutations in the pore-forming subunit of the large-conductance calcium-activated K channel (BK channel) KCNMA1. The identification of these rare but significant channelopathies has resulted in a resurgence of interest in their treatment by direct pharmacological or genetic modulation. We will briefly review the genetics, biophysics and pharmacology of these K channels, their linkage with the 3 syndromes described above, and efforts to more effectively target these syndromes.
Collapse
|
12
|
Kim YE, Kim YS, Lee HE, So KH, Choe Y, Suh BC, Kim JH, Park SK, Mathern GW, Gleeson JG, Rah JC, Baek ST. Reversibility and developmental neuropathology of linear nevus sebaceous syndrome caused by dysregulation of the RAS pathway. Cell Rep 2023; 42:112003. [PMID: 36641749 DOI: 10.1016/j.celrep.2023.112003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/12/2022] [Accepted: 01/04/2023] [Indexed: 01/15/2023] Open
Abstract
Linear nevus sebaceous syndrome (LNSS) is a neurocutaneous disorder caused by somatic gain-of-function mutations in KRAS or HRAS. LNSS brains have neurodevelopmental defects, including cerebral defects and epilepsy; however, its pathological mechanism and potentials for treatment are largely unclear. We show that introduction of KRASG12V in the developing mouse cortex results in subcortical nodular heterotopia and enhanced excitability, recapitulating major pathological manifestations of LNSS. Moreover, we show that decreased firing frequency of inhibitory neurons without KRASG12V expression leads to disrupted excitation and inhibition balance. Transcriptional profiling after destabilization domain-mediated clearance of KRASG12V in human neural progenitors and differentiating neurons identifies reversible functional networks underlying LNSS. Neurons expressing KRASG12V show molecular changes associated with delayed neuronal maturation, most of which are restored by KRASG12V clearance. These findings provide insights into the molecular networks underlying the reversibility of some of the neuropathologies observed in LNSS caused by dysregulation of the RAS pathway.
Collapse
Affiliation(s)
- Ye Eun Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), 7 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea
| | - Yong-Seok Kim
- Korea Brain Research Institute (KBRI), 61 Choemdan-Ro, Dong-Gu, Daegu 41062, Republic of Korea; Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Hee-Eun Lee
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), 7 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea
| | - Ki Hurn So
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), 7 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea
| | - Youngshik Choe
- Korea Brain Research Institute (KBRI), 61 Choemdan-Ro, Dong-Gu, Daegu 41062, Republic of Korea
| | - Byung-Chang Suh
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Joung-Hun Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), 7 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea
| | - Sang Ki Park
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), 7 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea
| | - Gary W Mathern
- Department of Neurosurgery, Mattel Children's Hospital, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, Mattel Children's Hospital, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Joseph G Gleeson
- Department of Neurosciences, University of California, San Diego (UCSD), La Jolla, CA, USA
| | - Jong-Cheol Rah
- Korea Brain Research Institute (KBRI), 61 Choemdan-Ro, Dong-Gu, Daegu 41062, Republic of Korea; Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea.
| | - Seung Tae Baek
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), 7 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea.
| |
Collapse
|
13
|
Ehtesham N, Mosallaei M, Beheshtian M, Khoshbakht S, Fadaee M, Vazehan R, Faraji Zonooz M, Karimzadeh P, Kahrizi K, Najmabadi H. Characterizing Genotypes and Phenotypes Associated with Dysfunction of Channel-Encoding Genes in a Cohort of Patients with Intellectual Disability. ARCHIVES OF IRANIAN MEDICINE 2022; 25:788-797. [PMID: 37543906 PMCID: PMC10685845 DOI: 10.34172/aim.2022.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 12/20/2021] [Indexed: 08/08/2023]
Abstract
BACKGROUND Ion channel dysfunction in the brain can lead to impairment of neuronal membranes and generate several neurological diseases, especially neurodevelopmental disorders. METHODS In this study, we set out to delineate the genotype and phenotype spectrums of 14 Iranian patients from 7 families with intellectual disability (ID) and/or developmental delay (DD) in whom genetic mutations were identified by next-generation sequencing (NGS) in 7 channel-encoding genes: KCNJ10, KCNQ3, KCNK6, CACNA1C, CACNA1G, SCN8A, and GRIN2B. Moreover, the data of 340 previously fully reported ID and/or DD cases with a mutation in any of these seven genes were combined with our patients to clarify the genotype and phenotype spectrum in this group. RESULTS In total, the most common phenotypes in 354 cases with ID/DD in whom mutation in any of these 7 channel-encoding genes was identified were as follows: ID (77.4%), seizure (69.8%), DD (59.8%), behavioral abnormality (29.9%), hypotonia (21.7%), speech disorder (21.5%), gait disturbance (20.9%), and ataxia (20.3%). Electroencephalography abnormality (33.9%) was the major brain imaging abnormality. CONCLUSION The results of this study broaden the molecular spectrum of channel pathogenic variants associated with different clinical presentations in individuals with ID and/or DD.
Collapse
Affiliation(s)
- Naeim Ehtesham
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Meysam Mosallaei
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Maryam Beheshtian
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Shahrouz Khoshbakht
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Mahsa Fadaee
- Kariminejad – Najmabadi Pathology & Genetics Center, Tehran, Iran
| | - Raheleh Vazehan
- Kariminejad – Najmabadi Pathology & Genetics Center, Tehran, Iran
| | | | - Parvaneh Karimzadeh
- Department of Pediatric Neurology, School of Medicine, Pediatric Neurology Research Center, Mofid Children’s Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kimia Kahrizi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Hossein Najmabadi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
- Kariminejad – Najmabadi Pathology & Genetics Center, Tehran, Iran
| |
Collapse
|
14
|
Aquatic Freshwater Vertebrate Models of Epilepsy Pathology: Past Discoveries and Future Directions for Therapeutic Discovery. Int J Mol Sci 2022; 23:ijms23158608. [PMID: 35955745 PMCID: PMC9368815 DOI: 10.3390/ijms23158608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 12/04/2022] Open
Abstract
Epilepsy is an international public health concern that greatly affects patients’ health and lifestyle. About 30% of patients do not respond to available therapies, making new research models important for further drug discovery. Aquatic vertebrates present a promising avenue for improved seizure drug screening and discovery. Zebrafish (Danio rerio) and African clawed frogs (Xenopus laevis and tropicalis) are increasing in popularity for seizure research due to their cost-effective housing and rearing, similar genome to humans, ease of genetic manipulation, and simplicity of drug dosing. These organisms have demonstrated utility in a variety of seizure-induction models including chemical and genetic methods. Past studies with these methods have produced promising data and generated questions for further applications of these models to promote discovery of drug-resistant seizure pathology and lead to effective treatments for these patients.
Collapse
|
15
|
Bavan S, Goodkin HP, Papazian DM. Altered Closed State Inactivation Gating in Kv4.2 Channels Results in Developmental and Epileptic Encephalopathies in Human Patients. Hum Mutat 2022; 43:1286-1298. [PMID: 35510384 DOI: 10.1002/humu.24396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 04/27/2022] [Accepted: 05/01/2022] [Indexed: 11/06/2022]
Abstract
Kv4.2 subunits, encoded by KCND2, serve as the pore-forming components of voltage-gated, inactivating ISA K+ channels expressed in the brain. ISA channels inactivate without opening in response to subthreshold excitatory input, temporarily increasing neuronal excitability, the back propagation of action potentials, and Ca2+ influx into dendrites, thereby regulating mechanisms of spike timing-dependent synaptic plasticity. As previously described, a de novo variant in Kv4.2, p.Val404Met, is associated with an infant-onset developmental and epileptic encephalopathy (DEE) in monozygotic twin boys. The p.Val404Met variant enhances inactivation directly from closed states, but dramatically impairs inactivation after channel opening. We now report the identification of a closely related, novel, de novo variant in Kv4.2, p.Val402Leu, in a boy with an early-onset pharmacoresistant epilepsy that evolved to an epileptic aphasia syndrome (Continuous Spike Wave during Sleep Syndrome). Like p.Val404Met, the p.Val402Leu variant increases the rate of inactivation from closed states, but significantly slows inactivation after the pore opens. Although quantitatively the p.Val402Leu mutation alters channel kinetics less dramatically than p.Val404Met, our results strongly support the conclusion that p.Val402Leu and p.Val404Met cause the clinical features seen in the affected individuals and underscore the importance of closed state inactivation in ISA channels in normal brain development and function. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Selvan Bavan
- Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095-1571.,Labcorp Drug Development, Huntingdon, PE28 4HS, UK
| | - Howard P Goodkin
- Departments of Neurology and Pediatrics, University of Virginia School of Medicine, Charlottesville, VA, 22903
| | - Diane M Papazian
- Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095-1571
| |
Collapse
|
16
|
Arredondo K, Myers C, Hansen-Kiss E, Mathew MT, Jayaraman V, Siemon A, Bartholomew D, Herman GE, Mori M. Phenotypic Spectrum in a Family Sharing a Heterozygous KCNQ3 Variant. J Child Neurol 2022; 37:517-523. [PMID: 35384780 DOI: 10.1177/08830738221089741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND AND PURPOSE Mutations in KCNQ3 have classically been associated with benign familial neonatal and infantile seizures and more recently identified in patients with neurodevelopmental disorders and abnormal electroencephalogram (EEG) findings. We present 4 affected patients from a family with a pathogenic mutation in KCNQ3 with a unique constellation of clinical findings. METHODS A family of 3 affected siblings and mother sharing a KCNQ3 pathogenic variant are described, including clinical history, genetic results, and EEG and magnetic resonance imaging (MRI) findings. RESULTS This family shows a variety of clinical manifestations, including neonatal seizures, developmental delays, autism spectrum disorder, and anxiety. One child developed absence epilepsy, 2 children have infrequent convulsive seizures that have persisted into childhood, and their parent developed adult-onset epilepsy. An underlying c.1091G>A (R364H) variant in KCNQ3 was found in all affected individuals. CONCLUSIONS The phenotypic variability of KCNQ3 channelopathies continues to expand as more individuals and families are described, and the variant identified in this family adds to the understanding of the manifestations of KCNQ3-related disorders.
