1
|
Liu Y, Li Y, Zhang Y, Fang Y, Lei L, Yu J, Tan H, Sui L, Guo Q, Zhou L. Excitatory neurons and oligodendrocyte precursor cells are vulnerable to focal cortical dysplasia type IIIa as suggested by single-nucleus multiomics. Clin Transl Med 2024; 14:e70072. [PMID: 39440467 PMCID: PMC11497056 DOI: 10.1002/ctm2.70072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/07/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Focal cortical dysplasia (FCD) is a heterogeneous group of cortical developmental malformations that constitute a common cause of medically intractable epilepsy. FCD type IIIa (FCD IIIa) refers to temporal neocortex alterations in architectural organisation or cytoarchitectural composition in the immediate vicinity of hippocampal sclerosis. Slight alterations in the temporal neocortex of FCD IIIa patients pose a challenge for the preoperative diagnosis and definition of the resection range. METHODS We have performed multimodal integration of single-nucleus RNA sequencing and single-nucleus assay for transposase-accessible chromatin sequencing in the epileptogenic cortex of four patients with FCD IIIa, and three relatively normal temporal neocortex were chosen as controls. RESULTS Our study revealed that the most significant dysregulation occurred in excitatory neurons (ENs) and oligodendrocyte precursor cells (OPCs) in the epileptogenic cortex of FCD IIIa patients. In ENs, we constructed a transcription factor (TF)-hub gene regulatory network and found DAB1high ENs subpopulation mediates neuronal immunity characteristically in FCD IIIa. Western blotting and immunofluorescence were used to validate the changes in protein expression levels caused by some of the key genes. The OPCs were activated and exhibited aberrant phenotypes in FCD IIIa, and TFs regulating reconstructed pseudotime trajectory were identified. Finally, our results revealed aberrant intercellular communication between ENs and OPCs in FCD IIIa patients. CONCLUSIONS Our study revealed significant and intricate alterations in the transcriptomes and epigenomes in ENs and OPCs of FCD IIIa patients, shedding light on their cell type-specific regulation and potential pathogenic involvement in this disorder. This work will help evaluate the pathogenesis of cortical dysplasia and epilepsy and explore potential therapeutic targets. KEY POINTS Paired snRNA-seq and snATAC-seq data were intergrated and analysed to identify crucial subpopulations of ENs and OPCs in the epileptogenic cortex of FCD IIIa patients and explore their possible pathogenic role in the disease. A TF-hub gene regulatory network was constructed in ENs, and the DAB1high Ex-1 mediated neuronal immunity was characterstically in FCD IIIa patients. The OPCs were activated and exhibited aberrant phenotypes in FCD IIIa patients, and TFs regulating reconstructed pseudotime traectory were identified. Aberrant intercelluar communications between ENs and OPCs in FCD IIIa patients were identified.
Collapse
Affiliation(s)
- Yingying Liu
- Department of NeurologyThe Seventh Affiliated HospitalSun Yat‐sen UniversityShenzhenGuangdongChina
- Department of NeurologyThird Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Yinchao Li
- Department of NeurologyThe Seventh Affiliated HospitalSun Yat‐sen UniversityShenzhenGuangdongChina
| | - Yaqian Zhang
- Department of NeurologyThe Seventh Affiliated HospitalSun Yat‐sen UniversityShenzhenGuangdongChina
| | - Yubao Fang
- Department of NeurologyThe Seventh Affiliated HospitalSun Yat‐sen UniversityShenzhenGuangdongChina
| | - Lei Lei
- Department of NeurologyThe Seventh Affiliated HospitalSun Yat‐sen UniversityShenzhenGuangdongChina
| | - Jiabin Yu
- Department of Epilepsy CenterThe Second Affiliated HospitalGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
| | - Hongping Tan
- Epilepsy CenterGuangdong Sanjiu Brain HospitalGuangzhouGuangdongChina
| | - Lisen Sui
- Department of Epilepsy CenterThe Second Affiliated HospitalGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
| | - Qiang Guo
- Epilepsy CenterGuangdong Sanjiu Brain HospitalGuangzhouGuangdongChina
| | - Liemin Zhou
- Department of NeurologyThe Seventh Affiliated HospitalSun Yat‐sen UniversityShenzhenGuangdongChina
| |
Collapse
|
2
|
Köksal-Ersöz E, Makhalova J, Yochum M, Bénar CG, Guye M, Bartolomei F, Wendling F, Merlet I. Whole-brain simulation of interictal epileptic discharges for patient-specific interpretation of interictal SEEG data. Neurophysiol Clin 2024; 54:103005. [PMID: 39029213 DOI: 10.1016/j.neucli.2024.103005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/21/2024] Open
Abstract
In patients with refractory epilepsy, the clinical interpretation of stereoelectroencephalographic (SEEG) signals is crucial to delineate the epileptogenic network that should be targeted by surgery. We propose a pipeline of patient-specific computational modeling of interictal epileptic activity to improve the definition of regions of interest. Comparison between the computationally defined regions of interest and the resected region confirmed the efficiency of the pipeline. This result suggests that computational modeling can be used to reconstruct signals and aid clinical interpretation.
Collapse
Affiliation(s)
| | - Julia Makhalova
- Assistance Publique-Hôpitaux de Marseille, Service d'Épileptologie et de Rythmologie Cérébrale, Hôpital La Timone, Marseille, France; Aix Marseille Univ, CNRS, CRMBM UMR 7339, Marseille, France
| | - Maxime Yochum
- Univ Rennes, INSERM, LTSI - UMR 1099, Rennes, France
| | - Christian-G Bénar
- Aix Marseille Univ, CNRS, CRMBM UMR 7339, Marseille, France; Institut de Neurosciences des Systèmes (INS, UMR 1106), Aix Marseille Université, INSERM, Marseille, France
| | - Maxime Guye
- APHM, Hôpital de la Timone, CEMEREM, Marseille, France
| | - Fabrice Bartolomei
- Assistance Publique-Hôpitaux de Marseille, Service d'Épileptologie et de Rythmologie Cérébrale, Hôpital La Timone, Marseille, France; Institut de Neurosciences des Systèmes (INS, UMR 1106), Aix Marseille Université, INSERM, Marseille, France
| | | | | |
Collapse
|
3
|
Cho E, Kwon J, Lee G, Shin J, Lee H, Lee SH, Chung CK, Yoon J, Ho WK. Net synaptic drive of fast-spiking interneurons is inverted towards inhibition in human FCD I epilepsy. Nat Commun 2024; 15:6683. [PMID: 39107293 PMCID: PMC11303528 DOI: 10.1038/s41467-024-51065-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024] Open
Abstract
Focal cortical dysplasia type I (FCD I) is the most common cause of pharmaco-resistant epilepsy with the poorest prognosis. To understand the epileptogenic mechanisms of FCD I, we obtained tissue resected from patients with FCD I epilepsy, and from tumor patients as control. Using whole-cell patch clamp in acute human brain slices, we investigated the cellular properties of fast-spiking interneurons (FSINs) and pyramidal neurons (PNs) within the ictal onset zone. In FCD I epilepsy, FSINs exhibited lower firing rates from slower repolarization and action potential broadening, while PNs had increased firing. Importantly, excitatory synaptic drive of FSINs increased progressively with the scale of cortical activation as a general property across species, but this relationship was inverted towards net inhibition in FCD I epilepsy. Further comparison with intracranial electroencephalography (iEEG) from the same patients revealed that the spatial extent of pathological high-frequency oscillations (pHFO) was associated with synaptic events at FSINs.
Collapse
Affiliation(s)
- Eunhye Cho
- Cell Physiology Laboratory, Department of Physiology, Seoul National University College of Medicine, Seoul, Korea
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Korea
| | - Jii Kwon
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Korea
| | - Gyuwon Lee
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Korea
| | - Jiwoo Shin
- Cell Physiology Laboratory, Department of Physiology, Seoul National University College of Medicine, Seoul, Korea
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Korea
| | - Hyunsu Lee
- Department of Physiology, Pusan National University School of Medicine, Busan, Korea
| | - Suk-Ho Lee
- Cell Physiology Laboratory, Department of Physiology, Seoul National University College of Medicine, Seoul, Korea
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Korea
| | - Chun Kee Chung
- Department of Neurosurgery, Seoul National University Hospital, Seoul, Korea.
