1
|
Kalogeropoulos K, Psarropoulou C. Immature Status Epilepticus Alters the Temporal Relationship between Hippocampal Interictal Epileptiform Discharges and High-frequency Oscillations. Neuroscience 2024; 543:108-120. [PMID: 38401712 DOI: 10.1016/j.neuroscience.2024.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 02/26/2024]
Abstract
The aim was to investigate the long-term effects of a single episode of immature Status Epilepticus (SE) on the excitability of the septal and temporal hippocampus in vitro, by studying the relationship between interictal-like epileptiform discharges (IEDs) and high-frequency oscillations (HFOs; Ripples, Rs and Fast Ripples, FRs). A pentylenetetrazol-induced Status Epilepticus-(SE)-like generalized seizure was induced at postnatal day 20 in 22 male and female juvenile rats, sacrificed >40 days later to prepare hippocampal slices. Spontaneous IEDs induced by Mg2+-free ACSF were recorded from the CA3 area of temporal (T) or septal (S) slices. Recordings were band-pass filtered off-line revealing Rs and FRs and a series of measurements were conducted, with mean values compared with those obtained from age-matched controls (CTRs). In CTR S (vs T) slices, we recorded longer R & FR durations, a longer HFO-IED temporal overlap, higher FR peak power and more frequent FR initiation preceding IEDs (% events). Post-SE, in T slices all types of events duration (IED, R, FR) and the time lag between their onsets (R-IED, FR-IED, R-FR) increased, while FR/R peak power decreased; in S slices, the IED 1st population spike and the FR amplitudes, the R and FR peak power and the (percent) events where Rs or FRs preceded IEDs all decreased. The CA3 IED-HFO relationship offers insights to the septal-to-temporal synchronization patterns; its post-juvenile-SE changes indicate permanent modifications in the septotemporal excitability gradient. Moreover, these findings are in line to region-specific regulation of various currents post-SE, as reported in literature.
Collapse
Affiliation(s)
- Konstantinos Kalogeropoulos
- Laboratory of Animal and Human Physiology, Department of Biological Applications and Technology, Faculty of Health Sciences, University of Ioannina, 45110, Greece.
| | - Caterina Psarropoulou
- Laboratory of Animal and Human Physiology, Department of Biological Applications and Technology, Faculty of Health Sciences, University of Ioannina, 45110, Greece.
| |
Collapse
|
2
|
Guo F, Li A, Liu Q, Guo D, Chen K, Yao D, Cui Y, Xia Y. Disruption of TLE epileptiform activity retarded the seizure and reduced pathological HFOs. Brain Res Bull 2024; 207:110869. [PMID: 38184151 DOI: 10.1016/j.brainresbull.2024.110869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/17/2023] [Accepted: 01/01/2024] [Indexed: 01/08/2024]
Abstract
In temporal lobe epilepsy (TLE), the epileptogenic zones, such as the temporal lobe structure, could generate pathological high-frequency oscillations (pHFOs, 250-500 Hz) before the ictal period. These pHFOs have also been observed during the process of seizures in both TLE patients and animals, exhibiting a critical role as promising biomarkers for TLE seizures. TLE seizures could be modulated via regulating the neural excitability in epileptogenic zones, for that TLE is primarily associated with the excitation-inhibition imbalance. However, whether these kinds of modulations could also impact the pHFOs characteristics during TLE seizures is still unclear. For this purpose, we pharmaco-genetically inhibited the principal cells (PCs) in the mouse CA3 region and tracked the difference in the behavioral and electrophysiological features during LiCl-pilocarpine-induced TLE seizure between the hM4Di+CNO (experimental) mice and mCherry+CNO (control) mice. Delayed latency, decreased averaged duration, and reduced counts of the generalized seizure were observed in the experimental mice. Besides, the electrophysiological characteristics, such as the firing rate of PCs and the count of pHFO, exhibited significant decline in the CA3 and CA1 regions. During TLE seizure, there existed strong phase-coupling between pHFO and PCs spike timing in the control mice, while it was abolished in the experimental mice. In addition, we also found that the counts of pHFO were significantly associated with the behavioral features, indicating the close relationships within them. Collectively, our findings suggested that alterations in pHFO and the retardation of seizures may be attributed to disruptions in neuronal excitability, and the variations of electrophysiological features were related to seizure severity during TLE seizures. These results provide valuable insights into the role of pHFOs in TLE and shed light on the underlying mechanisms involved.
Collapse
Affiliation(s)
- Fengru Guo
- Department of Neurosurgery, Sichuan Provincial People's Hospital, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Airui Li
- Department of Neurosurgery, Sichuan Provincial People's Hospital, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Qinjun Liu
- Department of Neurosurgery, Sichuan Provincial People's Hospital, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Daqing Guo
- Department of Neurosurgery, Sichuan Provincial People's Hospital, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Ke Chen
- Department of Neurosurgery, Sichuan Provincial People's Hospital, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Dezhong Yao
- Department of Neurosurgery, Sichuan Provincial People's Hospital, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yan Cui
- Department of Neurosurgery, Sichuan Provincial People's Hospital, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Yang Xia
- Department of Neurosurgery, Sichuan Provincial People's Hospital, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China.