Collapse
Affiliation(s)
- Kristen Arredondo
- Department of Pediatrics, 12306The Ohio State University, Columbus, OH, USA
- Division of Pediatric Neurology, 2650Nationwide Children's Hospital, Columbus, OH, USA
| | - Cortlandt Myers
- Division of Genetic & Genomic Medicine, 2650Nationwide Children's Hospital, Columbus, OH, USA
| | - Emily Hansen-Kiss
- Department of Diagnostic & Biomedical Sciences, 12340University of Texas Health Science Center at Houston, School of Dentistry, Houston, TX, USA
| | - Mariam T Mathew
- Department of Pediatrics, 12306The Ohio State University, Columbus, OH, USA
- Institute for Genomic Medicine, 2650Nationwide Children's Hospital, Columbus, OH, USA
| | - Vijayakumar Jayaraman
- Institute for Genomic Medicine, 2650Nationwide Children's Hospital, Columbus, OH, USA
| | - Amy Siemon
- Division of Genetic & Genomic Medicine, 2650Nationwide Children's Hospital, Columbus, OH, USA
| | - Dennis Bartholomew
- Department of Pediatrics, 12306The Ohio State University, Columbus, OH, USA
- Division of Genetic & Genomic Medicine, 2650Nationwide Children's Hospital, Columbus, OH, USA
| | - Gail E Herman
- Department of Pediatrics, 12306The Ohio State University, Columbus, OH, USA
- Division of Genetic & Genomic Medicine, 2650Nationwide Children's Hospital, Columbus, OH, USA
| | - Mari Mori
- Department of Pediatrics, 12306The Ohio State University, Columbus, OH, USA
- Division of Genetic & Genomic Medicine, 2650Nationwide Children's Hospital, Columbus, OH, USA
| |
Collapse
|
17
|
Inherited Developmental and Epileptic Encephalopathies. Neurol Int 2021; 13:555-568. [PMID: 34842787 PMCID: PMC8628919 DOI: 10.3390/neurolint13040055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 01/13/2023] Open
Abstract
Epileptic encephalopathies often have a genetic etiology. The epileptic activity itself exerts a direct detrimental effect on neurodevelopment, which may add to the cognitive impairment induced by the underlying mutation (“developmental and epileptic encephalopathy”). The focus of this review is on inherited syndromes. The phenotypes of genetic disorders affecting ion channels, metabolic signalling, membrane trafficking and exocytosis, cell adhesion, cell growth and proliferation are discussed. Red flags suggesting family of genes or even specific genes are highlighted. The knowledge of the phenotypical spectrum can indeed prompt the clinician to suspect specific etiologies, expediting the diagnosis.
Collapse
|
18
|
Gao X, Bender F, Soh H, Chen C, Altafi M, Schütze S, Heidenreich M, Gorbati M, Corbu MA, Carus-Cadavieco M, Korotkova T, Tzingounis AV, Jentsch TJ, Ponomarenko A. Place fields of single spikes in hippocampus involve Kcnq3 channel-dependent entrainment of complex spike bursts. Nat Commun 2021; 12:4801. [PMID: 34376649 PMCID: PMC8355348 DOI: 10.1038/s41467-021-24805-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 06/29/2021] [Indexed: 02/07/2023] Open
Abstract
Hippocampal pyramidal cells encode an animal's location by single action potentials and complex spike bursts. These elementary signals are believed to play distinct roles in memory consolidation. The timing of single spikes and bursts is determined by intrinsic excitability and theta oscillations (5-10 Hz). Yet contributions of these dynamics to place fields remain elusive due to the lack of methods for specific modification of burst discharge. In mice lacking Kcnq3-containing M-type K+ channels, we find that pyramidal cell bursts are less coordinated by the theta rhythm than in controls during spatial navigation, but not alert immobility. Less modulated bursts are followed by an intact post-burst pause of single spike firing, resulting in a temporal discoordination of network oscillatory and intrinsic excitability. Place fields of single spikes in one- and two-dimensional environments are smaller in the mutant. Optogenetic manipulations of upstream signals reveal that neither medial septal GABA-ergic nor cholinergic inputs alone, but rather their joint activity, is required for entrainment of bursts. Our results suggest that altered representations by bursts and single spikes may contribute to deficits underlying cognitive disabilities associated with KCNQ3-mutations in humans.
Collapse
Affiliation(s)
- Xiaojie Gao
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin, Berlin, Germany
| | - Franziska Bender
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin, Berlin, Germany
| | - Heun Soh
- University of Connecticut, Storrs, CT, USA
| | - Changwan Chen
- Max Planck Institute for Metabolism Research, Cologne, Germany
- Institute for Vegetative Physiology, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Mahsa Altafi
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sebastian Schütze
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
- Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
| | - Matthias Heidenreich
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
- Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
| | - Maria Gorbati
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin, Berlin, Germany
| | | | - Marta Carus-Cadavieco
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin, Berlin, Germany
| | - Tatiana Korotkova
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin, Berlin, Germany
- Max Planck Institute for Metabolism Research, Cologne, Germany
- Institute for Vegetative Physiology, Faculty of Medicine, University of Cologne, Cologne, Germany
| | | | - Thomas J Jentsch
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany.
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin, Berlin, Germany.
- Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany.
| | - Alexey Ponomarenko
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany.
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin, Berlin, Germany.
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
19
|
Li W, Zhao W, Wang J, Zhang X, Qian X, Gu R, He G. Identification of a novel variant p.Ser606Gly in SCN3A associated with childhood absence epilepsy. Epilepsy Res 2021; 175:106682. [PMID: 34102392 DOI: 10.1016/j.eplepsyres.2021.106682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/14/2021] [Accepted: 05/31/2021] [Indexed: 10/21/2022]
Abstract
Sodium (Na+) channels are the basis for action potential generation and propagation, which play a key role in the regulation of neuronal excitability. SCN3A is a gene encoding for sodium channel protein type 3 subunit alpha (or known as Nav1.3). This study aimed to explore SCN3A genetic variants in a cohort of childhood absence epilepsy (CAE) via whole exome sequencing. A novel SCN3A missense variant (c.A1816G, p.Ser606Gly) was identified in a patient with CAE. This variant had not been reported in both 1000G and ExAC databases. Bioinformatics analysis revealed that this variant was pathogenic and could transform the protein structure of Nav1.3. The reported phenotypes of SCN3A-related central nerve system disorders included multiple seizure types, polymicrogyria and different degrees of developmental delay/intellectual disability. The patient with p.Ser606Gly variant exhibited typical absence seizures. The MRI and CT scan results were normal, and EEG showed that 3-Hz spike-slow wave discharges. In conclusion, our findings not only broaden the pathogenic spectrum of SCN3A, but also extend the clinical phenotypes of SCN3A-related CAE.
Collapse
Affiliation(s)
- Wei Li
- School of Forensic Medicine, Xinxiang Medical University, Xinxiang, China
| | - Wenli Zhao
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Jing Wang
- School of Forensic Medicine, Xinxiang Medical University, Xinxiang, China
| | - Xiaoli Zhang
- Department of Neurology, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Xinlai Qian
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China.
| | - Renjun Gu
- Department of Neurology, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.
| | - Guoyang He
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China.
| |
Collapse
|
20
|
Ritter DM, Horn PS, Holland KD. In Silico Predictions of KCNQ Variant Pathogenicity in Epilepsy. Pediatr Neurol 2021; 118:48-54. [PMID: 33784504 PMCID: PMC8076079 DOI: 10.1016/j.pediatrneurol.2021.01.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 01/10/2021] [Accepted: 01/18/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND Variants in KCNQ2 and KCNQ3 may cause benign neonatal familial seizures and early infantile epileptic encephalopathy. Previous reports suggest that in silico models cannot predict pathogenicity accurately enough for clinical use. Here we sought to establish a model to accurately predict the pathogenicity of KCNQ2 and KCNQ3 missense variants based on available in silico prediction models. METHODS ClinVar and gnomAD databases of reported KCNQ2 and KCNQ3 missense variants in patients with neonatal epilepsy were accessed and classified as benign, pathogenic, or of uncertain significance. Sensitivity, specificity, and classification accuracy for prediction of pathogenicity were determined and compared for 10 widely used prediction algorithms program. A mathematical model of the variants (KCNQ Index) was created using their amino acid location and prediction algorithm scores to improve prediction accuracy. RESULTS Using clinically characterized variants, the free online tool PROVEAN accurately predicted pathogenicity 92% of the time and the KCNQ Index had an accuracy of 96%. However, when including the gnomAD database as benign variants, only the KCNQ Index was able to predict pathogenicity with an accuracy greater than 90% (sensitivity = 93% and specificity = 98%). No model could accurately predict the phenotype of variants. CONCLUSION We show that KCNQ channel variant pathogenicity can be predicted by a novel KCNQ Index in neonatal epilepsy. However, more work is needed to accurately predict the patient's epilepsy phenotype from in silico algorithms.
Collapse
Affiliation(s)
- David M Ritter
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio.
| | - Paul S Horn
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Katherine D Holland
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
21
|
Corrêa T, Santos-Rebouças CB, Mayndra M, Schinzel A, Riegel M. Shared Neurodevelopmental Perturbations Can Lead to Intellectual Disability in Individuals with Distinct Rare Chromosome Duplications. Genes (Basel) 2021; 12:genes12050632. [PMID: 33922640 PMCID: PMC8146713 DOI: 10.3390/genes12050632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/13/2021] [Accepted: 04/16/2021] [Indexed: 11/16/2022] Open
Abstract
Chromosomal duplications are associated with a large group of human diseases that arise mainly from dosage imbalance of genes within the rearrangements. Phenotypes range widely but are often associated with global development delay, intellectual disability, autism spectrum disorders, and multiple congenital abnormalities. How different contiguous genes from a duplicated genomic region interact and dynamically affect the expression of each other remains unclear in most cases. Here, we report a genomic comparative delineation of genes located in duplicated chromosomal regions 8q24.13q24.3, 18p11.32p11.21, and Xq22.3q27.2 in three patients followed up at our genetics service who has the intellectual disability (ID) as a common phenotype. We integrated several genomic data levels by identification of gene content within the duplications, protein-protein interactions, and functional analysis on specific tissues. We found functional relationships among genes from three different duplicated chromosomal regions, reflecting interactions of protein-coding genes and their involvement in common cellular subnetworks. Furthermore, the sharing of common significant biological processes associated with ID has been demonstrated between proteins from the different chromosomal regions. Finally, we elaborated a shared model of pathways directly or indirectly related to the central nervous system (CNS), which could perturb cognitive function and lead to ID in the three duplication conditions.