- Neuroscience Research Institute, Seoul National University Medical Research Center, Seoul, Korea.
| | - Jaeyoung Yoon
- Cell Physiology Laboratory, Department of Physiology, Seoul National University College of Medicine, Seoul, Korea.
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Won-Kyung Ho
- Cell Physiology Laboratory, Department of Physiology, Seoul National University College of Medicine, Seoul, Korea.
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Korea.
| |
Collapse
|
4
|
Courcelles EJ, Kjelsberg K, Convertino L, Nair RR, Witter MP, Nigro MJ. Association cortical areas in the mouse contain a large population of fast-spiking GABAergic neurons that do not express parvalbumin. Eur J Neurosci 2024; 59:3236-3255. [PMID: 38643976 DOI: 10.1111/ejn.16341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/23/2024]
Abstract
GABAergic neurons represent 10-15% of the neuronal population of the cortex but exert a powerful control over information flow in cortical circuits. The largest GABAergic class in the neocortex is represented by the parvalbumin-expressing fast-spiking neurons, which provide powerful somatic inhibition to their postsynaptic targets. Recently, the density of parvalbumin interneurons has been shown to be lower in associative areas of the mouse cortex as compared with sensory and motor areas. Modelling work based on these quantifications linked the low-density of parvalbumin interneurons with specific computations of associative cortices. However, it is still unknown whether the total GABAergic population of association cortices is smaller or whether another GABAergic type can compensate for the low density of parvalbumin interneurons. In the present study, we investigated these hypotheses using a combination of neuroanatomy, mouse genetics and neurophysiology. We found that the GABAergic population of association areas is comparable with that of primary sensory areas, and it is enriched of fast-spiking neurons that do not express parvalbumin and were not accounted for by previous quantifications. We developed an intersectional viral strategy to demonstrate that the population of fast-spiking neurons is comparable across cortical regions. Our results provide quantifications of the density of fast-spiking GABAergic neurons and offers new biological constrains to refine current models of cortical computations.
Collapse
Affiliation(s)
- Erik Justin Courcelles
- Kavli Institute for Systems Neuroscience, Center for Algorithms in the Cortex, Egil and Pauline Braathen and Fred Kavli Center for Cortical Microcircuits, Norwegian University of Science and Technology, Trondheim, Norway
| | - Kasper Kjelsberg
- Kavli Institute for Systems Neuroscience, Center for Algorithms in the Cortex, Egil and Pauline Braathen and Fred Kavli Center for Cortical Microcircuits, Norwegian University of Science and Technology, Trondheim, Norway
| | - Laura Convertino
- Kavli Institute for Systems Neuroscience, Center for Algorithms in the Cortex, Egil and Pauline Braathen and Fred Kavli Center for Cortical Microcircuits, Norwegian University of Science and Technology, Trondheim, Norway
| | - Rajeevkumar Raveendran Nair
- Kavli Institute for Systems Neuroscience, Center for Algorithms in the Cortex, Egil and Pauline Braathen and Fred Kavli Center for Cortical Microcircuits, Norwegian University of Science and Technology, Trondheim, Norway
| | - Menno P Witter
- Kavli Institute for Systems Neuroscience, Center for Algorithms in the Cortex, Egil and Pauline Braathen and Fred Kavli Center for Cortical Microcircuits, Norwegian University of Science and Technology, Trondheim, Norway
| | - Maximiliano José Nigro
- Kavli Institute for Systems Neuroscience, Center for Algorithms in the Cortex, Egil and Pauline Braathen and Fred Kavli Center for Cortical Microcircuits, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
5
|
Johansen N, Somasundaram S, Travaglini KJ, Yanny AM, Shumyatcher M, Casper T, Cobbs C, Dee N, Ellenbogen R, Ferreira M, Goldy J, Guzman J, Gwinn R, Hirschstein D, Jorstad NL, Keene CD, Ko A, Levi BP, Ojemann JG, Pham T, Shapovalova N, Silbergeld D, Sulc J, Torkelson A, Tung H, Smith K, Lein ES, Bakken TE, Hodge RD, Miller JA. Interindividual variation in human cortical cell type abundance and expression. Science 2023; 382:eadf2359. [PMID: 37824649 DOI: 10.1126/science.adf2359] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 07/30/2023] [Indexed: 10/14/2023]
Abstract
Single-cell transcriptomic studies have identified a conserved set of neocortical cell types from small postmortem cohorts. We extended these efforts by assessing cell type variation across 75 adult individuals undergoing epilepsy and tumor surgeries. Nearly all nuclei map to one of 125 robust cell types identified in the middle temporal gyrus. However, we found interindividual variance in abundances and gene expression signatures, particularly in deep-layer glutamatergic neurons and microglia. A minority of donor variance is explainable by age, sex, ancestry, disease state, and cell state. Genomic variation was associated with expression of 150 to 250 genes for most cell types. This characterization of cellular variation provides a baseline for cell typing in health and disease.
Collapse
Affiliation(s)
| | | | | | | | | | - Tamara Casper
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Charles Cobbs
- Swedish Neuroscience Institute, Seattle,WA 98122, USA
| | - Nick Dee
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Richard Ellenbogen
- Department of Neurological Surgery, University of Washington, Seattle, WA 98104, USA
| | - Manuel Ferreira
- Department of Neurological Surgery, University of Washington, Seattle, WA 98104, USA
| | - Jeff Goldy
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Junitta Guzman
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Ryder Gwinn
- Swedish Neuroscience Institute, Seattle,WA 98122, USA
| | | | | | - C Dirk Keene
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98104, USA
| | - Andrew Ko
- Department of Neurological Surgery, University of Washington, Seattle, WA 98104, USA
| | - Boaz P Levi
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Jeffrey G Ojemann
- Department of Neurological Surgery, University of Washington, Seattle, WA 98104, USA
| | - Thanh Pham
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | - Daniel Silbergeld
- Department of Neurological Surgery, University of Washington, Seattle, WA 98104, USA
| | - Josef Sulc
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Amy Torkelson
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Herman Tung
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Kimberly Smith
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Ed S Lein
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | | | | |
Collapse
|
6
|
Liu R, Xing Y, Zhang H, Wang J, Lai H, Cheng L, Li D, Yu T, Yan X, Xu C, Piao Y, Zeng L, Loh HH, Zhang G, Yang X. Imbalance between the function of Na+-K+-2Cl and K+-Cl impairs Cl– homeostasis in human focal cortical dysplasia. Front Mol Neurosci 2022; 15:954167. [PMID: 36324524 PMCID: PMC9621392 DOI: 10.3389/fnmol.2022.954167] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/27/2022] [Indexed: 11/29/2022] Open
Abstract
Objective Altered expression patterns of Na+-K+-2Cl– (NKCC1) and K+-Cl– (KCC2) co-transporters have been implicated in the pathogenesis of epilepsy. Here, we assessed the effects of imbalanced NKCC1 and KCC2 on γ-aminobutyric acidergic (GABAergic) neurotransmission in certain brain regions involved in human focal cortical dysplasia (FCD). Materials and methods We sought to map a micro-macro neuronal network to better understand the epileptogenesis mechanism. In patients with FCD, we resected cortical tissue from the seizure the onset zone (SOZ) and the non-seizure onset zone (non-SOZ) inside the epileptogenic zone (EZ). Additionally, we resected non-epileptic neocortical tissue from the patients with mesial temporal lobe epilepsy (MTLE) as control. All of tissues were analyzed using perforated patch recordings. NKCC1 and KCC2 co-transporters expression and distribution were analyzed by immunohistochemistry and western blotting. Results Results revealed that depolarized GABAergic signals were observed in pyramidal neurons in the SOZ and non-SOZ groups compared with the control group. The total number of pyramidal neurons showing GABAergic spontaneous postsynaptic currents was 11/14, 7/17, and 0/12 in the SOZ, non-SOZ, and control groups, respectively. The depolarizing GABAergic response was significantly dampened by the specific NKCC1 inhibitor bumetanide (BUM). Patients with FCD exhibited higher expression and internalized distribution of KCC2, particularly in the SOZ group. Conclusion Our results provide evidence of a potential neurocircuit underpinning SOZ epileptogenesis and non-SOZ seizure susceptibility. Imbalanced function of NKCC1 and KCC2 may affect chloride ion homeostasis in neurons and alter GABAergic inhibitory action, thereby contributing to epileptogenesis in FCDs. Maintaining chloride ion homeostasis in the neurons may represent a new avenue for the development of novel anti-seizure medications (ASMs).