| |
Collapse
|
3
|
Guo F, Cui Y, Li A, Liu M, Jian Z, Chen K, Yao D, Guo D, Xia Y. Differential patterns of very high-frequency oscillations in two seizure types of the pilocarpine-induced TLE model. Brain Res Bull 2023; 204:110805. [PMID: 37925081 DOI: 10.1016/j.brainresbull.2023.110805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/08/2023] [Accepted: 10/30/2023] [Indexed: 11/06/2023]
Abstract
AIMS Very high-frequency oscillations (VHFOs, >500 Hz) are considered a highly sensitive biomarker of seizures. We hypothesized that VHFOs may exhibit specificity towards hypersynchronous (HYP) seizures and low-voltage fast (LVF) seizures in temporal lobe epilepsy (TLE). METHODS Local field potentials were recorded from the hippocampal network in TLE mice induced by pilocarpine. Subsequently, we analyzed the VHFO features, including their temporal-frequency characteristics and VHFO/theta coupling, during three states: baseline, preictal, and postictal for both HYP- and LVF-seizure groups. RESULTS Significant changes in most of the VHFO features were observed during the preictal state in both seizure groups. In the postictal state, VHFO features in the HYP-seizure group exhibited inverse alterations and appeared to align with those observed during baseline conditions. However, such phenomena were not observed after TLE seizures in the LVF-seizure group. CONCLUSION Our findings highlight distinct patterns of VHFO feature changes across different states of HYP seizures and LVF seizures. These results suggest that VHFOs could serve as indicative biomarkers for seizure alterations specifically associated with HYP-seizure states.
Collapse
Affiliation(s)
- Fengru Guo
- Department of Neurosurgery, Sichuan Provincial People's Hospital, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yan Cui
- Department of Neurosurgery, Sichuan Provincial People's Hospital, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Airui Li
- Department of Neurosurgery, Sichuan Provincial People's Hospital, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Mingqi Liu
- Department of Neurosurgery, Sichuan Provincial People's Hospital, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Zhaoxin Jian
- Department of Neurosurgery, Sichuan Provincial People's Hospital, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Ke Chen
- Department of Neurosurgery, Sichuan Provincial People's Hospital, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Dezhong Yao
- Department of Neurosurgery, Sichuan Provincial People's Hospital, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Daqing Guo
- Department of Neurosurgery, Sichuan Provincial People's Hospital, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yang Xia
- Department of Neurosurgery, Sichuan Provincial People's Hospital, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China.
| |
Collapse
|
4
|
Molnár L, Ferando I, Liu B, Mokhtar P, Domokos J, Mody I. Capturing the power of seizures: an empirical mode decomposition analysis of epileptic activity in the mouse hippocampus. Front Mol Neurosci 2023; 16:1121479. [PMID: 37256078 PMCID: PMC10225690 DOI: 10.3389/fnmol.2023.1121479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 04/28/2023] [Indexed: 06/01/2023] Open
Abstract
Introduction Various methods have been used to determine the frequency components of seizures in scalp electroencephalography (EEG) and in intracortical recordings. Most of these methods rely on subjective or trial-and-error criteria for choosing the appropriate bandwidth for filtering the EEG or local field potential (LFP) signals to establish the frequency components that contribute most to the initiation and maintenance of seizure activity. The empirical mode decomposition (EMD) with the Hilbert-Huang transform is an unbiased method to decompose a time and frequency variant signal into its component non-stationary frequencies. The resulting components, i.e., the intrinsic mode functions (IMFs) objectively reflect the various non-stationary frequencies making up the original signal. Materials and methods We employed the EMD method to analyze the frequency components and relative power of spontaneous electrographic seizures recorded in the dentate gyri of mice during the epileptogenic period. Epilepsy was induced in mice following status epilepticus induced by suprahippocampal injection of kainic acid. The seizures were recorded as local field potentials (LFP) with electrodes implanted in the dentate gyrus. We analyzed recording segments that included a seizure (mean duration 28 s) and an equivalent time period both before and after the seizure. Each segment was divided into non-overlapping 1 s long epochs which were then analyzed to obtain their IMFs (usually 8-10), the center frequencies of the respective IMF and their spectral root-mean-squared (RMS) power. Results Our analysis yielded unbiased identification of the spectral components of seizures, and the relative power of these components during this pathological brain activity. During seizures, the power of the mid frequency components increased while the center frequency of the first IMF (with the highest frequency) dramatically decreased, providing mechanistic insights into how local seizures are generated. Discussion We expect this type of analysis to provide further insights into the mechanisms of seizure generation and potentially better seizure detection.
Collapse
Affiliation(s)
- László Molnár
- Department of Electrical Engineering, Sapientia Hungarian University of Transylvania, Târgu-Mures, Romania
| | - Isabella Ferando
- Department of Neurology, The David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
- Department of Neurology, School of Medicine at University of Florida, Miami, FL, United States
| | - Benjamin Liu
- Department of Neurology, The David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Parsa Mokhtar
- Department of Neurology, The David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - József Domokos
- Department of Electrical Engineering, Sapientia Hungarian University of Transylvania, Târgu-Mures, Romania
| | - Istvan Mody
- Department of Neurology, The David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| |
Collapse
|
5
|
Roy A, Han VZ, Bard AM, Wehle DT, Smith SEP, Ramirez JM, Kalume F, Millen KJ. Non-synaptic Cell-Autonomous Mechanisms Underlie Neuronal Hyperactivity in a Genetic Model of PIK3CA-Driven Intractable Epilepsy. Front Mol Neurosci 2021; 14:772847. [PMID: 34899181 PMCID: PMC8662737 DOI: 10.3389/fnmol.2021.772847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/20/2021] [Indexed: 12/26/2022] Open
Abstract
Patients harboring mutations in the PI3K-AKT-MTOR pathway-encoding genes often develop a spectrum of neurodevelopmental disorders including epilepsy. A significant proportion remains unresponsive to conventional anti-seizure medications. Understanding mutation-specific pathophysiology is thus critical for molecularly targeted therapies. We previously determined that mouse models expressing a patient-related activating mutation in PIK3CA, encoding the p110α catalytic subunit of phosphoinositide-3-kinase (PI3K), are epileptic and acutely treatable by PI3K inhibition, irrespective of dysmorphology. Here we report the physiological mechanisms underlying this dysregulated neuronal excitability. In vivo, we demonstrate epileptiform events in the Pik3ca mutant hippocampus. By ex vivo analyses, we show that Pik3ca-driven hyperactivation of hippocampal pyramidal neurons is mediated by changes in multiple non-synaptic, cell-intrinsic properties. Finally, we report that acute inhibition of PI3K or AKT, but not MTOR activity, suppresses the intrinsic hyperactivity of the mutant neurons. These acute mechanisms are distinct from those causing neuronal hyperactivity in other AKT-MTOR epileptic models and define parameters to facilitate the development of new molecularly rational therapeutic interventions for intractable epilepsy.