Collapse
Affiliation(s)
- Thiago Corrêa
- Department of Genetics, Institute of Biosciences, Federal University of Rio Grande do Sul UFRGS, Porto Alegre 91501-970, Brazil;
| | - Cíntia B. Santos-Rebouças
- Department of Genetics, Institute of Biology Roberto Alcantara Gomes, State University of Rio de Janeiro, Rio de Janeiro 20511-010, Brazil;
| | - Maytza Mayndra
- Children’s Hospital Jeser Amarante Faria, Joinville 89204-310, Brazil;
| | - Albert Schinzel
- Institute of Medical Genetics, University of Zurich, 8952 Schlieren, Switzerland;
| | - Mariluce Riegel
- Department of Genetics, Institute of Biosciences, Federal University of Rio Grande do Sul UFRGS, Porto Alegre 91501-970, Brazil;
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, Brazil
- Correspondence:
| |
Collapse
|
22
|
Nikitin ES, Vinogradova LV. Potassium channels as prominent targets and tools for the treatment of epilepsy. Expert Opin Ther Targets 2021; 25:223-235. [PMID: 33754930 DOI: 10.1080/14728222.2021.1908263] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION K+ channels are of great interest to epilepsy research as mutations in their genes are found in humans with inherited epilepsy. At the level of cellular physiology, K+ channels control neuronal intrinsic excitability and are the main contributors to membrane repolarization of active neurons. Recently, a genetically modified voltage-dependent K+ channel has been patented as a remedy for epileptic seizures. AREAS COVERED We review the role of potassium channels in excitability, clinical and experimental evidence for the association of potassium channelopathies with epilepsy, the targeting of K+ channels by drugs, and perspectives of gene therapy in epilepsy with the expression of extra K+ channels in the brain. EXPERT OPINION Control over K+ conductance is of great potential benefit for the treatment of epilepsy. Nowadays, gene therapy affecting K+ channels is one of the most promising approaches to treat pharmacoresistant focal epilepsy.
Collapse
Affiliation(s)
- E S Nikitin
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - L V Vinogradova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
23
|
Garcia-Rosa S, de Freitas Brenha B, Felipe da Rocha V, Goulart E, Araujo BHS. Personalized Medicine Using Cutting Edge Technologies for Genetic Epilepsies. Curr Neuropharmacol 2021; 19:813-831. [PMID: 32933463 PMCID: PMC8686309 DOI: 10.2174/1570159x18666200915151909] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/08/2020] [Accepted: 08/28/2020] [Indexed: 11/22/2022] Open
Abstract
Epilepsy is the most common chronic neurologic disorder in the world, affecting 1-2% of the population. Besides, 30% of epilepsy patients are drug-resistant. Genomic mutations seem to play a key role in its etiology and knowledge of strong effect mutations in protein structures might improve prediction and the development of efficacious drugs to treat epilepsy. Several genetic association studies have been undertaken to examine the effect of a range of candidate genes for resistance. Although, few studies have explored the effect of the mutations into protein structure and biophysics in the epilepsy field. Much work remains to be done, but the plans made for exciting developments will hold therapeutic potential for patients with drug-resistance. In summary, we provide a critical review of the perspectives for the development of individualized medicine for epilepsy based on genetic polymorphisms/mutations in light of core elements such as transcriptomics, structural biology, disease model, pharmacogenomics and pharmacokinetics in a manner to improve the success of trial designs of antiepileptic drugs.
Collapse
Affiliation(s)
- Sheila Garcia-Rosa
- Brazilian Biosciences National Laboratory (LNBio), Center for Research in Energy and Material (CNPEM), Campinas, SP, Brazil
| | - Bianca de Freitas Brenha
- Laboratory of Embryonic Genetic Regulation, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | - Vinicius Felipe da Rocha
- Brazilian Biosciences National Laboratory (LNBio), Center for Research in Energy and Material (CNPEM), Campinas, SP, Brazil
| | - Ernesto Goulart
- Human Genome and Stem-Cell Research Center (HUG-CEL), Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, SP, Brazil
| | - Bruno Henrique Silva Araujo
- Brazilian Biosciences National Laboratory (LNBio), Center for Research in Energy and Material (CNPEM), Campinas, SP, Brazil
| |
Collapse
|
24
|
Baculis BC, Zhang J, Chung HJ. The Role of K v7 Channels in Neural Plasticity and Behavior. Front Physiol 2020; 11:568667. [PMID: 33071824 PMCID: PMC7530275 DOI: 10.3389/fphys.2020.568667] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/28/2020] [Indexed: 12/12/2022] Open
Abstract
Activity-dependent persistent changes in neuronal intrinsic excitability and synaptic strength are widely thought to underlie learning and memory. Voltage-gated KCNQ/Kv7 potassium channels have been of great interest as the potential targets for memory disorders due to the beneficial effects of their antagonists in cognition. Importantly, de novo dominant mutations in their neuronal subunits KCNQ2/Kv7.2 and KCNQ3/Kv7.3 are associated with epilepsy and neurodevelopmental disorder characterized by developmental delay and intellectual disability. The role of Kv7 channels in neuronal excitability and epilepsy has been extensively studied. However, their functional significance in neural plasticity, learning, and memory remains largely unknown. Here, we review recent studies that support the emerging roles of Kv7 channels in intrinsic and synaptic plasticity, and their contributions to cognition and behavior.
Collapse
Affiliation(s)
- Brian C Baculis
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Jiaren Zhang
- Department of Molecular Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Hee Jung Chung
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Department of Molecular Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
25
|
Miceli F, Carotenuto L, Barrese V, Soldovieri MV, Heinzen EL, Mandel AM, Lippa N, Bier L, Goldstein DB, Cooper EC, Cilio MR, Taglialatela M, Sands TT. A Novel Kv7.3 Variant in the Voltage-Sensing S 4 Segment in a Family With Benign Neonatal Epilepsy: Functional Characterization and in vitro Rescue by β-Hydroxybutyrate. Front Physiol 2020; 11:1040. [PMID: 33013448 PMCID: PMC7498716 DOI: 10.3389/fphys.2020.01040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 07/29/2020] [Indexed: 01/09/2023] Open
Abstract
Pathogenic variants in KCNQ2 and KCNQ3, paralogous genes encoding Kv7.2 and Kv7.3 voltage-gated K+ channel subunits, are responsible for early-onset developmental/epileptic disorders characterized by heterogeneous clinical phenotypes ranging from benign familial neonatal epilepsy (BFNE) to early-onset developmental and epileptic encephalopathy (DEE). KCNQ2 variants account for the majority of pedigrees with BFNE and KCNQ3 variants are responsible for a much smaller subgroup, but the reasons for this imbalance remain unclear. Analysis of additional pedigrees is needed to further clarify the nature of this genetic heterogeneity and to improve prediction of pathogenicity for novel variants. We identified a BFNE family with two siblings and a parent affected. Exome sequencing on samples from both parents and siblings revealed a novel KCNQ3 variant (c.719T>G; p.M240R), segregating in the three affected individuals. The M240 residue is conserved among human Kv7.2-5 and lies between the two arginines (R5 and R6) closest to the intracellular side of the voltage-sensing S4 transmembrane segment. Whole cell patch-clamp recordings in Chinese hamster ovary (CHO) cells revealed that homomeric Kv7.3 M240R channels were not functional, whereas heteromeric channels incorporating Kv7.3 M240R mutant subunits with Kv7.2 and Kv7.3 displayed a depolarizing shift of about 10 mV in activation gating. Molecular modeling results suggested that the M240R substitution preferentially stabilized the resting state and possibly destabilized the activated state of the Kv7.3 subunits, a result consistent with functional data. Exposure to β-hydroxybutyrate (BHB), a ketone body generated during the ketogenic diet (KD), reversed channel dysfunction induced by the M240R variant. In conclusion, we describe the first missense loss-of-function (LoF) pathogenic variant within the S4 segment of Kv7.3 identified in patients with BFNE. Studied under conditions mimicking heterozygosity, the M240R variant mainly affects the voltage sensitivity, in contrast to previously analyzed BFNE Kv7.3 variants that reduce current density. Our pharmacological results provide a rationale for the use of KD in patients carrying LoF variants in Kv7.2 or Kv7.3 subunits.
Collapse
Affiliation(s)
- Francesco Miceli
- Department of Neuroscience, University of Naples “Federico II”, Naples, Italy
| | - Lidia Carotenuto
- Department of Neuroscience, University of Naples “Federico II”, Naples, Italy
| | - Vincenzo Barrese
- Department of Neuroscience, University of Naples “Federico II”, Naples, Italy
| | | | - Erin L. Heinzen
- Eshelman School of Pharmacy, Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, United States
| | - Arthur M. Mandel
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, United States
| | - Natalie Lippa
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, United States
| | - Louise Bier
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, United States
| | - David B. Goldstein
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, United States
| | - Edward C. Cooper
- Departments of Neurology, Neuroscience, and Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | - Maria Roberta Cilio
- Department of Pediatrics and Institute of Experimental and Clinical Research, Cliniques universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium
| | | | - Tristan T. Sands
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, United States
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, United States
| |
Collapse
|
26
|
Gene constraint and genotype-phenotype correlations in neurodevelopmental disorders. Curr Opin Genet Dev 2020; 65:69-75. [PMID: 32599522 DOI: 10.1016/j.gde.2020.05.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 05/24/2020] [Indexed: 11/24/2022]
Abstract
With the advent and widespread adoption of high-throughput DNA sequencing, genetic discoveries in neurodevelopmental disorders (NDDs) are advancing very rapidly. The identification of novel NDD genes and of rare, highly penetrant pathogenic variants is leading to improved understanding of genotype-phenotype correlations. Here we emphasize the importance of large-scale, reference databases such as gnomAD to determine gene and variant level constraints and facilitate gene discovery, variant interpretation, and genotype-phenotype correlations. While the majority of dominant NDD genes are highly intolerant to variation, some apparent exceptions in reference databases are related to the presence of variants in transcripts that are not brain expressed and/or genes that show acquired somatic mosaicism in blood. Multiple NDD genes are being identified where varying phenotypes depend on the mode of inheritance (e.g., dominant or recessive), the nature (e.g., missense or truncating), or location of the mutation. Ongoing genome-wide analyses and targeted functional studies provide enhancements to the annotation of genes, gene products and variants, which will continue to facilitate gene and variant discovery and variant interpretation.
Collapse
|
27
|
Kessi M, Chen B, Peng J, Tang Y, Olatoutou E, He F, Yang L, Yin F. Intellectual Disability and Potassium Channelopathies: A Systematic Review. Front Genet 2020; 11:614. [PMID: 32655623 PMCID: PMC7324798 DOI: 10.3389/fgene.2020.00614] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/20/2020] [Indexed: 01/15/2023] Open
Abstract
Intellectual disability (ID) manifests prior to adulthood as severe limitations to intellectual function and adaptive behavior. The role of potassium channelopathies in ID is poorly understood. Therefore, we aimed to evaluate the relationship between ID and potassium channelopathies. We hypothesized that potassium channelopathies are strongly associated with ID initiation, and that both gain- and loss-of-function mutations lead to ID. This systematic review explores the burden of potassium channelopathies, possible mechanisms, advancements using animal models, therapies, and existing gaps. The literature search encompassed both PubMed and Embase up to October 2019. A total of 75 articles describing 338 cases were included in this review. Nineteen channelopathies were identified, affecting the following genes: KCNMA1, KCNN3, KCNT1, KCNT2, KCNJ10, KCNJ6, KCNJ11, KCNA2, KCNA4, KCND3, KCNH1, KCNQ2, KCNAB1, KCNQ3, KCNQ5, KCNC1, KCNB1, KCNC3, and KCTD3. Twelve of these genes presented both gain- and loss-of-function properties, three displayed gain-of-function only, three exhibited loss-of-function only, and one had unknown function. How gain- and loss-of-function mutations can both lead to ID remains largely unknown. We identified only a few animal studies that focused on the mechanisms of ID in relation to potassium channelopathies and some of the few available therapeutic options (channel openers or blockers) appear to offer limited efficacy. In conclusion, potassium channelopathies contribute to the initiation of ID in several instances and this review provides a comprehensive overview of which molecular players are involved in some of the most prominent disease phenotypes.