Collapse
Affiliation(s)
- Ru Liu
- Guangzhou Laboratory, Guangzhou, China
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
- Neuroelectrophysiological Laboratory, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yue Xing
- Guangzhou Laboratory, Guangzhou, China
| | | | - Junling Wang
- Guangzhou Laboratory, Guangzhou, China
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
- Neuroelectrophysiological Laboratory, Xuanwu Hospital, Capital Medical University, Beijing, China
| | | | - Lipeng Cheng
- Guangzhou Laboratory, Guangzhou, China
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
- Neuroelectrophysiological Laboratory, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Donghong Li
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Tao Yu
- Department of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xiaoming Yan
- Department of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Cuiping Xu
- Department of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yueshan Piao
- Department of Pathology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Linghui Zeng
- Department of Pharmacology, Zhejiang University City College, Hangzhou, China
| | | | - Guojun Zhang
- Department of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- *Correspondence: Guojun Zhang,
| | - Xiaofeng Yang
- Guangzhou Laboratory, Guangzhou, China
- Neuroelectrophysiological Laboratory, Xuanwu Hospital, Capital Medical University, Beijing, China
- Xiaofeng Yang,
| |
Collapse
|
7
|
Reorganization of Parvalbumin Immunopositive Perisomatic Innervation of Principal Cells in Focal Cortical Dysplasia Type IIB in Human Epileptic Patients. Int J Mol Sci 2022; 23:ijms23094746. [PMID: 35563137 PMCID: PMC9100614 DOI: 10.3390/ijms23094746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 02/04/2023] Open
Abstract
Focal cortical dysplasia (FCD) is one of the most common causes of drug-resistant epilepsy. As several studies have revealed, the abnormal functioning of the perisomatic inhibitory system may play a role in the onset of seizures. Therefore, we wanted to investigate whether changes of perisomatic inhibitory inputs are present in FCD. Thus, the input properties of abnormal giant- and control-like principal cells were examined in FCD type IIB patients. Surgical samples were compared to controls from the same cortical regions with short postmortem intervals. For the study, six subjects were selected/each group. The perisomatic inhibitory terminals were quantified in parvalbumin and neuronal nuclei double immunostained sections using a confocal fluorescent microscope. The perisomatic input of giant neurons was extremely abundant, whereas control-like cells of the same samples had sparse inputs. A comparison of pooled data shows that the number of parvalbumin-immunopositive perisomatic terminals contacting principal cells was significantly larger in epileptic cases. The analysis showed some heterogeneity among epileptic samples. However, five out of six cases had significantly increased perisomatic input. Parameters of the control cells were homogenous. The reorganization of the perisomatic inhibitory system may increase the probability of seizure activity and might be a general mechanism of abnormal network activity.
Collapse
|
8
|
Godoy LD, Prizon T, Rossignoli MT, Leite JP, Liberato JL. Parvalbumin Role in Epilepsy and Psychiatric Comorbidities: From Mechanism to Intervention. Front Integr Neurosci 2022; 16:765324. [PMID: 35250498 PMCID: PMC8891758 DOI: 10.3389/fnint.2022.765324] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 01/24/2022] [Indexed: 12/22/2022] Open
Abstract
Parvalbumin is a calcium-binding protein present in inhibitory interneurons that play an essential role in regulating many physiological processes, such as intracellular signaling and synaptic transmission. Changes in parvalbumin expression are deeply related to epilepsy, which is considered one of the most disabling neuropathologies. Epilepsy is a complex multi-factor group of disorders characterized by periods of hypersynchronous activity and hyperexcitability within brain networks. In this scenario, inhibitory neurotransmission dysfunction in modulating excitatory transmission related to the loss of subsets of parvalbumin-expressing inhibitory interneuron may have a prominent role in disrupted excitability. Some studies also reported that parvalbumin-positive interneurons altered function might contribute to psychiatric comorbidities associated with epilepsy, such as depression, anxiety, and psychosis. Understanding the epileptogenic process and comorbidities associated with epilepsy have significantly advanced through preclinical and clinical investigation. In this review, evidence from parvalbumin altered function in epilepsy and associated psychiatric comorbidities were explored with a translational perspective. Some advances in potential therapeutic interventions are highlighted, from current antiepileptic and neuroprotective drugs to cutting edge modulation of parvalbumin subpopulations using optogenetics, designer receptors exclusively activated by designer drugs (DREADD) techniques, transcranial magnetic stimulation, genome engineering, and cell grafting. Creating new perspectives on mechanisms and therapeutic strategies is valuable for understanding the pathophysiology of epilepsy and its psychiatric comorbidities and improving efficiency in clinical intervention.
Collapse
Affiliation(s)
- Lívea Dornela Godoy
- Department of Psychology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Tamiris Prizon
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Matheus Teixeira Rossignoli
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - João Pereira Leite
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- João Pereira Leite,
| | - José Luiz Liberato
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- *Correspondence: José Luiz Liberato,
| |
Collapse
|
9
|
Cheng L, Xing Y, Zhang H, Liu R, Lai H, Piao Y, Wang W, Yan X, Li X, Wang J, Li D, Loh HH, Yu T, Zhang G, Yang X. Mechanistic Analysis of Micro-Neurocircuits Underlying the Epileptogenic Zone in Focal Cortical Dysplasia Patients. Cereb Cortex 2021; 32:2216-2230. [PMID: 34664065 DOI: 10.1093/cercor/bhab350] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 11/13/2022] Open
Abstract
We aim to explore the microscopic neurophysiology of focal cortical dysplasia (FCD) induced epileptogenesis in specific macroscopic brain regions, therefore mapping a micro-macro neuronal network that potentially indicates the epileptogenic mechanism. Epileptic and relatively non-epileptic temporal neocortex specimens were resected from FCD and mesial temporal lobe epilepsy (mTLE) patients, respectively. Whole-cell patch-clamping was performed on cells from the seizure onset zone (SOZ) and non-SOZ inside the epileptogenic zone (EZ) of FCD patients, as well as the non-epileptic neocortex of mTLE patients. Microscopic data were recorded, including membrane characteristics, spontaneous synaptic activities, and evoked action potentials. Immunohistochemistry was also performed on parvalbumin-positive (PV+) interneurons. We found that SOZ interneurons exhibited abnormal neuronal expression and distribution as well as reduced overall function compared with non-SOZ and mTLE interneurons. The SOZ pyramidal cells experienced higher excitation but lower inhibition than the mTLE controls, whereas the non-SOZ pyramidal cells exhibited intermediate excitability. Action potential properties of both types of neurons also suggested more synchronized neuronal activity inside the EZ, particularly inside the SOZ. Together, our research provides evidence for a potential neurocircuit underlying SOZ epileptogenesis and non-SOZ seizure susceptibility. Further investigation of this microscopic network may promote understanding of the mechanism of FCD-induced epileptogenesis.