Collapse
Affiliation(s)
- Achira Roy
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bengaluru, India
| | - Victor Z Han
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States.,Department of Biology, University of Washington, Seattle, WA, United States
| | - Angela M Bard
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Devin T Wehle
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States.,Graduate Program in Neuroscience, University of Washington, Seattle, WA, United States
| | - Stephen E P Smith
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States.,Department of Pediatrics, University of Washington, Seattle, WA, United States
| | - Jan-Marino Ramirez
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States.,Department of Pediatrics, University of Washington, Seattle, WA, United States.,Department of Neurological Surgery, University of Washington, Seattle, WA, United States.,Department of Physiology and Biophysics, University of Washington, Seattle, WA, United States
| | - Franck Kalume
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States.,Department of Neurological Surgery, University of Washington, Seattle, WA, United States.,Department of Pharmacology, University of Washington, Seattle, WA, United States
| | - Kathleen J Millen
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States.,Department of Pediatrics, University of Washington, Seattle, WA, United States
| |
Collapse
|
6
|
Mokhothu TM, Tanaka KZ. Characterizing Hippocampal Oscillatory Signatures Underlying Seizures in Temporal Lobe Epilepsy. Front Behav Neurosci 2021; 15:785328. [PMID: 34899205 PMCID: PMC8656355 DOI: 10.3389/fnbeh.2021.785328] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/29/2021] [Indexed: 01/01/2023] Open
Abstract
Temporal Lobe Epilepsy (TLE) is a neurological condition characterized by focal brain hyperexcitability, resulting in abnormal neuronal discharge and uncontrollable seizures. The hippocampus, with its inherently highly synchronized firing patterns and relatively high excitability, is prone to epileptic seizures, and it is usually the focus of TLE. Researchers have identified hippocampal high-frequency oscillations (HFOs) as a salient feature in people with TLE and animal models of this disease, arising before or at the onset of the epileptic event. To a certain extent, these pathological HFOs have served as a marker and a potential target for seizure attenuation using electrical or optogenetic interventions. However, many questions remain about whether we can reliably distinguish pathological from non-pathological HFOs and whether they can tell us about the development of the disease. While this would be an arduous task to perform in humans, animal models of TLE provide an excellent opportunity to study the characteristics of HFOs in predicting how epilepsy evolves. This minireview will (1) summarize what we know about the oscillatory disruption in TLE, (2) summarize knowledge about oscillatory changes in the latent period and their role in predicting seizures, and (3) propose future studies essential to uncovering potential treatments based on early detection of pathological HFOs.
Collapse
Affiliation(s)
- Thato Mary Mokhothu
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Kazumasa Zen Tanaka
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| |
Collapse
|
7
|
Villasana-Salazar B, Hernández-Soto R, Guerrero-Gómez ME, Ordaz B, Manrique-Maldonado G, Salgado-Puga K, Peña-Ortega F. Chronic intermittent hypoxia transiently increases hippocampal network activity in the gamma frequency band and 4-Aminopyridine-induced hyperexcitability in vitro. Epilepsy Res 2020; 166:106375. [PMID: 32745888 DOI: 10.1016/j.eplepsyres.2020.106375] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/21/2020] [Accepted: 05/28/2020] [Indexed: 12/12/2022]
Abstract
Chronic intermittent hypoxia (CIH) is the most distinct feature of obstructive sleep apnea (OSA), a common breathing and sleep disorder that leads to several neuropathological consequences, including alterations in the hippocampal network and in seizure susceptibility. However, it is currently unknown whether these alterations are permanent or remit upon normal oxygenation. Here, we investigated the effects of CIH on hippocampal spontaneous network activity and hyperexcitability in vitro and explored whether these alterations endure or fade after normal oxygenation. Results showed that applying CIH for 21 days to adult rats increases gamma-band hippocampal network activity and aggravates 4-Aminopyridine-induced epileptiform activity in vitro. Interestingly, these CIH-induced alterations remit after 30 days of normal oxygenation. Our findings indicate that hippocampal network alterations and increased seizure susceptibility induced by CIH are not permanent and can be spontaneously reverted, suggesting that therapeutic interventions against OSA in patients with epilepsy, such as surgery or continuous positive airway pressure (CPAP), could be favorable for seizure control.