Collapse
Affiliation(s)
- Miriam Kessi
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China.,Kilimanjaro Christian Medical University College, Moshi, Tanzania.,Mawenzi Regional Referral Hospital, Moshi, Tanzania
| | - Baiyu Chen
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Jing Peng
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Yulin Tang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Eleonore Olatoutou
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Fang He
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Lifen Yang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Fei Yin
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| |
Collapse
|
28
|
Vigil FA, Carver CM, Shapiro MS. Pharmacological Manipulation of K v 7 Channels as a New Therapeutic Tool for Multiple Brain Disorders. Front Physiol 2020; 11:688. [PMID: 32636759 PMCID: PMC7317068 DOI: 10.3389/fphys.2020.00688] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 05/27/2020] [Indexed: 12/12/2022] Open
Abstract
K v 7 ("M-type," KCNQ) K+ currents, play dominant roles in controlling neuronal excitability. They act as a "brake" against hyperexcitable states in the central and peripheral nervous systems. Pharmacological augmentation of M current has been developed for controlling epileptic seizures, although current pharmacological tools are uneven in practical usefulness. Lately, however, M-current "opener" compounds have been suggested to be efficacious in preventing brain damage after multiple types of insults/diseases, such as stroke, traumatic brain injury, drug addiction and mood disorders. In this review, we will discuss what is known to date on these efforts and identify gaps in our knowledge regarding the link between M current and therapeutic potential for these disorders. We will outline the preclinical experiments that are yet to be performed to demonstrate the likelihood of success of this approach in human trials. Finally, we also address multiple pharmacological tools available to manipulate different K v 7 subunits and the relevant evidence for translational application in the clinical use for disorders of the central nervous system and multiple types of brain insults. We feel there to be great potential for manipulation of K v 7 channels as a novel therapeutic mode of intervention in the clinic, and that the paucity of existing therapies obligates us to perform further research, so that patients can soon benefit from such therapeutic approaches.
Collapse
Affiliation(s)
- Fabio A Vigil
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX, United States
| | - Chase M Carver
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX, United States
| | - Mark S Shapiro
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX, United States
| |
Collapse
|
29
|
Nappi P, Miceli F, Soldovieri MV, Ambrosino P, Barrese V, Taglialatela M. Epileptic channelopathies caused by neuronal Kv7 (KCNQ) channel dysfunction. Pflugers Arch 2020; 472:881-898. [PMID: 32506321 DOI: 10.1007/s00424-020-02404-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 05/12/2020] [Accepted: 05/18/2020] [Indexed: 11/28/2022]
Abstract
Seizures are the most common neurological manifestation in the newborn period, with an estimated incidence of 1.8-3.5 per 1000 live births. Prolonged or intractable seizures have a detrimental effect on cognition and brain function in experimental animals and are associated with adverse long-term neurodevelopmental sequelae and an increased risk of post-neonatal epilepsy in humans. The developing brain is particularly susceptible to the potentially severe effects of epilepsy, and epilepsy, especially when refractory to medications, often results in a developmental and epileptic encephalopathy (DEE) with developmental arrest or regression. DEEs can be primarily attributed to genetic causes. Given the critical role of potassium (K+) currents with distinct subcellular localization, biophysical properties, modulation, and pharmacological profile in regulating intrinsic electrical properties of neurons and their responsiveness to synaptic inputs, it is not too surprising that genetic research in the past two decades has identified several K+ channel genes as responsible for a large fraction of DEE. In the present article, we review the genetically determined epileptic channelopathies affecting three members of the Kv7 family, namely Kv7.2 (KCNQ2), Kv7.3 (KCNQ3), and Kv7.5 (KCNQ5); we review the phenotypic spectrum of Kv7-related epileptic channelopathies, the different genetic and pathogenetic mechanisms, and the emerging genotype-phenotype correlations which may prove crucial for prognostic predictions, disease management, parental counseling, and individually tailored therapeutic attempts.
Collapse
Affiliation(s)
- Piera Nappi
- Section of Pharmacology, Department of Neuroscience, University of Naples, "Federico II", Via Pansini 5, 80131, Naples, Italy
| | - Francesco Miceli
- Section of Pharmacology, Department of Neuroscience, University of Naples, "Federico II", Via Pansini 5, 80131, Naples, Italy
| | | | - Paolo Ambrosino
- Department of Science and Technology (DST), University of Sannio, Benevento, Italy
| | - Vincenzo Barrese
- Section of Pharmacology, Department of Neuroscience, University of Naples, "Federico II", Via Pansini 5, 80131, Naples, Italy
| | - Maurizio Taglialatela
- Section of Pharmacology, Department of Neuroscience, University of Naples, "Federico II", Via Pansini 5, 80131, Naples, Italy.
| |
Collapse
|
30
|
Vigil FA, Bozdemir E, Bugay V, Chun SH, Hobbs M, Sanchez I, Hastings SD, Veraza RJ, Holstein DM, Sprague SM, M Carver C, Cavazos JE, Brenner R, Lechleiter JD, Shapiro MS. Prevention of brain damage after traumatic brain injury by pharmacological enhancement of KCNQ (Kv7, "M-type") K + currents in neurons. J Cereb Blood Flow Metab 2020; 40:1256-1273. [PMID: 31272312 PMCID: PMC7238379 DOI: 10.1177/0271678x19857818] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nearly three million people in the USA suffer traumatic brain injury (TBI) yearly; however, there are no pre- or post-TBI treatment options available. KCNQ2-5 voltage-gated K+ channels underlie the neuronal "M current", which plays a dominant role in the regulation of neuronal excitability. Our strategy towards prevention of TBI-induced brain damage is predicated on the suggested hyper-excitability of neurons induced by TBIs, and the decrease in neuronal excitation upon pharmacological augmentation of M/KCNQ K+ currents. Seizures are very common after a TBI, making further seizures and development of epilepsy disease more likely. Our hypothesis is that TBI-induced hyperexcitability and ischemia/hypoxia lead to metabolic stress, cell death and a maladaptive inflammatory response that causes further downstream morbidity. Using the mouse controlled closed-cortical impact blunt TBI model, we found that systemic administration of the prototype M-channel "opener", retigabine (RTG), 30 min after TBI, reduces the post-TBI cascade of events, including spontaneous seizures, enhanced susceptibility to chemo-convulsants, metabolic stress, inflammatory responses, blood-brain barrier breakdown, and cell death. This work suggests that acutely reducing neuronal excitability and energy demand via M-current enhancement may be a novel model of therapeutic intervention against post-TBI brain damage and dysfunction.
Collapse
Affiliation(s)
- Fabio A Vigil
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Eda Bozdemir
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Vladislav Bugay
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Sang H Chun
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, USA
| | - MaryAnn Hobbs
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Isamar Sanchez
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Shayne D Hastings
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Rafael J Veraza
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Deborah M Holstein
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Shane M Sprague
- Department of Neurosurgery, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Chase M Carver
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Jose E Cavazos
- Department of Neurology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Robert Brenner
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - James D Lechleiter
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Mark S Shapiro
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX, USA
| |
Collapse
|
31
|
Vay SU, Flitsch LJ, Rabenstein M, Monière H, Jakovcevski I, Andjus P, Bijelic D, Blaschke S, Walter HL, Fink GR, Schroeter M, Rueger MA. The impact of hyperpolarization-activated cyclic nucleotide-gated (HCN) and voltage-gated potassium KCNQ/Kv7 channels on primary microglia function. J Neuroinflammation 2020; 17:100. [PMID: 32248813 PMCID: PMC7132998 DOI: 10.1186/s12974-020-01779-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/18/2020] [Indexed: 01/03/2023] Open
Abstract
Background Microglia are essential to maintain cell homeostasis in the healthy brain and are activated after brain injury. Upon activation, microglia polarize towards different phenotypes. The course of microglia activation is complex and depends on signals in the surrounding milieu. Recently, it has been suggested that microglia respond to ion currents, as a way of regulating their activity and function. Methods and results Under the hypothesis that HCN and KCNQ/Kv7 channels impact on microglia, we studied primary rat microglia in the presence or absence of specific pharmacological blockade or RNA silencing. Primary microglia expressed the subunits HCN1-4, Kv7.2, Kv7.3, and Kv7.5. The expression of HCN2, as well as Kv7.2 and Kv7.3, varied among different microglia phenotypes. The pharmacological blockade of HCN channels by ZD7288 resulted in cell depolarization with slowly rising intracellular calcium levels, leading to enhanced survival and reduced proliferation rates of resting microglia. Furthermore, ZD7288 treatment, as well as knockdown of HCN2 RNA by small interfering RNA, resulted in an attenuation of later microglia activation—both towards the anti- and pro-inflammatory phenotype. However, HCN channel inhibition enhanced the phagocytic capacity of IL4-stimulated microglia. Blockade of Kv7/KCNQ channel by XE-991 exclusively inhibited the migratory capacity of resting microglia. Conclusion These observations suggest that the HCN current contributes to various microglia functions and impacts on the course of microglia activation, while the Kv7/KCNQ channels affect microglia migration. Characterizing the role of HCN channels in microglial functioning may offer new therapeutic approaches for targeted modulation of neuroinflammation as a hallmark of various neurological disorders.