Collapse
Affiliation(s)
- Lipeng Cheng
- Center of Epilepsy, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100069, China.,Fundamental Research Department, Guangzhou Laboratory, Guangzhou 510700, China.,Neuroelectrophysiological Laboratory, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Yue Xing
- Center of Epilepsy, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100069, China.,Fundamental Research Department, Guangzhou Laboratory, Guangzhou 510700, China.,Neuroelectrophysiological Laboratory, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Herui Zhang
- Fundamental Research Department, Guangzhou Laboratory, Guangzhou 510700, China
| | - Ru Liu
- Center of Epilepsy, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100069, China.,Fundamental Research Department, Guangzhou Laboratory, Guangzhou 510700, China.,Neuroelectrophysiological Laboratory, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Huanling Lai
- Fundamental Research Department, Guangzhou Laboratory, Guangzhou 510700, China
| | - Yueshan Piao
- Department of Pathology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Wei Wang
- Center of Epilepsy, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100069, China.,Fundamental Research Department, Guangzhou Laboratory, Guangzhou 510700, China.,Neuroelectrophysiological Laboratory, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Xiaoming Yan
- Department of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Xiaonan Li
- Center of Epilepsy, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100069, China.,Fundamental Research Department, Guangzhou Laboratory, Guangzhou 510700, China.,Neuroelectrophysiological Laboratory, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Jiaoyang Wang
- Center of Epilepsy, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100069, China.,Fundamental Research Department, Guangzhou Laboratory, Guangzhou 510700, China.,Neuroelectrophysiological Laboratory, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Donghong Li
- Center of Epilepsy, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100069, China.,Fundamental Research Department, Guangzhou Laboratory, Guangzhou 510700, China.,Neuroelectrophysiological Laboratory, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.,Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangdong 510635, China
| | - Horace H Loh
- Fundamental Research Department, Guangzhou Laboratory, Guangzhou 510700, China
| | - Tao Yu
- Department of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Guojun Zhang
- Department of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.,Functional Neurosurgery Department, Beijing Children's Hospital, Capital Medical University, Beijing 100045, China
| | - Xiaofeng Yang
- Center of Epilepsy, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100069, China.,Fundamental Research Department, Guangzhou Laboratory, Guangzhou 510700, China.,Neuroelectrophysiological Laboratory, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| |
Collapse
|
10
|
Pinna A, Colasanti A. The Neurometabolic Basis of Mood Instability: The Parvalbumin Interneuron Link-A Systematic Review and Meta-Analysis. Front Pharmacol 2021; 12:689473. [PMID: 34616292 PMCID: PMC8488267 DOI: 10.3389/fphar.2021.689473] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/18/2021] [Indexed: 12/23/2022] Open
Abstract
The neurobiological bases of mood instability are poorly understood. Neuronal network alterations and neurometabolic abnormalities have been implicated in the pathophysiology of mood and anxiety conditions associated with mood instability and hence are candidate mechanisms underlying its neurobiology. Fast-spiking parvalbumin GABAergic interneurons modulate the activity of principal excitatory neurons through their inhibitory action determining precise neuronal excitation balance. These interneurons are directly involved in generating neuronal networks activities responsible for sustaining higher cerebral functions and are especially vulnerable to metabolic stress associated with deficiency of energy substrates or mitochondrial dysfunction. Parvalbumin interneurons are therefore candidate key players involved in mechanisms underlying the pathogenesis of brain disorders associated with both neuronal networks' dysfunction and brain metabolism dysregulation. To provide empirical support to this hypothesis, we hereby report meta-analytical evidence of parvalbumin interneurons loss or dysfunction in the brain of patients with Bipolar Affective Disorder (BPAD), a condition primarily characterized by mood instability for which the pathophysiological role of mitochondrial dysfunction has recently emerged as critically important. We then present a comprehensive review of evidence from the literature illustrating the bidirectional relationship between deficiency in mitochondrial-dependent energy production and parvalbumin interneuron abnormalities. We propose a mechanistic explanation of how alterations in neuronal excitability, resulting from parvalbumin interneurons loss or dysfunction, might manifest clinically as mood instability, a poorly understood clinical phenotype typical of the most severe forms of affective disorders. The evidence we report provides insights on the broader therapeutic potential of pharmacologically targeting parvalbumin interneurons in psychiatric and neurological conditions characterized by both neurometabolic and neuroexcitability abnormalities.
Collapse
Affiliation(s)
- Antonello Pinna
- School of Life Sciences, University of Sussex, Brighton, United Kingdom.,Department of Neuroscience, Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| | - Alessandro Colasanti
- Department of Neuroscience, Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| |
Collapse
|
11
|
Schmeichel AM, Coon EA, Parisi JE, Singer W, Low PA, Benarroch EE. Loss of putative GABAergic neurons in the ventrolateral medulla in multiple system atrophy. Sleep 2021; 44:zsab074. [PMID: 33755181 PMCID: PMC8436134 DOI: 10.1093/sleep/zsab074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/17/2021] [Indexed: 11/12/2022] Open
Abstract
STUDY OBJECTIVES Multiple system atrophy (MSA) is associated with disturbances in cardiovascular, sleep and respiratory control. The lateral paragigantocellular nucleus (LPGi) in the ventrolateral medulla (VLM) contains GABAergic neurons that participate in control of rapid eye movement (REM) sleep and cardiovagal responses. We sought to determine whether there was loss of putative GABAergic neurons in the LPGi and adjacent regions in MSA. METHODS Sections of the medulla were processed for GAD65/67 immunoreactivity in eight subjects with clinical and neuropathological diagnosis of MSA and in six control subjects. These putative GABAergic LPGi neurons were mapped based on their relationship to adjacent monoaminergic VLM groups. RESULTS There were markedly decreased numbers of GAD-immunoreactive neurons in the LPGi and adjacent VLM regions in MSA. CONCLUSIONS There is loss of GABAergic neurons in the VLM, including the LPGi in patients with MSA. Whereas these findings provide a possible mechanistic substrate, given the few cases included, further studies are necessary to determine whether they contribute to REM sleep-related cardiovagal and possibly respiratory dysregulation in MSA.
Collapse
Affiliation(s)
| | | | - Joseph E Parisi
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | | | - Phillip A Low
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
12
|
Gong T, Liu Y, Chen Y, Lin L, Lin Y, Wang G. Focal corticarl dysplasia in epilepsy is associated with GABA increase. Neuroimage Clin 2021; 31:102763. [PMID: 34280836 PMCID: PMC8313738 DOI: 10.1016/j.nicl.2021.102763] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 07/08/2021] [Accepted: 07/10/2021] [Indexed: 12/01/2022]
Abstract
PURPOSE Focal cortical dysplasia (FCD) is a major cause of drug-resistant epilepsy; however the underlying epileptogenic mechanisms of FCD metabolism in epilepsy patients remain unclear. The aim of this study is to detect alterations of γ-aminobutyric acid (GABA), glutathione (GSH), and the composite of glutamate and glutamine (Glx) in MRI-typical and neuropathologically confirmed FCD-associated epilepsy using Hadamard Encoding and Reconstruction of Mega-Edited Spectroscopy (HERMES). MATERIALS AND METHODS Fourteen epileptic patients suspected to be caused by FCD and 14 healthy controls were enrolled prospectively in this study; all subjects underwent a 3 T MRI scan, including 3D T1 weighted imaging and HERMES. The GABA signal detected by HERMES also contains signals from macromolecules and homocarnosine, so it is referred as GABA+. Signals of GABA+, GSH and Glx detected by HERMES from tumor foci, contralateral cerebral regions, and healthy controls were quantified using Gannet. Fitting errors and signal to noise ratios (SNRs) of GABA + signals were also recorded. Differences of GABA+, GSH, Glx, fitting error and SNR of GABA + among three groups were analyzed using linear mixed effects models. RESULTS Twelve FCD-associated epilepsy patients (7 females, aged 21.9 ± 9.3 years) and 12 matched healthy controls (7 females, aged 22.8 ± 9.8 years) were finally enrolled in this study. ANOVA results indicated that GABA levels were significantly increased in FCD foci compared with contralateral regions (p = 0.008) and with healthy controls (p = 0.003), while no difference was found in GSH and Glx levels. No difference of fitting errors or SNR of GABA + was found among FCD foci, contralateral regions and healthy controls. CONCLUSIONS Increased GABA levels were found in FCD foci that indicated GABA may play a central role in the pathophysiology of FCD patients with epilepsy.