Collapse
Affiliation(s)
- Benjamín Villasana-Salazar
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, QRO 76230, México
| | - Rebeca Hernández-Soto
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, QRO 76230, México
| | - María Estefanía Guerrero-Gómez
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, QRO 76230, México
| | - Benito Ordaz
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, QRO 76230, México
| | - Guadalupe Manrique-Maldonado
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, QRO 76230, México
| | - Karla Salgado-Puga
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, QRO 76230, México
| | - Fernando Peña-Ortega
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, QRO 76230, México.
| |
Collapse
|
8
|
Wang T, Mayson DJ, Tornatore CS, Motamedi GK. High frequency oscillations (HFOs) as a unique pattern of EEG in a patient with anti-NMDA receptor encephalitis. Clin Neurophysiol 2019; 130:1231-1234. [DOI: 10.1016/j.clinph.2019.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 05/17/2019] [Indexed: 10/26/2022]
|
9
|
Santana-Gomez C, Andrade P, Hudson MR, Paananen T, Ciszek R, Smith G, Ali I, Rundle BK, Ndode-Ekane XE, Casillas-Espinosa PM, Immonen R, Puhakka N, Jones N, Brady RD, Perucca P, Shultz SR, Pitkänen A, O'Brien TJ, Staba R. Harmonization of pipeline for detection of HFOs in a rat model of post-traumatic epilepsy in preclinical multicenter study on post-traumatic epileptogenesis. Epilepsy Res 2019; 156:106110. [PMID: 30981541 DOI: 10.1016/j.eplepsyres.2019.03.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 03/12/2019] [Accepted: 03/14/2019] [Indexed: 01/25/2023]
Abstract
Studies of chronic epilepsy show pathological high frequency oscillations (HFOs) are associated with brain areas capable of generating epileptic seizures. Only a few of these studies have focused on HFOs during the development of epilepsy, but results suggest pathological HFOs could be a biomarker of epileptogenesis. The Epilepsy Bioinformatics Study for Antiepileptogenic Therapy" (EpiBioS4Rx) is a multi-center project designed to identify biomarkers of epileptogenesis after a traumatic brain injury (TBI) and evaluate treatments that could modify or prevent the development of post-traumatic epilepsy. One goal of the EpiBioS4Rx project is to assess whether HFOs could be a biomarker of post-traumatic epileptogenesis. The current study describes the work towards this goal, including the development of common surgical procedures and EEG protocols, an interim analysis of the EEG for HFOs, and identifying issues that need to be addressed for a robust biomarker analysis. At three participating sites - University of Eastern Finland (UEF), Monash University in Melbourne (Melbourne) and University of California, Los Angeles (UCLA) - TBI was induced in adult male Sprague-Dawley rats by lateral fluid-percussion injury. After injury and in sham-operated controls, rats were implanted with screw and microwire electrodes positioned in neocortex and hippocampus to record EEG. A separate group of rats had serial magnetic resonance imaging after injury and then implanted with electrodes at 6 months. Recordings 28 days post-injury were available from UEF and UCLA, but not Melbourne due to technical issues with their EEG files. Analysis of recordings from 4 rats - UEF and UCLA each had one TBI and one sham-operated control - showed EEG contained evidence of HFOs. Computer-automated algorithms detected a total of 1,819 putative HFOs and of these only 40 events (2%) were detected by all three sites. Manual review of all events verified 130 events as HFO and the remainder as false positives. Review of the 40 events detected by all three sites was associated with 88% agreement. This initial report from the EpiBioS4Rx Consortium demonstrates the standardization of EEG electrode placements, recording protocol and long-term EEG monitoring, and differences in detection algorithm HFO results between sites. Additional work on detection strategy, detection algorithm performance, and training in HFO review will be performed to establish a robust, preclinical evaluation of HFOs as a biomarker of post-traumatic epileptogenesis.
Collapse
Affiliation(s)
- Cesar Santana-Gomez
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| | - Pedro Andrade
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Matthew R Hudson
- The Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia; Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, VIC, 3052, Australia
| | - Tomi Paananen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Robert Ciszek
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Gregory Smith
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Idrish Ali
- The Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia; Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, VIC, 3052, Australia
| | - Brian K Rundle
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | | | - Pablo M Casillas-Espinosa
- The Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia; Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, VIC, 3052, Australia
| | - Riikka Immonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Noora Puhakka
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Nigel Jones
- The Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia; Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, VIC, 3052, Australia
| | - Rhys D Brady
- The Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia; Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, VIC, 3052, Australia
| | - Piero Perucca
- The Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia; Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, VIC, 3052, Australia
| | - Sandy R Shultz
- The Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia; Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, VIC, 3052, Australia
| | - Asla Pitkänen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Terence J O'Brien
- The Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia; Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, VIC, 3052, Australia
| | - Richard Staba
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
10
|
Engel J, Bragin A, Staba R. Nonictal EEG biomarkers for diagnosis and treatment. Epilepsia Open 2018; 3:120-126. [PMID: 30564770 PMCID: PMC6293068 DOI: 10.1002/epi4.12233] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2018] [Indexed: 12/11/2022] Open
Abstract
There are no reliable nonictal biomarkers for epilepsy, electroencephalography (EEG) or otherwise, but efforts to identify biomarkers that would predict the development of epilepsy after a potential epileptogenic insult, diagnose the existence of epilepsy, or assess the effects of antiseizure or antiepileptogenic interventions are relying heavily on electrophysiology. The most promising EEG biomarkers to date are pathologic high‐frequency oscillations (pHFOs), brief EEG events in the range of 100 to 600 Hz, which are believed to reflect summated action potentials from synchronously bursting neurons. Studies of patients with epilepsy, and experimental animal models, have been based primarily on direct brain recording, which makes pHFOs potentially useful for localizing the epileptogenic zone for surgical resection, but application for other diagnostic and therapeutic purposes is limited. Consequently, recent efforts have involved identification of HFOs recorded with scalp electrodes, and with magnetoencephalography, which may reflect the same pathophysiologic mechanisms as pHFOs recorded directly from the brain. The search is also on for other EEG changes that might serve as epilepsy biomarkers, and candidates include arcuate rhythms, which may reflect repetitive pHFOs, reduction in theta rhythm, which correlates with epileptogenesis in several rodent models of epilepsy, and shortened sleep spindles that correlate with ictogenesis.