Collapse
Affiliation(s)
- Sabine Ulrike Vay
- Department of Neurology, Faculty of Medicine and University Hospital, University Hospital of Cologne, Kerpener Strasse 62, 50924, Cologne, Germany.
| | - Lea Jessica Flitsch
- Department of Neurology, Faculty of Medicine and University Hospital, University Hospital of Cologne, Kerpener Strasse 62, 50924, Cologne, Germany
| | - Monika Rabenstein
- Department of Neurology, Faculty of Medicine and University Hospital, University Hospital of Cologne, Kerpener Strasse 62, 50924, Cologne, Germany
| | - Helena Monière
- Department of Neurology, Faculty of Medicine and University Hospital, University Hospital of Cologne, Kerpener Strasse 62, 50924, Cologne, Germany
| | - Igor Jakovcevski
- Institute for Molecular and Behavioural Neuroscience and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Pavle Andjus
- Center for Laser Microscopy-CLM, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Dunja Bijelic
- Center for Laser Microscopy-CLM, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Stefan Blaschke
- Department of Neurology, Faculty of Medicine and University Hospital, University Hospital of Cologne, Kerpener Strasse 62, 50924, Cologne, Germany.,Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Juelich, Juelich, Germany
| | - Helene Luise Walter
- Department of Neurology, Faculty of Medicine and University Hospital, University Hospital of Cologne, Kerpener Strasse 62, 50924, Cologne, Germany
| | - Gereon Rudolf Fink
- Department of Neurology, Faculty of Medicine and University Hospital, University Hospital of Cologne, Kerpener Strasse 62, 50924, Cologne, Germany.,Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Juelich, Juelich, Germany
| | - Michael Schroeter
- Department of Neurology, Faculty of Medicine and University Hospital, University Hospital of Cologne, Kerpener Strasse 62, 50924, Cologne, Germany.,Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Juelich, Juelich, Germany
| | - Maria Adele Rueger
- Department of Neurology, Faculty of Medicine and University Hospital, University Hospital of Cologne, Kerpener Strasse 62, 50924, Cologne, Germany.,Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Juelich, Juelich, Germany
| |
Collapse
|
32
|
Galvin VC, Yang ST, Paspalas CD, Yang Y, Jin LE, Datta D, Morozov YM, Lightbourne TC, Lowet AS, Rakic P, Arnsten AFT, Wang M. Muscarinic M1 Receptors Modulate Working Memory Performance and Activity via KCNQ Potassium Channels in the Primate Prefrontal Cortex. Neuron 2020; 106:649-661.e4. [PMID: 32197063 DOI: 10.1016/j.neuron.2020.02.030] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/21/2020] [Accepted: 02/25/2020] [Indexed: 02/06/2023]
Abstract
Working memory relies on the dorsolateral prefrontal cortex (dlPFC), where microcircuits of pyramidal neurons enable persistent firing in the absence of sensory input, maintaining information through recurrent excitation. This activity relies on acetylcholine, although the molecular mechanisms for this dependence are not thoroughly understood. This study investigated the role of muscarinic M1 receptors (M1Rs) in the dlPFC using iontophoresis coupled with single-unit recordings from aging monkeys with naturally occurring cholinergic depletion. We found that M1R stimulation produced an inverted-U dose response on cell firing and behavioral performance when given systemically to aged monkeys. Immunoelectron microscopy localized KCNQ isoforms (Kv7.2, Kv7.3, and Kv7.5) on layer III dendrites and spines, similar to M1Rs. Iontophoretic manipulation of KCNQ channels altered cell firing and reversed the effects of M1R compounds, suggesting that KCNQ channels are one mechanism for M1R actions in the dlPFC. These results indicate that M1Rs may be an appropriate target to treat cognitive disorders with cholinergic alterations.
Collapse
Affiliation(s)
- Veronica C Galvin
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Sheng Tao Yang
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | - Yang Yang
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Lu E Jin
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Dibyadeep Datta
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Yury M Morozov
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Taber C Lightbourne
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Adam S Lowet
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Pasko Rakic
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Amy F T Arnsten
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Min Wang
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
33
|
Cárdenas-Rodríguez N, Carmona-Aparicio L, Pérez-Lozano DL, Ortega-Cuellar D, Gómez-Manzo S, Ignacio-Mejía I. Genetic variations associated with pharmacoresistant epilepsy (Review). Mol Med Rep 2020; 21:1685-1701. [PMID: 32319641 PMCID: PMC7057824 DOI: 10.3892/mmr.2020.10999] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 01/16/2020] [Indexed: 12/13/2022] Open
Abstract
Epilepsy is a common, serious neurological disorder worldwide. Although this disease can be successfully treated in most cases, not all patients respond favorably to medical treatments, which can lead to pharmacoresistant epilepsy. Drug-resistant epilepsy can be caused by a number of mechanisms that may involve environmental and genetic factors, as well as disease- and drug-related factors. In recent years, numerous studies have demonstrated that genetic variation is involved in the drug resistance of epilepsy, especially genetic variations found in drug resistance-related genes, including the voltage-dependent sodium and potassium channels genes, and the metabolizer of endogenous and xenobiotic substances genes. The present review aimed to highlight the genetic variants that are involved in the regulation of drug resistance in epilepsy; a comprehensive understanding of the role of genetic variation in drug resistance will help us develop improved strategies to regulate drug resistance efficiently and determine the pathophysiological processes that underlie this common human neurological disease.
Collapse
Affiliation(s)
- Noemí Cárdenas-Rodríguez
- Laboratory of Neuroscience, National Institute of Pediatrics, Ministry of Health, Coyoacán, Mexico City 04530, Mexico
| | - Liliana Carmona-Aparicio
- Laboratory of Neuroscience, National Institute of Pediatrics, Ministry of Health, Coyoacán, Mexico City 04530, Mexico
| | - Diana L Pérez-Lozano
- Laboratory of Neuroscience, National Institute of Pediatrics, Ministry of Health, Coyoacán, Mexico City 04530, Mexico
| | - Daniel Ortega-Cuellar
- Laboratory of Experimental Nutrition, National Institute of Pediatrics, Ministry of Health, Coyoacán, Mexico City 04530, Mexico
| | - Saúl Gómez-Manzo
- Laboratory of Genetic Biochemistry, National Institute of Pediatrics, Ministry of Health, Coyoacán, Mexico City 04530, Mexico
| | - Iván Ignacio-Mejía
- Laboratory of Translational Medicine, Military School of Health Graduates, Lomas de Sotelo, Militar, Mexico City 11200, Mexico
| |
Collapse
|
34
|
Bartolini E, Campostrini R, Kiferle L, Pradella S, Rosati E, Chinthapalli K, Palumbo P. Epilepsy and brain channelopathies from infancy to adulthood. Neurol Sci 2019; 41:749-761. [PMID: 31838630 DOI: 10.1007/s10072-019-04190-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 12/06/2019] [Indexed: 01/04/2023]
Abstract
Genetic brain channelopathies result from inherited or de novo mutations of genes encoding ion channel subunits within the central nervous system. Most neurological channelopathies arise in childhood with paroxysmal or episodic symptoms, likely because of a transient impairment of homeostatic mechanisms regulating membrane excitability, and the prototypical expression of this impairment is epilepsy. Migraine, episodic ataxia and alternating hemiplegia can also occur, as well as chronic phenotypes, such as spinocerebellar ataxias, intellectual disability and autism spectrum disorder. Voltage-gated and ligand-gated channels may be involved. In most cases, a single gene may be associated with a phenotypical spectrum that shows variable expressivity. Different clinical features may arise at different ages and the adult phenotype may be remarkably modified from the syndrome onset in childhood or adolescence. Recognizing the prominent phenotypical traits of brain channelopathies is essential to perform appropriate diagnostic investigations and to provide the better care not only in the paediatric setting but also for adult patients and their caregivers. Herein, we provide an overview of genetic brain channelopathies associated with epilepsy, highlight the different molecular mechanisms and describe the different clinical characteristics which may prompt the clinician to suspect specific syndromes and to possibly establish tailored treatments.
Collapse
Affiliation(s)
- Emanuele Bartolini
- USL Centro Toscana, Neurology Unit, Nuovo Ospedale Santo Stefano, Via Suor Niccolina Infermiera 20, 59100, Prato, Italy.
| | - Roberto Campostrini
- USL Centro Toscana, Neurology Unit, Nuovo Ospedale Santo Stefano, Via Suor Niccolina Infermiera 20, 59100, Prato, Italy
| | - Lorenzo Kiferle
- USL Centro Toscana, Neurology Unit, Nuovo Ospedale Santo Stefano, Via Suor Niccolina Infermiera 20, 59100, Prato, Italy
| | - Silvia Pradella
- USL Centro Toscana, Neurology Unit, Nuovo Ospedale Santo Stefano, Via Suor Niccolina Infermiera 20, 59100, Prato, Italy
| | - Eleonora Rosati
- USL Centro Toscana, Neurology Unit, Nuovo Ospedale Santo Stefano, Via Suor Niccolina Infermiera 20, 59100, Prato, Italy
| | | | - Pasquale Palumbo
- USL Centro Toscana, Neurology Unit, Nuovo Ospedale Santo Stefano, Via Suor Niccolina Infermiera 20, 59100, Prato, Italy
| |
Collapse
|
35
|
Lauritano A, Moutton S, Longobardi E, Tran Mau‐Them F, Laudati G, Nappi P, Soldovieri MV, Ambrosino P, Cataldi M, Jouan T, Lehalle D, Maurey H, Philippe C, Miceli F, Vitobello A, Taglialatela M. A novel homozygous KCNQ3 loss-of-function variant causes non-syndromic intellectual disability and neonatal-onset pharmacodependent epilepsy. Epilepsia Open 2019; 4:464-475. [PMID: 31440727 PMCID: PMC6698674 DOI: 10.1002/epi4.12353] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/04/2019] [Accepted: 07/28/2019] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE Heterozygous variants in KCNQ2 or, more rarely, KCNQ3 genes are responsible for early-onset developmental/epileptic disorders characterized by heterogeneous clinical presentation and course, genetic transmission, and prognosis. While familial forms mostly include benign epilepsies with seizures starting in the neonatal or early-infantile period, de novo variants in KCNQ2 or KCNQ3 have been described in sporadic cases of early-onset encephalopathy (EOEE) with pharmacoresistant seizures, various age-related pathological EEG patterns, and moderate/severe developmental impairment. All pathogenic variants in KCNQ2 or KCNQ3 occur in heterozygosity. The aim of this work was to report the clinical, molecular, and functional properties of a new KCNQ3 variant found in homozygous configuration in a 9-year-old girl with pharmacodependent neonatal-onset epilepsy and non-syndromic intellectual disability. METHODS Exome sequencing was used for genetic investigation. KCNQ3 transcript and subunit expression in fibroblasts was analyzed with quantitative real-time PCR and Western blotting or immunofluorescence, respectively. Whole-cell patch-clamp electrophysiology was used for functional characterization of mutant subunits. RESULTS A novel single-base duplication in exon 12 of KCNQ3 (NM_004519.3:c.1599dup) was found in homozygous configuration in the proband born to consanguineous healthy parents; this frameshift variant introduced a premature termination codon (PTC), thus deleting a large part of the C-terminal region. Mutant KCNQ3 transcript and protein abundance was markedly reduced in primary fibroblasts from the proband, consistent with nonsense-mediated mRNA decay. The variant fully abolished the ability of KCNQ3 subunits to assemble into functional homomeric or heteromeric channels with KCNQ2 subunits. SIGNIFICANCE The present results indicate that a homozygous KCNQ3 loss-of-function variant is responsible for a severe phenotype characterized by neonatal-onset pharmacodependent seizures, with developmental delay and intellectual disability. They also reveal difference in genetic and pathogenetic mechanisms between KCNQ2- and KCNQ3-related epilepsies, a crucial observation for patients affected with EOEE and/or developmental disabilities.