Collapse
Affiliation(s)
- Tao Gong
- Department of Radiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China; MSunSoft Health Group, Shandong, China
| | - Yubo Liu
- Department of Radiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Yufan Chen
- Department of Radiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | | | - Youting Lin
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China.
| | - Guangbin Wang
- Department of Radiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China.
| |
Collapse
|
13
|
Rácz A, Becker AJ, Quesada CM, Borger V, Vatter H, Surges R, Elger CE. Post-Surgical Outcome and Its Determining Factors in Patients Operated on With Focal Cortical Dysplasia Type II-A Retrospective Monocenter Study. Front Neurol 2021; 12:666056. [PMID: 34177771 PMCID: PMC8220082 DOI: 10.3389/fneur.2021.666056] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/19/2021] [Indexed: 11/27/2022] Open
Abstract
Purpose: Focal cortical dysplasias (FCDs) are a frequent cause of drug-resistant focal epilepsies. These lesions are in many cases amenable to epilepsy surgery. We examined 12-month and long-term post-surgical outcomes and its predictors including positive family history of epilepsy. Methods: Twelve-month and long-term outcomes regarding seizure control after epilepsy surgery in patients operated on with FCD type II between 2002 and 2019 in the Epilepsy Center of Bonn were evaluated based on patient records and telephone interviews. Results: Overall, 102 patients fulfilled the inclusion criteria. Seventy-one percent of patients at 12 months of follow-up (FU) and 54% of patients at the last available FU (63 ± 5.00 months, median 46.5 months) achieved complete seizure freedom (Engel class IA), and 84 and 69% of patients, respectively, displayed Engel class I outcome. From the examined variables [histopathology: FCD IIA vs. IIB, lobar lesion location: frontal vs. non-frontal, family history for epilepsy, focal to bilateral tonic–clonic seizures (FTBTCS) in case history, completeness of resection, age at epilepsy onset, age at surgery, duration of epilepsy], outcomes at 12 months were determined by interactions of age at onset, duration of epilepsy, age at surgery, extent of resection, and lesion location. Long-term post-surgical outcome was primarily influenced by the extent of resection and history of FTBTCS. Positive family history for epilepsy had a marginal influence on long-term outcomes only. Conclusion: Resective epilepsy surgery in patients with FCD II yields very good outcomes both at 12-month and long-term follow-ups. Complete lesion resection and the absence of FTBTCS prior to surgery are associated with a better outcome.
Collapse
Affiliation(s)
- Attila Rácz
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Albert J Becker
- Department of Neuropathology, University Hospital Bonn, Bonn, Germany
| | - Carlos M Quesada
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Valeri Borger
- Department of Neurosurgery, University Hospital Bonn, Bonn, Germany
| | - Hartmut Vatter
- Department of Neurosurgery, University Hospital Bonn, Bonn, Germany
| | - Rainer Surges
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | | |
Collapse
|
14
|
Rossini L, De Santis D, Mauceri RR, Tesoriero C, Bentivoglio M, Maderna E, Maiorana A, Deleo F, de Curtis M, Tringali G, Cossu M, Tumminelli G, Bramerio M, Spreafico R, Tassi L, Garbelli R. Dendritic pathology, spine loss and synaptic reorganization in human cortex from epilepsy patients. Brain 2021; 144:251-265. [PMID: 33221837 DOI: 10.1093/brain/awaa387] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/06/2020] [Accepted: 09/07/2020] [Indexed: 12/26/2022] Open
Abstract
Neuronal dendritic arborizations and dendritic spines are crucial for a normal synaptic transmission and may be critically involved in the pathophysiology of epilepsy. Alterations in dendritic morphology and spine loss mainly in hippocampal neurons have been reported both in epilepsy animal models and in human brain tissues from patients with epilepsy. However, it is still unclear whether these dendritic abnormalities relate to the cause of epilepsy or are generated by seizure recurrence. We investigated fine neuronal structures at the level of dendritic and spine organization using Golgi impregnation, and analysed synaptic networks with immunohistochemical markers of glutamatergic (vGLUT1) and GABAergic (vGAT) axon terminals in human cerebral cortices derived from epilepsy surgery. Specimens were obtained from 28 patients with different neuropathologically defined aetiologies: type Ia and type II focal cortical dysplasia, cryptogenic (no lesion) and temporal lobe epilepsy with hippocampal sclerosis. Autoptic tissues were used for comparison. Three-dimensional reconstructions of Golgi-impregnated neurons revealed severe dendritic reshaping and spine alteration in the core of the type II focal cortical dysplasia. Dysmorphic neurons showed increased dendritic complexity, reduction of dendritic spines and occasional filopodia-like protrusions emerging from the soma. Surprisingly, the intermingled normal-looking pyramidal neurons also showed severe spine loss and simplified dendritic arborization. No changes were observed outside the dysplasia (perilesional tissue) or in neocortical postsurgical tissue obtained in the other patient groups. Immunoreactivities of vGLUT1 and vGAT showed synaptic reorganization in the core of type II dysplasia characterized by the presence of abnormal perisomatic baskets around dysmorphic neurons, in particular those with filopodia-like protrusions, and changes in vGLUT1/vGAT expression. Ultrastructural data in type II dysplasia highlighted the presence of altered neuropil engulfed by glial processes. Our data indicate that the fine morphological aspect of neurons and dendritic spines are normal in epileptogenic neocortex, with the exception of type II dysplastic lesions. The findings suggest that the mechanisms leading to this severe form of cortical malformation interfere with the normal dendritic arborization and synaptic network organization. The data argue against the concept that long-lasting epilepsy and seizure recurrence per se unavoidably produce a dendritic pathology.
Collapse
Affiliation(s)
- Laura Rossini
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Dalia De Santis
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | | | - Chiara Tesoriero
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Italy
| | - Marina Bentivoglio
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Italy
| | - Emanuela Maderna
- Division of Neurology V and Neuropathology, Fondazione IRCCS, Istituto Neurologico Carlo Besta, Milano, Italy
| | - Antonio Maiorana
- Institute of Pathology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Francesco Deleo
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Marco de Curtis
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Giovanni Tringali
- Neurosurgery Unit, Fondazione IRCCS, Istituto Neurologico Carlo Besta, Milano, Italy
| | - Massimo Cossu
- "Claudio Munari" Epilepsy Surgery Center, GOM Niguarda, Milano, Italy
| | - Gemma Tumminelli
- "Claudio Munari" Epilepsy Surgery Center, GOM Niguarda, Milano, Italy
| | | | - Roberto Spreafico
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Laura Tassi
- "Claudio Munari" Epilepsy Surgery Center, GOM Niguarda, Milano, Italy
| | - Rita Garbelli
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| |
Collapse
|
15
|
Pfisterer U, Petukhov V, Demharter S, Meichsner J, Thompson JJ, Batiuk MY, Asenjo-Martinez A, Vasistha NA, Thakur A, Mikkelsen J, Adorjan I, Pinborg LH, Pers TH, von Engelhardt J, Kharchenko PV, Khodosevich K. Identification of epilepsy-associated neuronal subtypes and gene expression underlying epileptogenesis. Nat Commun 2020; 11:5038. [PMID: 33028830 PMCID: PMC7541486 DOI: 10.1038/s41467-020-18752-7] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 09/08/2020] [Indexed: 11/20/2022] Open
Abstract
Epilepsy is one of the most common neurological disorders, yet its pathophysiology is poorly understood due to the high complexity of affected neuronal circuits. To identify dysfunctional neuronal subtypes underlying seizure activity in the human brain, we have performed single-nucleus transcriptomics analysis of >110,000 neuronal transcriptomes derived from temporal cortex samples of multiple temporal lobe epilepsy and non-epileptic subjects. We found that the largest transcriptomic changes occur in distinct neuronal subtypes from several families of principal neurons (L5-6_Fezf2 and L2-3_Cux2) and GABAergic interneurons (Sst and Pvalb), whereas other subtypes in the same families were less affected. Furthermore, the subtypes with the largest epilepsy-related transcriptomic changes may belong to the same circuit, since we observed coordinated transcriptomic shifts across these subtypes. Glutamate signaling exhibited one of the strongest dysregulations in epilepsy, highlighted by layer-wise transcriptional changes in multiple glutamate receptor genes and strong upregulation of genes coding for AMPA receptor auxiliary subunits. Overall, our data reveal a neuronal subtype-specific molecular phenotype of epilepsy. The pathophysiology of epilepsy is unclear. Here, the authors present single-nuclei transcriptomic profiling of human temporal lobe epilepsy from patients. They identified epilepsy-associated neuronal subtypes, and a panel of dysregulated genes, predicting neuronal circuits contributing to epilepsy.