Collapse
Affiliation(s)
- Jerome Engel
- Department of NeurologyUniversity of California Los AngelesLos AngelesCaliforniaU.S.A.
- Brain Research InstituteUniversity of California Los AngelesLos AngelesCaliforniaU.S.A.
- Neurobiology and Psychiatry and Biobehavioral SciencesDavid Geffen School of Medicine at UCLALos AngelesCaliforniaU.S.A.
| | - Anatol Bragin
- Department of NeurologyUniversity of California Los AngelesLos AngelesCaliforniaU.S.A.
- Brain Research InstituteUniversity of California Los AngelesLos AngelesCaliforniaU.S.A.
| | - Richard Staba
- Department of NeurologyUniversity of California Los AngelesLos AngelesCaliforniaU.S.A.
| |
Collapse
|
11
|
Pitsch J, Kuehn JC, Gnatkovsky V, Müller JA, van Loo KMJ, de Curtis M, Vatter H, Schoch S, Elger CE, Becker AJ. Anti-epileptogenic and Anti-convulsive Effects of Fingolimod in Experimental Temporal Lobe Epilepsy. Mol Neurobiol 2018; 56:1825-1840. [PMID: 29934763 DOI: 10.1007/s12035-018-1181-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 06/06/2018] [Indexed: 12/11/2022]
Abstract
Temporal lobe epilepsy (TLE) represents a devastating neurological condition, in which approximately 4/5 of patients remain refractory for anti-convulsive drugs. Epilepsy surgery biopsies often reveal the damage pattern of "hippocampal sclerosis" (HS) characterized not only by neuronal loss but also pronounced astrogliosis and inflammatory changes. Since TLE shares distinct pathogenetic aspects with multiple sclerosis (MS), we have here scrutinized therapeutic effects in experimental TLE of the immunmodulator fingolimod, which is established in MS therapy. Fingolimod targets sphingosine-phosphate receptors (S1PRs). mRNAs of fingolimod target S1PRs were augmented in two experimental post status epilepticus (SE) TLE mouse models (suprahippocampal kainate/pilocarpine). SE frequently induces chronic recurrent seizures after an extended latency referred to as epileptogenesis. Transient fingolimod treatment of mice during epileptogenesis after suprahippocampal kainate-induced SE revealed substantial reduction of chronic seizure activity despite lacking acute attenuation of SE itself. Intriguingly, fingolimod exerted robust anti-convulsive activity in kainate-induced SE mice treated in the chronic TLE stage and had neuroprotective and anti-gliotic effects and reduced cytotoxic T cell infiltrates. Finally, the expression profile of fingolimod target-S1PRs in human hippocampal biopsy tissue of pharmacoresistant TLE patients undergoing epilepsy surgery for seizure relief suggests repurposing of fingolimod as novel therapeutic perspective in focal epilepsies.
Collapse
Affiliation(s)
- Julika Pitsch
- Section for Translational Epilepsy Research, Department of Neuropathology, University of Bonn Medical Center, Sigmund-Freud-Str. 25, 53105, Bonn, Germany.
| | - Julia C Kuehn
- Section for Translational Epilepsy Research, Department of Neuropathology, University of Bonn Medical Center, Sigmund-Freud-Str. 25, 53105, Bonn, Germany
| | - Vadym Gnatkovsky
- Unit of Epileptology and Experimental Neurophysiology, Fondazione Istituto Neurologico Carlo Besta, 20133, Milan, Italy
| | - Johannes Alexander Müller
- Section for Translational Epilepsy Research, Department of Neuropathology, University of Bonn Medical Center, Sigmund-Freud-Str. 25, 53105, Bonn, Germany
| | - Karen M J van Loo
- Section for Translational Epilepsy Research, Department of Neuropathology, University of Bonn Medical Center, Sigmund-Freud-Str. 25, 53105, Bonn, Germany
| | - Marco de Curtis
- Unit of Epileptology and Experimental Neurophysiology, Fondazione Istituto Neurologico Carlo Besta, 20133, Milan, Italy
| | - Hartmut Vatter
- Clinic for Neurosurgery, University of Bonn Medical Center, 53105, Bonn, Germany
| | - Susanne Schoch
- Section for Translational Epilepsy Research, Department of Neuropathology, University of Bonn Medical Center, Sigmund-Freud-Str. 25, 53105, Bonn, Germany.,Clinic for Epileptology, University of Bonn Medical Center, 53105, Bonn, Germany
| | - Christian E Elger
- Clinic for Epileptology, University of Bonn Medical Center, 53105, Bonn, Germany
| | - Albert J Becker
- Section for Translational Epilepsy Research, Department of Neuropathology, University of Bonn Medical Center, Sigmund-Freud-Str. 25, 53105, Bonn, Germany
| |
Collapse
|
12
|
Zhang L, Fan D, Wang Q. Synchronous high-frequency oscillations in inhibitory-dominant network motifs consisting of three dentate gyrus-CA3 systems. CHAOS (WOODBURY, N.Y.) 2018; 28:063101. [PMID: 29960405 DOI: 10.1063/1.5017012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Studies on the structural-functional connectomes of the human brain have demonstrated the existence of synchronous firings in a specific brain network motif. In particular, synchronization of high-frequency oscillations (HFOs) has been observed in the experimental data sets of temporal lobe epilepsy (TLE). In addition, both clinical and experimental evidences have accumulated to demonstrate the effect of electrical stimulation on TLE, which, however, remains largely unexplored. In this work, we first employ our previously proposed dentate gyrus (DG)-CA3 network model to investigate the influence of an external electrical stimulus on the HFO transitions. The results indicate that the reinforcing stimulus can induce the HFO transitions of the DG-CA3 system from the gamma band to the fast ripples band. Along with that, the consistent oscillations of neurons within DG-CA3 can also be enhanced with the increasing of stimulus. Then, we expand into a simple motif of three coupled DG-CA3 systems in both the feedforward inhibition and feedback inhibition connections, to investigate the synchronous evolutions of HFOs by regulating both the stimulation strength and inhibitory function. It is shown that the comprehensive effects, which lead to band transition, are independent of the motif configurations. The enhanced external electrical stimulus weakens the synchronism and correlation of connected motifs. In contrast, we demonstrate that the increased inhibitory coupling could facilitate correlation to some extent. Overall, our work highlights the possible origin of synchronous HFOs of hippocampal motifs governed by external inputs and inhibitory connection, which might contribute to a better understanding of the interplay between synchronization dynamics and epileptic structure in the human brain.