Collapse
Affiliation(s)
- Anna Lauritano
- Division of Pharmacology, Department of NeuroscienceUniversity of Naples “Federico II”NaplesItaly
| | - Sebastien Moutton
- Reference Center for Developmental Anomalies, Department of Medical GeneticsDijon University HospitalDijonFrance
- INSERM U1231, LNC UMR1231 GADBurgundy UniversityDijonFrance
| | - Elena Longobardi
- Division of Pharmacology, Department of NeuroscienceUniversity of Naples “Federico II”NaplesItaly
| | - Frédéric Tran Mau‐Them
- INSERM U1231, LNC UMR1231 GADBurgundy UniversityDijonFrance
- Laboratoire de Génétique, Innovation en Diagnostic Génomique des Maladies Rares UF6254, Plateau Technique de BiologieCHU DijonDijonFrance
| | - Giusy Laudati
- Division of Pharmacology, Department of NeuroscienceUniversity of Naples “Federico II”NaplesItaly
| | - Piera Nappi
- Division of Pharmacology, Department of NeuroscienceUniversity of Naples “Federico II”NaplesItaly
| | | | - Paolo Ambrosino
- Division of Pharmacology, Department of Science and TechnologyUniversity of SannioBeneventoItaly
| | - Mauro Cataldi
- Division of Pharmacology, Department of NeuroscienceUniversity of Naples “Federico II”NaplesItaly
| | - Thibaud Jouan
- INSERM U1231, LNC UMR1231 GADBurgundy UniversityDijonFrance
- Laboratoire de Génétique, Innovation en Diagnostic Génomique des Maladies Rares UF6254, Plateau Technique de BiologieCHU DijonDijonFrance
| | - Daphné Lehalle
- Reference Center for Developmental Anomalies, Department of Medical GeneticsDijon University HospitalDijonFrance
- INSERM U1231, LNC UMR1231 GADBurgundy UniversityDijonFrance
| | - Hélène Maurey
- Service de Neurologie PédiatriqueAPHP, Hôpital Universitaire BicêtreLe Kremlin‐BicêtreFrance
| | - Christophe Philippe
- INSERM U1231, LNC UMR1231 GADBurgundy UniversityDijonFrance
- Laboratoire de Génétique, Innovation en Diagnostic Génomique des Maladies Rares UF6254, Plateau Technique de BiologieCHU DijonDijonFrance
| | - Francesco Miceli
- Division of Pharmacology, Department of NeuroscienceUniversity of Naples “Federico II”NaplesItaly
| | - Antonio Vitobello
- INSERM U1231, LNC UMR1231 GADBurgundy UniversityDijonFrance
- Laboratoire de Génétique, Innovation en Diagnostic Génomique des Maladies Rares UF6254, Plateau Technique de BiologieCHU DijonDijonFrance
| | - Maurizio Taglialatela
- Division of Pharmacology, Department of NeuroscienceUniversity of Naples “Federico II”NaplesItaly
| |
Collapse
|
36
|
Sands TT, Miceli F, Lesca G, Beck AE, Sadleir LG, Arrington DK, Schönewolf-Greulich B, Moutton S, Lauritano A, Nappi P, Soldovieri MV, Scheffer IE, Mefford HC, Stong N, Heinzen EL, Goldstein DB, Perez AG, Kossoff EH, Stocco A, Sullivan JA, Shashi V, Gerard B, Francannet C, Bisgaard AM, Tümer Z, Willems M, Rivier F, Vitobello A, Thakkar K, Rajan DS, Barkovich AJ, Weckhuysen S, Cooper EC, Taglialatela M, Cilio MR. Autism and developmental disability caused by KCNQ3 gain-of-function variants. Ann Neurol 2019; 86:181-192. [PMID: 31177578 DOI: 10.1002/ana.25522] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 06/03/2019] [Accepted: 06/06/2019] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Recent reports have described single individuals with neurodevelopmental disability (NDD) harboring heterozygous KCNQ3 de novo variants (DNVs). We sought to assess whether pathogenic variants in KCNQ3 cause NDD and to elucidate the associated phenotype and molecular mechanisms. METHODS Patients with NDD and KCNQ3 DNVs were identified through an international collaboration. Phenotypes were characterized by clinical assessment, review of charts, electroencephalographic (EEG) recordings, and parental interview. Functional consequences of variants were analyzed in vitro by patch-clamp recording. RESULTS Eleven patients were assessed. They had recurrent heterozygous DNVs in KCNQ3 affecting residues R230 (R230C, R230H, R230S) and R227 (R227Q). All patients exhibited global developmental delay within the first 2 years of life. Most (8/11, 73%) were nonverbal or had a few words only. All patients had autistic features, and autism spectrum disorder (ASD) was diagnosed in 5 of 11 (45%). EEGs performed before 10 years of age revealed frequent sleep-activated multifocal epileptiform discharges in 8 of 11 (73%). For 6 of 9 (67%) recorded between 1.5 and 6 years of age, spikes became near-continuous during sleep. Interestingly, most patients (9/11, 82%) did not have seizures, and no patient had seizures in the neonatal period. Voltage-clamp recordings of the mutant KCNQ3 channels revealed gain-of-function (GoF) effects. INTERPRETATION Specific GoF variants in KCNQ3 cause NDD, ASD, and abundant sleep-activated spikes. This new phenotype contrasts both with self-limited neonatal epilepsy due to KCNQ3 partial loss of function, and with the neonatal or infantile onset epileptic encephalopathies due to KCNQ2 GoF. ANN NEUROL 2019;86:181-192.
Collapse
Affiliation(s)
- Tristan T Sands
- Department of Neurology, Columbia University Medical Center, New York, NY.,Institute for Genomic Medicine, Columbia University Medical Center, New York, NY
| | - Francesco Miceli
- Section of Pharmacology, Department of Neuroscience, University of Naples "Federico II,", Naples, Italy
| | - Gaetan Lesca
- Department of Medical Genetics, Reference Center for Developmental Anomalies, Civil Hospices of Lyon, Lyon, France.,French Institute of Health and Medical Research U1028, French National Center for Scientific Research UMR5292, Center for Research in Neuroscience in Lyon, Genetics of Neurodevelopment Team, Claude Bernard University Lyon 1, Lyon, France.,Claude Bernard University Lyon 1, Lyon, France
| | - Anita E Beck
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA.,Seattle Children's Hospital, Seattle, WA
| | - Lynette G Sadleir
- Department of Paediatrics and Child Health, University of Otago, Wellington, New Zealand
| | | | - Bitten Schönewolf-Greulich
- Center for Rett Syndrome, Department of Pediatrics and Adolescent Medicine, National Hospital, Copenhagen, Denmark.,Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet and Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Sébastien Moutton
- French Institute of Health and Medical Research U1231, Laboratory of Cognitive Neuroscience UMR1231, Genetics of Developmental Anomalies, Burgundy University, F-21000, Dijon, France
| | - Anna Lauritano
- Section of Pharmacology, Department of Neuroscience, University of Naples "Federico II,", Naples, Italy
| | - Piera Nappi
- Section of Pharmacology, Department of Neuroscience, University of Naples "Federico II,", Naples, Italy
| | - Maria Virginia Soldovieri
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| | - Ingrid E Scheffer
- University of Melbourne, Austin Health, Royal Children's Hospital, Florey and Murdoch Institutes, Melbourne, Victoria, Australia
| | - Heather C Mefford
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA
| | - Nicholas Stong
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY
| | - Erin L Heinzen
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY
| | - David B Goldstein
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY
| | - Ana Grijalvo Perez
- Department of Neurology, University of California, San Francisco, San Francisco, CA
| | - Eric H Kossoff
- Departments of Pediatrics and Neurology, Johns Hopkins School of Medicine, Baltimore, MD
| | - Amber Stocco
- Pediatric Neurology, INTEGRIS Baptist Medical Center, Oklahoma City, OK
| | - Jennifer A Sullivan
- Division of Medical Genetics, Department of Pediatrics, Duke University, Durham, NC
| | - Vandana Shashi
- Division of Medical Genetics, Department of Pediatrics, Duke University, Durham, NC
| | - Benedicte Gerard
- Molecular Genetic Unit, Strasbourg University Hospital, Strasbourg, France
| | - Christine Francannet
- Genetics Department, Reference Center for Developmental Anomalies, Clermont-Ferrand University Hospital, Clermont-Ferrand, France
| | - Anne-Marie Bisgaard
- Center for Rett Syndrome, Department of Pediatrics and Adolescent Medicine, National Hospital, Copenhagen, Denmark
| | - Zeynep Tümer
- Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet and Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marjolaine Willems
- Reference Center for Developmental Disorders, Department of Medical Genetics, Arnaud de Villeneuve Hospital, Montpellier University Hospital, Montpellier, France
| | - François Rivier
- Department of Pediatric Neurology, University Hospital of Montpellier, and Physiology and Experimental Medicine of Heart and Muscle Unit, University of Montpellier, National Institute for Health and Medical Research, French National Center for Scientific Research, Montpellier, France
| | - Antonio Vitobello
- Functional Unit 12, Innovation in Genomic Diagnosis of Rare Diseases, University Hospital Dijon-Bourgogne, Dijon, France
| | - Kavita Thakkar
- Division of Neurology, Department of Pediatrics, Children's Hospital of Pittsburgh and University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Deepa S Rajan
- Division of Neurology, Department of Pediatrics, Children's Hospital of Pittsburgh and University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - A James Barkovich
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA
| | - Sarah Weckhuysen
- Neurogenetics Group, University of Antwerp, Antwerp, Belgium.,Neurology Department, University Hospital Antwerp, Antwerp, Belgium
| | - Edward C Cooper
- Departments of Neurology, Neuroscience, and Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Maurizio Taglialatela
- Section of Pharmacology, Department of Neuroscience, University of Naples "Federico II,", Naples, Italy
| | - M Roberta Cilio
- Department of Neurology, University of California, San Francisco, San Francisco, CA.,Departments of Pediatrics and Institute of Experimental and Clinical Research, University of Louvain, Brussels, Belgium
| |
Collapse
|
37
|
Rosti G, Tassano E, Bossi S, Divizia MT, Ronchetto P, Servetti M, Lerone M, Pisciotta L, Mancardi MM, Veneselli E, Puliti A. Intragenic duplication of KCNQ5 gene results in aberrant splicing leading to a premature termination codon in a patient with intellectual disability. Eur J Med Genet 2018; 62:103555. [PMID: 30359776 DOI: 10.1016/j.ejmg.2018.10.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 09/19/2018] [Accepted: 10/20/2018] [Indexed: 11/18/2022]
Abstract
The KCNQ5 gene, widely expressed in the brain, encodes a voltage-gated potassium channel (Kv7.5) important for neuronal function. Here, we report a novel KCNQ5 intragenic duplication at 6q13 spanning about 239 Kb of genomic DNA, identified by array comparative genomic hybridization (array-CGH). The duplication was found in heterozygosity in an adult patient affected by mild intellectual disability with history of absence epilepsy in adolescence, with no EEG nor MRI alterations. By in vitro analyses we demonstrated that this copy number variation (CNV) led to an aberrant transcript with exon 2-11 skipping and a premature stop codon causing, most likely, haploinsufficiency. The Kv7.5 channel plays an important role in the regulation of M-type current and afterhyperpolarization conductances which contribute to neuronal excitability. A recently published paper described KCNQ5 missense mutations in individuals with intellectual disability and treatment-resistant epilepsy that were thought to act through either loss-of-function or gain-of-function mechanisms, associated in both cases with altered neuronal excitability. In the case reported here, we showed that no functional protein can be produced from the allele involved by the intragenic duplication. This evidence strongly supports the hypothesis of KCNQ5 haploinsufficiency, which could lead to altered neuronal excitability, thus contributing to seizure susceptibility and intellectual disability.