Collapse
Affiliation(s)
- Ulrich Pfisterer
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Viktor Petukhov
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark.,Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115, USA
| | - Samuel Demharter
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Johanna Meichsner
- Institute of Pathophysiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Jonatan J Thompson
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Mykhailo Y Batiuk
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Andrea Asenjo-Martinez
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Navneet A Vasistha
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Ashish Thakur
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Jens Mikkelsen
- Department of Neurology and Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Istvan Adorjan
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Lars H Pinborg
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, 2200, Copenhagen, Denmark.,Epilepsy Clinic, Department of Neurology, Copenhagen University Hospital, Rigshospitalet, 2200, Copenhagen, Denmark
| | - Tune H Pers
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Jakob von Engelhardt
- Institute of Pathophysiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Peter V Kharchenko
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115, USA
| | - Konstantin Khodosevich
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark.
| |
Collapse
|
16
|
GABAergic Interneuron and Neurotransmission Are mTOR-Dependently Disturbed in Experimental Focal Cortical Dysplasia. Mol Neurobiol 2020; 58:156-169. [PMID: 32909150 DOI: 10.1007/s12035-020-02086-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 08/21/2020] [Indexed: 01/13/2023]
Abstract
Focal cortical dysplasia (FCD) is a major cause for drug-resistant epilepsies. The molecular and cellular mechanisms of epileptogenesis in FCD are still poorly understood. Some studies have suggested that deficiencies of γ-aminobutyric acid (GABA) system may play an important role in type II FCD, but it remains controversial. In order to examine whether and how GABAergic interneurons and synaptic function are affected, we generated a somatic mTOR hyperactivation-based mouse model of type II FCD by in utero electroporation, quantified densities of interneurons in the malformed cortices, and recorded miniature inhibitory postsynaptic currents in dysmorphic neurons. We detected 20-25% reduction of GABAergic interneurons within malformed cortices, independent of cortical regions and cell subtypes but proportionate to the decrease of global neuron counts. GABAergic synaptic transmission from interneurons to mTOR hyperactivated dysmorphic neurons was dramatically disrupted, outweighing the decrease of interneuron counts. Postnatal mTOR inhibition partially rescued these alterations of GABAergic system. We also quantified the expression of GABAA receptor, GABA transporter, and chloridion transporter encoding genes and found that their expression was relatively intact within the malformed cortices. Taken together, these results confirmed that GABAergic interneuron and synapse transmission are disturbed profoundly in an mTOR-dependent manner in type II FCD. Our study suggests that postsynaptic mechanisms independent of interneuron reduction or altered expression of GABA synapse genes might be accountable for the impaired GABAergic neurotransmission in type II FCD as well as other mTOR-related epilepsies.
Collapse
|
17
|
Han P, Welsh CT, Smith MT, Schmidt RE, Carroll SL. Complex Patterns of GABAergic Neuronal Deficiency and Type 2 Potassium-Chloride Cotransporter Immaturity in Human Focal Cortical Dysplasia. J Neuropathol Exp Neurol 2020; 78:365-372. [PMID: 30856249 DOI: 10.1093/jnen/nlz009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Focal cortical dysplasia (FCD) is a common histopathologic finding in cortical specimens resected for refractory epilepsy. GABAergic neuronal abnormalities and K-Cl cotransporter type 2 (KCC2) immaturity may be contributing factors for FCD-related epilepsy. We examined surgical specimens from 12 cases diagnosed with FCD, and brain tissues without developmental abnormality obtained from 6 autopsy cases. We found that GABAergic neuronal density was abnormal in FCD with 2 distinct patterns. In 7 of 12 (58%) FCD subjects, the GABAergic neuron density in dysplastic regions and in neighboring nondysplastic regions was equally reduced, hence we call this a "broad pattern." In the remaining cases, GABAergic neuron density was decreased in dysplastic regions but not in the neighboring nondysplastic regions; we designate this "restricted pattern." The different patterns are not associated with pathologic subtypes of FCD. Intracytoplasmic retention of KCC2 is evident in dysmorphic neurons in the majority of FCD type II subjects (5/7) but not in FCD type I. Our study suggests that (1) "broad" GABAergic deficiency may reflect epileptic vulnerability outside the dysplastic area; and (2) abnormal distribution of KCC2 may contribute to seizure generation in patients with FCD type II but not in type I.
Collapse
Affiliation(s)
- Pengcheng Han
- Department of Pathology and Laboratory Medicine.,Department of Pathology and Laboratory Medicine Residency Program, Medical University of South Carolina, Charleston, South Carolina
| | | | | | - Robert E Schmidt
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | | |
Collapse
|
18
|
Perez-Ramirez MB, Gu F, Prince DA. Prolonged prophylactic effects of gabapentin on status epilepticus-induced neocortical injury. Neurobiol Dis 2020; 142:104949. [PMID: 32442680 PMCID: PMC8083016 DOI: 10.1016/j.nbd.2020.104949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 04/17/2020] [Accepted: 05/14/2020] [Indexed: 01/21/2023] Open
Abstract
Long-term consequences of status epilepticus (SE) occur in a significant proportion of those who survive the acute episode. We developed an in vivo model of acute focal neocortical SE (FSE) to study long-term effects on local cortical structure and function and potential strategies to mitigate adverse consequences of SE. An acute 2 h episode of FSE was induced in anesthetized mice by epidural application of gabazine +4-aminopyridine over sensorimotor neocortex. Ten and 30 days later, the morphological and functional consequences of this single episode of FSE were studied using immunocytochemical and electrophysiological techniques. Results, focused on cortical layer V, showed astrogliosis, microgliosis, decreased neuronal density, and increased excitatory synapses, along with increased immunoreactivity for thrombospondin 2 (TSP2) and α2δ-1 proteins. In addition, neocortical slices, obtained from the area of prior focal seizure activity, showed abnormal epileptiform burst discharges along with increases in the frequency of miniature and spontaneous excitatory postsynaptic currents in layer V pyramidal cells, together with decreases in both parvalbumin immunoreactivity (PV-IR) and the frequency of miniature inhibitory postsynaptic currents in layer V pyramidal cells. Treatment with an approved drug, gabapentin (GBP) (ip 100 mg/kg/day 3 × /day for 7 days following the FSE episode), prevented the gliosis, the enhanced TSP2- and α2δ-1- IR and the increased excitatory synaptic density in the affected neocortex. This model provides an approach for assessing adverse effects of FSE on neocortical structure and function and potential prophylactic treatments.
Collapse
Affiliation(s)
- Maria-Belen Perez-Ramirez
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Feng Gu
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - David A Prince
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
19
|
Liang C, Zhang CQ, Chen X, Wang LK, Yue J, An N, Zhang L, Liu SY, Yang H. Differential Expression Hallmarks of Interneurons in Different Types of Focal Cortical Dysplasia. J Mol Neurosci 2020; 70:796-805. [PMID: 32036579 DOI: 10.1007/s12031-020-01492-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 01/30/2020] [Indexed: 10/25/2022]
Abstract
Focal cortical dysplasia (FCD) is the main cause of medically intractable pediatric epilepsy. Previous studies have suggested that alteration of cortical interneurons and abnormal cytoarchitecture have been linked to initiation and development for seizure. However, whether each individual subpopulation of cortical interneurons is linked to distinct FCD subtypes remains largely unknown. Here, we retrospectively analyzed both control samples and epileptic specimens pathologically diagnosed with FCD types Ia, IIa, or IIb. We quantified three major interneuron (IN) subpopulations, including parvalbumin (PV)-, somatostatin (Sst)-, and vasoactive intestinal peptide (Vip)-positive INs across all the subgroups. Additionally, we calculated the ratio of the subpopulations of INs to the major INs (mINs) by defining the total number of the PV-, Sst-, and Vip-INs as mINs. Compared with the control, the density of the PV-INs in FCD type IIb was significantly lower, and the ratio of PV/mINs was lower in the superficial part of the cortex of the FCD type Ia and IIb groups. Interestingly, we found a significant increase in the ratio of Vip/mINs only in FCD type IIb. Overall, these results suggest that in addition to a reduction in PV-INs, the increase in Vip/mINs may be related to the initiation of epilepsy in FCD type IIb. Furthermore, the increase in Vip/mINs in FCD type IIb may, from the IN development perspective, indicate that FCD type IIb forms during earlier stages of pregnancy than FCD type Ia.