Collapse
Affiliation(s)
- Liyuan Zhang
- Department of Dynamics and Control, Beihang University, Beijing 100191, China
| | - Denggui Fan
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Qingyun Wang
- Department of Dynamics and Control, Beihang University, Beijing 100191, China
| |
Collapse
|
13
|
Li L, Patel M, Almajano J, Engel J, Bragin A. Extrahippocampal high-frequency oscillations during epileptogenesis. Epilepsia 2018; 59:e51-e55. [PMID: 29508901 DOI: 10.1111/epi.14041] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2018] [Indexed: 01/23/2023]
Abstract
The current study aimed to investigate the spatial and temporal patterns of high-frequency oscillations (HFOs) in the intra-/extrahippocampal areas during epileptogenesis. Local field potentials were bilaterally recorded from hippocampus (CA1), thalamus, motor cortex, and prefrontal cortex in 13 rats before and after intrahippocampal kainic acid (KA) lesions. HFOs in the ripple (100-200 Hz) and fast ripple (250-500 Hz) ranges were detected and their rates were computed during different time periods (1-5 weeks) after KA-induced status epilepticus (SE). Recurrent spontaneous seizures were observed in 7 rats after SE, and the other 6 rats did not develop epilepsy. During the latent period, the rate of hippocampal HFOs increased at the ipsilateral site of the KA lesion in both groups, and the HFO rate was significantly higher in the animals that later developed epilepsy. Animals that later developed epilepsy also demonstrated widespread appearance of HFOs, in both the ripple and the fast ripple range, whereas animals that did not develop epilepsy only exhibited changes in the ipsilateral intrahippocampal HFO rate. This study demonstrates an association between an increased rate of widespread HFOs and the later development of epilepsy, suggesting the formation of large-scale distributed pathological networks during epileptogenesis.
Collapse
Affiliation(s)
- Lin Li
- Department of Neurology, University of California, Los Angeles, CA, USA
| | - Mayur Patel
- Department of Neurology, University of California, Los Angeles, CA, USA
| | - Joyel Almajano
- Department of Neurology, University of California, Los Angeles, CA, USA
| | - Jerome Engel
- Department of Neurology, University of California, Los Angeles, CA, USA.,Brain Research Institute, University of California, Los Angeles, CA, USA.,Departments of Neurobiology and Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Anatol Bragin
- Department of Neurology, University of California, Los Angeles, CA, USA.,Brain Research Institute, University of California, Los Angeles, CA, USA
| |
Collapse
|
14
|
Lévesque M, Salami P, Shiri Z, Avoli M. Interictal oscillations and focal epileptic disorders. Eur J Neurosci 2017. [DOI: 10.1111/ejn.13628] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Maxime Lévesque
- Department of Neurology & Neurosurgery; Montreal Neurological Institute; McGill University; 3801 University Street Montréal QC Canada H3A 2B4
| | - Pariya Salami
- Department of Neurology & Neurosurgery; Montreal Neurological Institute; McGill University; 3801 University Street Montréal QC Canada H3A 2B4
| | - Zahra Shiri
- Department of Neurology & Neurosurgery; Montreal Neurological Institute; McGill University; 3801 University Street Montréal QC Canada H3A 2B4
| | - Massimo Avoli
- Department of Neurology & Neurosurgery; Montreal Neurological Institute; McGill University; 3801 University Street Montréal QC Canada H3A 2B4
- Dipartimento di Medicina Sperimentale; Sapienza University of Rome; Roma Italy
| |
Collapse
|
15
|
Jiruska P, Alvarado-Rojas C, Schevon CA, Staba R, Stacey W, Wendling F, Avoli M. Update on the mechanisms and roles of high-frequency oscillations in seizures and epileptic disorders. Epilepsia 2017; 58:1330-1339. [PMID: 28681378 DOI: 10.1111/epi.13830] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2017] [Indexed: 12/11/2022]
Abstract
High-frequency oscillations (HFOs) are a type of brain activity that is recorded from brain regions capable of generating seizures. Because of the close association of HFOs with epileptogenic tissue and ictogenesis, understanding their cellular and network mechanisms could provide valuable information about the organization of epileptogenic networks and how seizures emerge from the abnormal activity of these networks. In this review, we summarize the most recent advances in the field of HFOs and provide a critical evaluation of new observations within the context of already established knowledge. Recent improvements in recording technology and the introduction of optogenetics into epilepsy research have intensified experimental work on HFOs. Using advanced computer models, new cellular substrates of epileptic HFOs were identified and the role of specific neuronal subtypes in HFO genesis was determined. Traditionally, the pathogenesis of HFOs was explored mainly in patients with temporal lobe epilepsy and in animal models mimicking this condition. HFOs have also been reported to occur in other epileptic disorders and models such as neocortical epilepsy, genetically determined epilepsies, and infantile spasms, which further support the significance of HFOs in the pathophysiology of epilepsy. It is increasingly recognized that HFOs are generated by multiple mechanisms at both the cellular and network levels. Future studies on HFOs combining novel high-resolution in vivo imaging techniques and precise control of neuronal behavior using optogenetics or chemogenetics will provide evidence about the causal role of HFOs in seizures and epileptogenesis. Detailed understanding of the pathophysiology of HFOs will propel better HFO classification and increase their information yield for clinical and diagnostic purposes.