Collapse
Affiliation(s)
- Giulia Rosti
- Dept. of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
| | - Elisa Tassano
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Simone Bossi
- Dept. of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
| | | | | | - Martina Servetti
- Dept. of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
| | - Margherita Lerone
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Livia Pisciotta
- Dept. of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy; Child Neuropsychiatry Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | | | - Edvige Veneselli
- Dept. of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy; Child Neuropsychiatry Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Aldamaria Puliti
- Dept. of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy; Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy.
| |
Collapse
|
38
|
Kothur K, Holman K, Farnsworth E, Ho G, Lorentzos M, Troedson C, Gupta S, Webster R, Procopis PG, Menezes MP, Antony J, Ardern-Holmes S, Dale RC, Christodoulou J, Gill D, Bennetts B. Diagnostic yield of targeted massively parallel sequencing in children with epileptic encephalopathy. Seizure 2018; 59:132-140. [DOI: 10.1016/j.seizure.2018.05.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 02/20/2018] [Accepted: 05/08/2018] [Indexed: 12/28/2022] Open
|
39
|
Ambrosino P, Freri E, Castellotti B, Soldovieri MV, Mosca I, Manocchio L, Gellera C, Canafoglia L, Franceschetti S, Salis B, Iraci N, Miceli F, Ragona F, Granata T, DiFrancesco JC, Taglialatela M. Kv7.3 Compound Heterozygous Variants in Early Onset Encephalopathy Reveal Additive Contribution of C-Terminal Residues to PIP2-Dependent K+ Channel Gating. Mol Neurobiol 2018; 55:7009-7024. [DOI: 10.1007/s12035-018-0883-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 01/08/2018] [Indexed: 11/28/2022]
|
40
|
Oyrer J, Maljevic S, Scheffer IE, Berkovic SF, Petrou S, Reid CA. Ion Channels in Genetic Epilepsy: From Genes and Mechanisms to Disease-Targeted Therapies. Pharmacol Rev 2018; 70:142-173. [PMID: 29263209 DOI: 10.1124/pr.117.014456] [Citation(s) in RCA: 178] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 10/02/2017] [Indexed: 12/19/2022] Open
Abstract
Epilepsy is a common and serious neurologic disease with a strong genetic component. Genetic studies have identified an increasing collection of disease-causing genes. The impact of these genetic discoveries is wide reaching-from precise diagnosis and classification of syndromes to the discovery and validation of new drug targets and the development of disease-targeted therapeutic strategies. About 25% of genes identified in epilepsy encode ion channels. Much of our understanding of disease mechanisms comes from work focused on this class of protein. In this study, we review the genetic, molecular, and physiologic evidence supporting the pathogenic role of a number of different voltage- and ligand-activated ion channels in genetic epilepsy. We also review proposed disease mechanisms for each ion channel and highlight targeted therapeutic strategies.
Collapse
Affiliation(s)
- Julia Oyrer
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Melbourne, Australia (J.O., S.M., I.E.S., S.P., C.A.R.); Department of Medicine, Austin Health, University of Melbourne, Heidelberg West, Melbourne, Australia (I.E.S., S.F.B.); and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Melbourne, Australia (I.E.S.)
| | - Snezana Maljevic
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Melbourne, Australia (J.O., S.M., I.E.S., S.P., C.A.R.); Department of Medicine, Austin Health, University of Melbourne, Heidelberg West, Melbourne, Australia (I.E.S., S.F.B.); and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Melbourne, Australia (I.E.S.)
| | - Ingrid E Scheffer
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Melbourne, Australia (J.O., S.M., I.E.S., S.P., C.A.R.); Department of Medicine, Austin Health, University of Melbourne, Heidelberg West, Melbourne, Australia (I.E.S., S.F.B.); and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Melbourne, Australia (I.E.S.)
| | - Samuel F Berkovic
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Melbourne, Australia (J.O., S.M., I.E.S., S.P., C.A.R.); Department of Medicine, Austin Health, University of Melbourne, Heidelberg West, Melbourne, Australia (I.E.S., S.F.B.); and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Melbourne, Australia (I.E.S.)
| | - Steven Petrou
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Melbourne, Australia (J.O., S.M., I.E.S., S.P., C.A.R.); Department of Medicine, Austin Health, University of Melbourne, Heidelberg West, Melbourne, Australia (I.E.S., S.F.B.); and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Melbourne, Australia (I.E.S.)
| | - Christopher A Reid
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Melbourne, Australia (J.O., S.M., I.E.S., S.P., C.A.R.); Department of Medicine, Austin Health, University of Melbourne, Heidelberg West, Melbourne, Australia (I.E.S., S.F.B.); and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Melbourne, Australia (I.E.S.)
| |
Collapse
|
41
|
Symonds JD, Zuberi SM. Genetics update: Monogenetics, polygene disorders and the quest for modifying genes. Neuropharmacology 2017; 132:3-19. [PMID: 29037745 DOI: 10.1016/j.neuropharm.2017.10.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 10/09/2017] [Accepted: 10/11/2017] [Indexed: 12/19/2022]
Abstract
The genetic channelopathies are a broad collection of diseases. Many ion channel genes demonstrate wide phenotypic pleiotropy, but nonetheless concerted efforts have been made to characterise genotype-phenotype relationships. In this review we give an overview of the factors that influence genotype-phenotype relationships across this group of diseases as a whole, using specific individual channelopathies as examples. We suggest reasons for the limitations observed in these relationships. We discuss the role of ion channel variation in polygenic disease and highlight research that has contributed to unravelling the complex aetiological nature of these conditions. We focus specifically on the quest for modifying genes in inherited channelopathies, using the voltage-gated sodium channels as an example. Epilepsy related to genetic channelopathy is one area in which precision medicine is showing promise. We will discuss the successes and limitations of precision medicine in these conditions. This article is part of the Special Issue entitled 'Channelopathies.'
Collapse
Affiliation(s)
- Joseph D Symonds
- The Paediatric Neurosciences Research Group, Royal Hospital for Children, Queen Elizabeth University Hospitals, Glasgow, UK; School of Medicine, University of Glasgow, Glasgow, UK
| | - Sameer M Zuberi
- The Paediatric Neurosciences Research Group, Royal Hospital for Children, Queen Elizabeth University Hospitals, Glasgow, UK; School of Medicine, University of Glasgow, Glasgow, UK.
| |
Collapse
|
42
|
Kambli L, Bhatt LK, Oza M, Prabhavalkar K. Novel therapeutic targets for epilepsy intervention. Seizure 2017; 51:27-34. [DOI: 10.1016/j.seizure.2017.07.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 07/23/2017] [Accepted: 07/24/2017] [Indexed: 12/11/2022] Open
|
43
|
Maljevic S, Reid CA, Petrou S. Models for discovery of targeted therapy in genetic epileptic encephalopathies. J Neurochem 2017; 143:30-48. [PMID: 28742937 DOI: 10.1111/jnc.14134] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/14/2017] [Accepted: 07/19/2017] [Indexed: 12/20/2022]
Abstract
Epileptic encephalopathies are severe disorders emerging in the first days to years of life that commonly include refractory seizures, various types of movement disorders, and different levels of developmental delay. In recent years, many de novo occurring variants have been identified in individuals with these devastating disorders. To unravel disease mechanisms, the functional impact of detected variants associated with epileptic encephalopathies is investigated in a range of cellular and animal models. This review addresses efforts to advance and use such models to identify specific molecular and cellular targets for the development of novel therapies. We focus on ion channels as the best-studied group of epilepsy genes. Given the clinical and genetic heterogeneity of epileptic encephalopathy disorders, experimental models that can reflect this complexity are critical for the development of disease mechanisms-based targeted therapy. The convergence of technological advances in gene sequencing, stem cell biology, genome editing, and high throughput functional screening together with massive unmet clinical needs provides unprecedented opportunities and imperatives for precision medicine in epileptic encephalopathies.
Collapse
Affiliation(s)
- Snezana Maljevic
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Australia
| | - Christopher A Reid
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Australia
| | - Steven Petrou
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Australia.,University of Melbourne, Melbourne, Australia
| |
Collapse
|
44
|
Mazza A, Klockmeier K, Wanker E, Sharan R. An integer programming framework for inferring disease complexes from network data. Bioinformatics 2017; 32:i271-i277. [PMID: 27307626 PMCID: PMC4908347 DOI: 10.1093/bioinformatics/btw263] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
MOTIVATION Unraveling the molecular mechanisms that underlie disease calls for methods that go beyond the identification of single causal genes to inferring larger protein assemblies that take part in the disease process. RESULTS Here, we develop an exact, integer-programming-based method for associating protein complexes with disease. Our approach scores proteins based on their proximity in a protein-protein interaction network to a prior set that is known to be relevant for the studied disease. These scores are combined with interaction information to infer densely interacting protein complexes that are potentially disease-associated. We show that our method outperforms previous ones and leads to predictions that are well supported by current experimental data and literature knowledge. AVAILABILITY AND IMPLEMENTATION The datasets we used, the executables and the results are available at www.cs.tau.ac.il/roded/disease_complexes.zip CONTACT roded@post.tau.ac.il.
Collapse
Affiliation(s)
- Arnon Mazza
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
| | | | - Erich Wanker
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Roded Sharan
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
45
|
Lehman A, Thouta S, Mancini GMS, Naidu S, van Slegtenhorst M, McWalter K, Person R, Mwenifumbo J, Salvarinova R, Guella I, McKenzie MB, Datta A, Connolly MB, Kalkhoran SM, Poburko D, Friedman JM, Farrer MJ, Demos M, Desai S, Claydon T. Loss-of-Function and Gain-of-Function Mutations in KCNQ5 Cause Intellectual Disability or Epileptic Encephalopathy. Am J Hum Genet 2017; 101:65-74. [PMID: 28669405 PMCID: PMC5501867 DOI: 10.1016/j.ajhg.2017.05.016] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 05/24/2017] [Indexed: 01/31/2023] Open
Abstract
KCNQ5 is a highly conserved gene encoding an important channel for neuronal function; it is widely expressed in the brain and generates M-type current. Exome sequencing identified de novo heterozygous missense mutations in four probands with intellectual disability, abnormal neurological findings, and treatment-resistant epilepsy (in two of four). Comprehensive analysis of this potassium channel for the four variants expressed in frog oocytes revealed shifts in the voltage dependence of activation, including altered activation and deactivation kinetics. Specifically, both loss-of-function and gain-of-function KCNQ5 mutations, associated with increased excitability and decreased repolarization reserve, lead to pathophysiology.