Collapse
Affiliation(s)
- Chao Liang
- Epilepsy Research Center of PLA, Department of Neurosurgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, People's Republic of China
| | - Chun-Qing Zhang
- Epilepsy Research Center of PLA, Department of Neurosurgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, People's Republic of China
| | - Xin Chen
- Department of Neurosurgery, General Hospital of Western Theater Command, No.270 Rongdu Road, Jinniu District, Chengdu, Sichuan, 610083, People's Republic of China
| | - Lu-Kang Wang
- Epilepsy Research Center of PLA, Department of Neurosurgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, People's Republic of China
| | - Jiong Yue
- Epilepsy Research Center of PLA, Department of Neurosurgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, People's Republic of China
| | - Ning An
- Epilepsy Research Center of PLA, Department of Neurosurgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, People's Republic of China
| | - Lei Zhang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Shi-Yong Liu
- Epilepsy Research Center of PLA, Department of Neurosurgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, People's Republic of China
| | - Hui Yang
- Epilepsy Research Center of PLA, Department of Neurosurgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, People's Republic of China. .,Department of Neurosurgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), 183 Xinqiao Main Street, Shapingba District, Chongqing, 400037, China.
| |
Collapse
|
20
|
Subramanian L, Calcagnotto ME, Paredes MF. Cortical Malformations: Lessons in Human Brain Development. Front Cell Neurosci 2020; 13:576. [PMID: 32038172 PMCID: PMC6993122 DOI: 10.3389/fncel.2019.00576] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 12/16/2019] [Indexed: 12/11/2022] Open
Abstract
Creating a functional cerebral cortex requires a series of complex and well-coordinated developmental steps. These steps have evolved across species with the emergence of cortical gyrification and coincided with more complex behaviors. The presence of diverse progenitor cells, a protracted timeline for neuronal migration and maturation, and diverse neuronal types are developmental features that have emerged in the gyrated cortex. These factors could explain how the human brain has expanded in size and complexity. However, their complex nature also renders new avenues of vulnerability by providing additional cell types that could contribute to disease and longer time windows that could impact the composition and organization of the cortical circuit. We aim to discuss the unique developmental steps observed in human corticogenesis and propose how disruption of these species-unique processes could lead to malformations of cortical development.
Collapse
Affiliation(s)
- Lakshmi Subramanian
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, United States
| | - Maria Elisa Calcagnotto
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory, Department of Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Mercedes F Paredes
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, United States.,Department of Neurology, University of California, San Francisco, San Francisco, CA, United States.,Neuroscience Graduate Division, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
21
|
Lagarde S, Scholly J, Popa I, Valenti-Hirsch MP, Trebuchon A, McGonigal A, Milh M, Staack AM, Lannes B, Lhermitte B, Proust F, Benmekhbi M, Scavarda D, Carron R, Figarella-Branger D, Hirsch E, Bartolomei F. Can histologically normal epileptogenic zone share common electrophysiological phenotypes with focal cortical dysplasia? SEEG-based study in MRI-negative epileptic patients. J Neurol 2019; 266:1907-1918. [DOI: 10.1007/s00415-019-09339-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/21/2019] [Accepted: 04/23/2019] [Indexed: 11/30/2022]
|
22
|
Blauwblomme T, Dossi E, Pellegrino C, Goubert E, Iglesias BG, Sainte-Rose C, Rouach N, Nabbout R, Huberfeld G. Gamma-aminobutyric acidergic transmission underlies interictal epileptogenicity in pediatric focal cortical dysplasia. Ann Neurol 2019; 85:204-217. [PMID: 30597612 DOI: 10.1002/ana.25403] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 12/21/2018] [Accepted: 12/21/2018] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Dysregulation of γ-aminobutyric acidergic (GABAergic) transmission has been reported in lesional acquired epilepsies (gliomas, hippocampal sclerosis). We investigated its involvement in a developmental disorder, human focal cortical dysplasia (FCD), focusing on chloride regulation driving GABAergic signals. METHODS In vitro recordings of 47 human cortical acute slices from 11 pediatric patients who received operations for FCD were performed on multielectrode arrays. GABAergic receptors and chloride regulators were pharmacologically modulated. Immunostaining for chloride cotransporter KCC2 and interneurons were performed on recorded slices to correlate electrophysiology and expression patterns. RESULTS FCD slices retain intrinsic epileptogenicity. Thirty-six of 47 slices displayed spontaneous interictal discharges, along with a pattern specific to the histological subtypes. Ictal discharges were induced in proepileptic conditions in 6 of 8 slices in the areas generating spontaneous interictal discharges, with a transition to seizure involving the emergence of preictal discharges. Interictal discharges were sustained by GABAergic signaling, as a GABAA receptor blocker stopped them in 2 of 3 slices. Blockade of NKCC1 Cl- cotransporters further controlled interictal discharges in 9 of 12 cases, revealing a Cl- dysregulation affecting actions of GABA. Immunohistochemistry highlighted decreased expression and changes in KCC2 subcellular localization and a decrease in the number of GAD67-positive interneurons in regions generating interictal discharges. INTERPRETATION Altered chloride cotransporter expression and changes in interneuron density in FCD may lead to paradoxical depolarization of pyramidal cells. Spontaneous interictal discharges are consequently mediated by GABAergic signals, and targeting chloride regulation in neurons may be considered for the development of new antiepileptic drugs. Ann Neurol 2019; 1-14 ANN NEUROL 2019;85:204-217.