Collapse
Affiliation(s)
- Premysl Jiruska
- Department of Developmental Epileptology, Institute of Physiology, The Czech Academy of Sciences, Prague, Czech Republic
| | | | | | - Richard Staba
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, U.S.A
| | - William Stacey
- Department of Neurology, Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, U.S.A
| | - Fabrice Wendling
- Laboratory of Signal and Image Processing, INSERM U1099, Rennes, France.,Laboratoire de Traitement du Signal et de l'Image, University of Rennes 1, Rennes, France
| | - Massimo Avoli
- Montreal Neurological Institute and Departments of Neurology & Neurosurgery and of Physiology, McGill University, Montréal, Québec, Canada.,Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
16
|
Abstract
Epilepsy prevention is one of the great unmet needs in epilepsy. Approximately 15% of all epilepsy is caused by an acute acquired CNS insult such as traumatic brain injury (TBI), stroke or encephalitis. There is a latent period between the insult and epilepsy onset that presents an opportunity to intervene with preventive treatment that is unique in neurology. Yet no phase 3 epilepsy prevention studies, and only 2 phase 2 studies have been initiated in the last 16years. Current prevailing opinion is that the research community is not ready for clinical preventive epilepsy studies, and that animal models should first be refined and biomarkers of epileptogenesis and of epilepsy discovered before clinical studies are embarked upon. We review data to suggest that there is basis to do epilepsy prevention studies now with the current knowledge and available drugs, and that those studies are feasible with currently available tools. We suggest that a different approach is needed from the past in order to maximize chances of success, minimize the cost, and set up platform for future preventive treatment development. That approach should include close coordination of preclinical and clinical development programs in a combined PTE prevention strategy, consideration of polytherapy, and simultaneous, combined clinical development of preventive treatment and of biomarker discovery. We argue that the currently favored approach of eschewing clinical studies until biomarkers are available will delay the discovery of epilepsy prevention treatment by at least 10 years and significantly increase the cost of such discovery.
Collapse
Affiliation(s)
- Pavel Klein
- Mid-Atlantic Epilepsy and Sleep Center, Bethesda, MD 20817, United States.
| | - Ivana Tyrlikova
- Mid-Atlantic Epilepsy and Sleep Center, Bethesda, MD 20817, United States.
| |
Collapse
|
17
|
Allopregnanolone decreases interictal spiking and fast ripples in an animal model of mesial temporal lobe epilepsy. Neuropharmacology 2017; 121:12-19. [DOI: 10.1016/j.neuropharm.2017.04.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/21/2017] [Accepted: 04/13/2017] [Indexed: 11/21/2022]
|
18
|
Medina-Ceja L, García-Barba C. The glutamate receptor antagonists CNQX and MPEP decrease fast ripple events in rats treated with kainic acid. Neurosci Lett 2017; 655:137-142. [PMID: 28673833 DOI: 10.1016/j.neulet.2017.06.056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 06/06/2017] [Accepted: 06/29/2017] [Indexed: 12/17/2022]
Abstract
Fast ripples (FR) are high frequency oscillations (250-600Hz) that have been associated with epilepsy. FR are assumed to be generated in small areas of the hippocampus (1mm3) that contain pathologically interconnected glutamate pyramidal cell clusters. Additionally, a relation between glutamate neurotransmission and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/kainite (AMPA/KA) and metabotropic mGluR5 receptors is well established. Therefore, we hypothesized that antagonism of these glutamate receptors would decrease FR activity. For this propose, we induced status epilepticus with a kainic acid injection in the posterior right hippocampus and performed intracranial EEG recordings to detect and evaluate the presence of FR 15days after the injection. The glutamate AMPA/KA receptor antagonist CNQX (10mg/kg) and the mGluR5 antagonist MPEP (20mg/kg) were administered intraperitoneally, and the effects of the drugs were evaluated for a period of three hours after their administration. The results show a decrease in the number of FR in the first hour after drug administration in both cases (CNQX, p=0.0125; MPEP, p=0.0132) and a return to basal values in the third hour of the experiment, but not significant differences in the number of oscillations per event of FR, and the frequency and duration of each event of FR. We therefore conclude that blockade of AMPA/KA and mGluR5 receptors transiently decreases the generation of FR; however, the mechanisms by which this effect is achieved are to be further analyzed in future experiments.