Collapse
Affiliation(s)
- Anna Lehman
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 3N1, Canada.
| | - Samrat Thouta
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Grazia M S Mancini
- Department of Clinical Genetics, Erasmus University Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Sakkubai Naidu
- Department of Neurogenetics, Kennedy Krieger Institute, Baltimore, MD 21211, USA
| | - Marjon van Slegtenhorst
- Department of Clinical Genetics, Erasmus University Medical Center, 3000 CA Rotterdam, the Netherlands
| | | | | | - Jill Mwenifumbo
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 3N1, Canada
| | - Ramona Salvarinova
- Division of Biochemical Diseases, Department of Pediatrics, University of British Columbia, Vancouver, BC V6H 3N1, Canada
| | - Ilaria Guella
- Centre for Applied Neurogenetics, University of British Columbia, Vancouver BC, V6T 1Z3, Canada
| | - Marna B McKenzie
- Centre for Applied Neurogenetics, University of British Columbia, Vancouver BC, V6T 1Z3, Canada
| | - Anita Datta
- Division of Pediatric Neurology, Department of Pediatrics, University of British Columbia, Vancouver BC, V6H 3N1, Canada
| | - Mary B Connolly
- Division of Pediatric Neurology, Department of Pediatrics, University of British Columbia, Vancouver BC, V6H 3N1, Canada
| | - Somayeh Mojard Kalkhoran
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Damon Poburko
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Jan M Friedman
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 3N1, Canada
| | - Matthew J Farrer
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 3N1, Canada; Centre for Applied Neurogenetics, University of British Columbia, Vancouver BC, V6T 1Z3, Canada
| | - Michelle Demos
- Division of Pediatric Neurology, Department of Pediatrics, University of British Columbia, Vancouver BC, V6H 3N1, Canada
| | - Sonal Desai
- Department of Neurogenetics, Kennedy Krieger Institute, Baltimore, MD 21211, USA
| | - Thomas Claydon
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC V5A 1S6, Canada.
| |
Collapse
|
46
|
Venom-derived peptide inhibitors of voltage-gated potassium channels. Neuropharmacology 2017; 127:124-138. [PMID: 28689025 DOI: 10.1016/j.neuropharm.2017.07.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/02/2017] [Accepted: 07/04/2017] [Indexed: 12/11/2022]
Abstract
Voltage-gated potassium channels play a key role in human physiology and pathology. Reflecting their importance, numerous channelopathies have been characterised that arise from mutations in these channels or from autoimmune attack on the channels. Voltage-gated potassium channels are also the target of a broad range of peptide toxins from venomous organisms, including sea anemones, scorpions, spiders, snakes and cone snails; many of these peptides bind to the channels with high potency and selectivity. In this review we describe the various classes of peptide toxins that block these channels and illustrate the broad range of three-dimensional structures that support channel blockade. The therapeutic opportunities afforded by these peptides are also highlighted. This article is part of the Special Issue entitled 'Venom-derived Peptides as Pharmacological Tools.'
Collapse
|
47
|
Ion Channel Genes and Epilepsy: Functional Alteration, Pathogenic Potential, and Mechanism of Epilepsy. Neurosci Bull 2017; 33:455-477. [PMID: 28488083 DOI: 10.1007/s12264-017-0134-1] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 02/20/2017] [Indexed: 01/29/2023] Open
Abstract
Ion channels are crucial in the generation and modulation of excitability in the nervous system and have been implicated in human epilepsy. Forty-one epilepsy-associated ion channel genes and their mutations are systematically reviewed. In this paper, we analyzed the genotypes, functional alterations (funotypes), and phenotypes of these mutations. Eleven genes featured loss-of-function mutations and six had gain-of-function mutations. Nine genes displayed diversified funotypes, among which a distinct funotype-phenotype correlation was found in SCN1A. These data suggest that the funotype is an essential consideration in evaluating the pathogenicity of mutations and a distinct funotype or funotype-phenotype correlation helps to define the pathogenic potential of a gene.
Collapse
|
48
|
Hur YJ, Koh S, Millichap J, Nangia S, Jennings LJ, Nordli DR. Clinical and Electroencephalographic Characteristics of Infantile-Onset Epilepsies Caused by Genetic Mutations. J Pediatr 2017; 184:172-177.e1. [PMID: 28410084 DOI: 10.1016/j.jpeds.2017.01.050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 12/06/2016] [Accepted: 01/19/2017] [Indexed: 12/30/2022]
Abstract
OBJECTIVES To determine whether certain characteristic electroencephalography (EEG) features are indicative of a genetic cause in early-life epilepsy. STUDY DESIGN We enrolled a total of 100 patients with infantile-onset (<3 years) epilepsy due to known genetic cause (n = 50) and nongenetic cause (acquired, structural, or unknown, n = 50). The genetic group was classified into synaptopathies, channelopathies, mTOR (mammalian target of rapamycin)-opathies, and chromosomal abnormalities. The nongenetic group included epilepsy of unknown cause and structural abnormalities such as brain tumor, focal cortical dysplasia and encephalomalacia. The clinical features, magnetic resonance imaging, and video EEG obtained before 3 years of age and again at follow-up were reviewed. Specifically, the background rhythms and patterns of interictal epileptiform discharges were analyzed to define the EEG characteristics. RESULTS The genetic group was more likely to have seizure recurrence beyond infancy and significant developmental delay (P <.01). The genetic and nongenetic groups showed different EEG patterns in the initial EEGs that persisted in follow-up EEGs. Diffuse slowing with pleomorphic focal/multifocal epileptiform discharges were present more often in the genetic (86%) compared with the nongenetic group (20%) in the initial EEGs (P <.01). The last available follow-up EEG features were similar (81% in genetic versus 17% in nongenetic) to the EEG performed prior to 3 years of age. CONCLUSIONS Our findings suggest a simple guide for genetic screening in children with early-onset epilepsy. Genetic testing may be indicated and useful in infants with delayed development, no obvious cause, and significant EEG background slowing with pleomorphic focal or multifocal epileptiform discharges.
Collapse
Affiliation(s)
- Yun Jung Hur
- Epilepsy Center, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL; Department of Pediatrics, Haeundae Paik Hospital, Inje University College of Medicine, Pusan, Republic of Korea
| | - Sookyong Koh
- Epilepsy Center, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL; Department of Pediatrics, Children's Healthcare of Atlanta, Emory University, Atlanta, GA
| | - John Millichap
- Epilepsy Center, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Srishti Nangia
- Epilepsy Center, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Lawrence J Jennings
- Epilepsy Center, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Douglas R Nordli
- Epilepsy Center, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL; Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA.
| |
Collapse
|
49
|
Stas JI, Bocksteins E, Jensen CS, Schmitt N, Snyders DJ. The anticonvulsant retigabine suppresses neuronal K V2-mediated currents. Sci Rep 2016; 6:35080. [PMID: 27734968 PMCID: PMC5062084 DOI: 10.1038/srep35080] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 09/20/2016] [Indexed: 11/09/2022] Open
Abstract
Enhancement of neuronal M-currents, generated through KV7.2-KV7.5 channels, has gained much interest for its potential in developing treatments for hyperexcitability-related disorders such as epilepsy. Retigabine, a KV7 channel opener, has proven to be an effective anticonvulsant and has recently also gained attention due to its neuroprotective properties. In the present study, we found that the auxiliary KCNE2 subunit reduced the KV7.2-KV7.3 retigabine sensitivity approximately 5-fold. In addition, using both mammalian expression systems and cultured hippocampal neurons we determined that low μM retigabine concentrations had ‘off-target’ effects on KV2.1 channels which have recently been implicated in apoptosis. Clinical retigabine concentrations (0.3–3 μM) inhibited KV2.1 channel function upon prolonged exposure. The suppression of the KV2.1 conductance was only partially reversible. Our results identified KV2.1 as a new molecular target for retigabine, thus giving a potential explanation for retigabine’s neuroprotective properties.
Collapse
Affiliation(s)
- Jeroen I Stas
- Laboratory for Molecular Biophysics, Physiology and Pharmacology, Department of Biomedical Sciences, University of Antwerp, CDE, Universiteitsplein 1, 2610 Antwerp, Belgium.,Ion Channel Group, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Elke Bocksteins
- Laboratory for Molecular Biophysics, Physiology and Pharmacology, Department of Biomedical Sciences, University of Antwerp, CDE, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Camilla S Jensen
- Ion Channel Group, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Nicole Schmitt
- Ion Channel Group, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Dirk J Snyders
- Laboratory for Molecular Biophysics, Physiology and Pharmacology, Department of Biomedical Sciences, University of Antwerp, CDE, Universiteitsplein 1, 2610 Antwerp, Belgium
| |
Collapse
|
50
|
Abstract
Ion channels constitute a superfamily of membrane proteins found in all living creatures. Their activity allows fast translocation of ions across the plasma membrane down the ion's transmembrane electrochemical gradient, resulting in a difference in electrical potential across the plasma membrane, known as the membrane potential. A group within this superfamily, namely voltage-gated channels, displays activity that is sensitive to the membrane potential. The activity of voltage-gated channels is controlled by the membrane potential, while the membrane potential is changed by these channels' activity. This interplay produces variations in the membrane potential that have evolved into electrical signals in many organisms. These signals are essential for numerous biological processes, including neuronal activity, insulin release, muscle contraction, fertilization and many others. In recent years, the activity of the voltage-gated channels has been observed not to follow a simple relationship with the membrane potential. Instead, it has been shown that the activity of voltage-gated channel displays hysteresis. In fact, a growing number of evidence have demonstrated that the voltage dependence of channel activity is dynamically modulated by activity itself. In spite of the great impact that this property can have on electrical signaling, hysteresis in voltage-gated channels is often overlooked. Addressing this issue, this review provides examples of voltage-gated ion channels displaying hysteretic behavior. Further, this review will discuss how Dynamic Voltage Dependence in voltage-gated channels can have a physiological role in electrical signaling. Furthermore, this review will elaborate on the current thoughts on the mechanism underlying hysteresis in voltage-gated channels.
Collapse
Affiliation(s)
- Carlos A Villalba-Galea
- a Department of Physiology and Pharmacology, Thomas J. Long School of Pharmacy & Health Sciences , University of the Pacific , Stockton , CA , USA
| |
Collapse
|