Collapse
Affiliation(s)
- Laura Medina-Ceja
- Laboratory of Neurophysiology, Department of Cellular and Molecular Biology, CUCBA, University of Guadalajara, Jalisco, Mexico.
| | - Carla García-Barba
- Laboratory of Neurophysiology, Department of Cellular and Molecular Biology, CUCBA, University of Guadalajara, Jalisco, Mexico
| |
Collapse
|
19
|
Lévesque M, Shiri Z, Chen LY, Avoli M. High-frequency oscillations and mesial temporal lobe epilepsy. Neurosci Lett 2017; 667:66-74. [PMID: 28115239 DOI: 10.1016/j.neulet.2017.01.047] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 01/18/2017] [Accepted: 01/19/2017] [Indexed: 01/25/2023]
Abstract
The interest of epileptologists has recently shifted from the macroscopic analysis of interictal spikes and seizures to the microscopic analysis of short events in the EEG that are not visible to the naked eye but are observed once the signal has been filtered in specific frequency bands. With the use of new technologies that allow multichannel recordings at high sampling rates and the development of computer algorithms that permit the automated analysis of extensive amounts of data, it is now possible to extract high-frequency oscillations (HFOs) between 80 and 500Hz from the EEG; HFOs have been further categorised as ripples (80-200Hz) and fast ripples (250-500Hz). Within the context of epileptic disorders, HFOs should reflect the pathological activity of neural networks that sustain seizure generation, and could serve as biomarkers of epileptogenesis and ictogenesis. We review here the presumptive cellular mechanisms of ripples and fast ripples in mesial temporal lobe epilepsy. We also focus on recent findings regarding the occurrence of HFOs during epileptiform activity observed in in vitro models of epileptiform synchronization, in in vivo models of mesial temporal lobe epilepsy and in epileptic patients. Finally, we address the effects of anti-epileptic drugs on HFOs and raise some questions and issues related to the definition of HFOs.
Collapse
Affiliation(s)
- Maxime Lévesque
- Montreal Neurological Institute and Department of Neurology & Neurosurgery, McGill University, 3801 University Street, Montréal, QC, H3A 2B4, Canada
| | - Zahra Shiri
- Montreal Neurological Institute and Department of Neurology & Neurosurgery, McGill University, 3801 University Street, Montréal, QC, H3A 2B4, Canada
| | - Li-Yuan Chen
- Montreal Neurological Institute and Department of Neurology & Neurosurgery, McGill University, 3801 University Street, Montréal, QC, H3A 2B4, Canada
| | - Massimo Avoli
- Montreal Neurological Institute and Department of Neurology & Neurosurgery, McGill University, 3801 University Street, Montréal, QC, H3A 2B4, Canada.
| |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW Localization of focal epileptic brain is critical for successful epilepsy surgery and focal brain stimulation. Despite significant progress, roughly half of all patients undergoing focal surgical resection, and most patients receiving focal electrical stimulation, are not seizure free. There is intense interest in high-frequency oscillations (HFOs) recorded with intracranial electroencephalography as potential biomarkers to improve epileptogenic brain localization, resective surgery, and focal electrical stimulation. The present review examines the evidence that HFOs are clinically useful biomarkers. RECENT FINDINGS Performing the PubMed search 'High-Frequency Oscillations and Epilepsy' for 2013-2015 identifies 308 articles exploring HFO characteristics, physiological significance, and potential clinical applications. SUMMARY There is strong evidence that HFOs are spatially associated with epileptic brain. There remain, however, significant challenges for clinical translation of HFOs as epileptogenic brain biomarkers: Differentiating true HFO from the high-frequency power changes associated with increased neuronal firing and bandpass filtering sharp transients. Distinguishing pathological HFO from normal physiological HFO. Classifying tissue under individual electrodes as normal or pathological. Sharing data and algorithms so research results can be reproduced across laboratories. Multicenter prospective trials to provide definitive evidence of clinical utility.
Collapse
|
21
|
Shreve LA, Velisar A, Malekmohammadi M, Koop MM, Trager M, Quinn EJ, Hill BC, Blumenfeld Z, Kilbane C, Mantovani A, Henderson JM, Brontë-Stewart H. Subthalamic oscillations and phase amplitude coupling are greater in the more affected hemisphere in Parkinson's disease. Clin Neurophysiol 2016; 128:128-137. [PMID: 27889627 DOI: 10.1016/j.clinph.2016.10.095] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 10/27/2016] [Accepted: 10/29/2016] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Determine the incidence of resting state oscillations in alpha/beta, high frequency (HFO) bands, and their phase amplitude coupling (PAC) in a large cohort in Parkinson's disease (PD). METHODS Intra-operative local field potentials (LFPs) from subthalamic nucleus (STN) were recorded from 100 PD subjects, data from 74 subjects were included in the analysis. RESULTS Alpha/beta oscillations were evident in >99%, HFO in 87% and PAC in 98% of cases. Alpha/beta oscillations (P<0.01) and PAC were stronger in the more affected (MA) hemisphere (P=0.03). Alpha/beta oscillations were primarily found in 13-20Hz (low beta). Beta and HFO frequencies with the greatest coupling, were positively correlated (P=0.001). Tremor attenuated alpha (P=0.002) and beta band oscillations (P<0.001). CONCLUSIONS STN alpha/beta band oscillations and PAC were evident in ⩾98% cases and were greater in MA hemisphere. Resting tremor attenuated underlying alpha/beta band oscillations. SIGNIFICANCE Beta band LFP power may be used to drive adaptive deep brain stimulation (aDBS), augmented by a kinematic classifier in tremor dominant PD.
Collapse
Affiliation(s)
- Lauren A Shreve
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Anca Velisar
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Mahsa Malekmohammadi
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Mandy Miller Koop
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Megan Trager
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Emma J Quinn
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Bruce C Hill
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Zack Blumenfeld
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Camilla Kilbane
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA; Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | | | - Jaimie M Henderson
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA; Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Helen Brontë-Stewart
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA; Department of Neurosurgery, Stanford University, Stanford, CA, USA.
| |
Collapse
|