Collapse
Affiliation(s)
- Thomas Blauwblomme
- APHP, Department of Pediatric Neurosurgery, Hospital Necker, Paris, France.,Université René Descartes. PRES Sorbonne Paris Cité, Paris, France.,INSERM U1129, Infantile Epilepsies and Brain Plasticity, Paris Descartes University, PRES Sorbonne Paris Cité, Paris, France
| | - Elena Dossi
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, CNR UMR 7241, INSERM U1050, Labex Memolife, PSL Research University, Paris, France
| | | | | | - Beatriz Gal Iglesias
- Facultad de Ciencias Biomédicas y de la Salud, Universidad Europea, Madrid, Spain
| | - Christian Sainte-Rose
- APHP, Department of Pediatric Neurosurgery, Hospital Necker, Paris, France.,Université René Descartes. PRES Sorbonne Paris Cité, Paris, France
| | - Nathalie Rouach
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, CNR UMR 7241, INSERM U1050, Labex Memolife, PSL Research University, Paris, France
| | - Rima Nabbout
- Université René Descartes. PRES Sorbonne Paris Cité, Paris, France.,APHP, Department of Neuropediatrics, Hospital Necker, Paris, France
| | - Gilles Huberfeld
- INSERM U1129, Infantile Epilepsies and Brain Plasticity, Paris Descartes University, PRES Sorbonne Paris Cité, Paris, France.,Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, CNR UMR 7241, INSERM U1050, Labex Memolife, PSL Research University, Paris, France.,Sorbonne University, AP-HP, Department of Neurophysiology, La Pitié-Salpêtrière Hospital, Paris, France
| |
Collapse
|
23
|
Lagarde S, Buzori S, Trebuchon A, Carron R, Scavarda D, Milh M, McGonigal A, Bartolomei F. The repertoire of seizure onset patterns in human focal epilepsies: Determinants and prognostic values. Epilepsia 2018; 60:85-95. [DOI: 10.1111/epi.14604] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/22/2018] [Accepted: 10/22/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Stanislas Lagarde
- Epileptology Department; National Institute of Health and Medical Research; Institute of System Neuroscience; Timone Hospital; Public Assistance Hospitals of Marseille; Aix-Marseille University; Marseille France
| | - Sinziana Buzori
- Epileptology Department; National Institute of Health and Medical Research; Institute of System Neuroscience; Timone Hospital; Public Assistance Hospitals of Marseille; Aix-Marseille University; Marseille France
| | - Agnès Trebuchon
- Epileptology Department; National Institute of Health and Medical Research; Institute of System Neuroscience; Timone Hospital; Public Assistance Hospitals of Marseille; Aix-Marseille University; Marseille France
| | - Romain Carron
- Functional and Stereotactic Neurosurgery; National Institute of Health and Medical Research; Institute of System Neuroscience; Timone Hospital; Public Assistance Hospitals of Marseille; Aix-Marseille University; Marseille France
| | - Didier Scavarda
- Pediatric Neurosurgery; Timone Hospital; Public Assistance Hospitals of Marseille; Marseille France
| | - Mathieu Milh
- Pediatric Neurology; Timone Hospital; Public Assistance Hospitals of Marseille; Marseille France
| | - Aileen McGonigal
- Epileptology Department; National Institute of Health and Medical Research; Institute of System Neuroscience; Timone Hospital; Public Assistance Hospitals of Marseille; Aix-Marseille University; Marseille France
| | - Fabrice Bartolomei
- Epileptology Department; National Institute of Health and Medical Research; Institute of System Neuroscience; Timone Hospital; Public Assistance Hospitals of Marseille; Aix-Marseille University; Marseille France
| |
Collapse
|
24
|
Laminar Distribution of Neurochemically-Identified Interneurons and Cellular Co-expression of Molecular Markers in Epileptic Human Cortex. Neurosci Bull 2018; 34:992-1006. [PMID: 30171525 PMCID: PMC6246828 DOI: 10.1007/s12264-018-0275-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 05/20/2018] [Indexed: 12/20/2022] Open
Abstract
Inhibitory GABAergic interneurons are fundamental elements of cortical circuits and play critical roles in shaping network activity. Dysfunction of interneurons can lead to various brain disorders, including epilepsy, schizophrenia, and anxiety. Based on the electrophysiological properties, cell morphology, and molecular identity, interneurons could be classified into various subgroups. In this study, we investigated the density and laminar distribution of different interneuron types and the co-expression of molecular markers in epileptic human cortex. We found that parvalbumin (PV) and somatostatin (SST) neurons were distributed in all cortical layers except layer I, while tyrosine hydroxylase (TH) and neuropeptide Y (NPY) were abundant in the deep layers and white matter. Cholecystokinin (CCK) neurons showed a high density in layers IV and VI. Neurons with these markers constituted ~7.2% (PV), 2.6% (SST), 0.5% (TH), 0.5% (NPY), and 4.4% (CCK) of the gray-matter neuron population. Double- and triple-labeling revealed that NPY neurons were also SST-immunoreactive (97.7%), and TH neurons were more likely to express SST (34.2%) than PV (14.6%). A subpopulation of CCK neurons (28.0%) also expressed PV, but none contained SST. Together, these results revealed the density and distribution patterns of different interneuron populations and the overlap between molecular markers in epileptic human cortex.
Collapse
|
25
|
Heers M, Helias M, Hedrich T, Dümpelmann M, Schulze-Bonhage A, Ball T. Spectral bandwidth of interictal fast epileptic activity characterizes the seizure onset zone. NEUROIMAGE-CLINICAL 2017. [PMID: 29527491 PMCID: PMC5842664 DOI: 10.1016/j.nicl.2017.11.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The foremost aim of presurgical epilepsy evaluation is the delineation of the seizure onset zone (SOZ). There is increasing evidence that fast epileptic activity (FEA, 14–250 Hz) occurring interictally, i.e. between seizures, is predominantly localized within the SOZ. Currently it is unknown, which frequency band of FEA performs best in identifying the SOZ, although prior studies suggest highest concordance of spectral changes with the SOZ for high frequency changes. We suspected that FEA reflects dampened oscillations in local cortical excitatory-inhibitory neural networks, and that interictal FEA in the SOZ is a consequence of reduced oscillatory damping. We therefore predict a narrowing of the spectral bandwidth alongside increased amplitudes of spectral peaks during interictal FEA events. To test this hypothesis, we evaluated spectral changes during interictal FEA in invasive EEG (iEEG) recordings of 13 patients with focal epilepsy. In relative spectra of beta and gamma band changes (14–250 Hz) during FEA, we found that spectral peaks within the SOZ indeed were significantly more narrow-banded and their power changes were significantly higher than outside the SOZ. In contrast, the peak frequency did not differ within and outside the SOZ. Our results show that bandwidth and power changes of spectral modulations during FEA both help localizing the SOZ. We propose the spectral bandwidth as new source of information for the evaluation of EEG data. Invasive EEG spectral bandwidth changes differ in and outside seizure onset zone. Peak frequency of invasive EEG spectral changes was not informative. Model of dampened oscillator explains the observed spectral bandwidth changes. Spectral bandwidth changes are a novel diagnostic feature.
Collapse
Affiliation(s)
- Marcel Heers
- Epilepsy Center, Department of Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany; Translational Neurotechnology Lab, Department of Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany; Cluster of Excellence BrainLinks-BrainTools, University of Freiburg, Germany.
| | - Moritz Helias
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulations (IAS-6), Jülich Research Centre and JARA, Jülich, Germany
| | - Tanguy Hedrich
- Multimodal Functional Imaging Lab, Biomedical Engineering Department, McGill University, Montreal, Québec, Canada
| | - Matthias Dümpelmann
- Epilepsy Center, Department of Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany; Cluster of Excellence BrainLinks-BrainTools, University of Freiburg, Germany
| | - Andreas Schulze-Bonhage
- Epilepsy Center, Department of Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany; Cluster of Excellence BrainLinks-BrainTools, University of Freiburg, Germany
| | - Tonio Ball
- Epilepsy Center, Department of Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany; Translational Neurotechnology Lab, Department of Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany; Cluster of Excellence BrainLinks-BrainTools, University of Freiburg, Germany
| |
Collapse
|
26
|
Katsarou A, Moshé SL, Galanopoulou AS. INTERNEURONOPATHIES AND THEIR ROLE IN EARLY LIFE EPILEPSIES AND NEURODEVELOPMENTAL DISORDERS. Epilepsia Open 2017; 2:284-306. [PMID: 29062978 PMCID: PMC5650248 DOI: 10.1002/epi4.12062] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2017] [Indexed: 12/22/2022] Open
Abstract
GABAergic interneurons control the neural circuitry and network activity in the brain. The advances in genetics have identified genes that control the development, maturation and integration of GABAergic interneurons and implicated them in the pathogenesis of epileptic encephalopathies or neurodevelopmental disorders. For example, mutations of the Aristaless-Related homeobox X-linked gene (ARX) may result in defective GABAergic interneuronal migration in infants with epileptic encephalopathies like West syndrome (WS), Ohtahara syndrome or X-linked lissencephaly with abnormal genitalia (XLAG). The concept of "interneuronopathy", i.e. impaired development, migration or function of interneurons, has emerged as a possible etiopathogenic mechanism for epileptic encephalopathies. Treatments that enhance GABA levels, may help seizure control but do not necessarily show disease modifying effect. On the other hand, interneuronopathies can be seen in other conditions in which epilepsy may not be the primary manifestation, such as autism. In this review, we plan to outline briefly the current state of knowledge on the origin, development, and migration and integration of GABAergic interneurons, present neurodevelopmental conditions, with or without epilepsy, that have been associated with interneuronopathies and discuss the evidence linking certain types of interneuronal dysfunction with epilepsy and/or cognitive or behavioral deficits.
Collapse
Affiliation(s)
- Anna‐Maria Katsarou
- Laboratory of Developmental EpilepsySaul R. Korey Department of NeurologyAlbert Einstein College of MedicineBronxNew YorkU.S.A.
| | - Solomon L. Moshé
- Laboratory of Developmental EpilepsySaul R. Korey Department of NeurologyAlbert Einstein College of MedicineBronxNew YorkU.S.A.
- Dominick P. Purpura Department of NeuroscienceMontefiore/Einstein Epilepsy CenterAlbert Einstein College of MedicineBronxNew YorkU.S.A.
- Department of PediatricsAlbert Einstein College of MedicineBronxNew YorkU.S.A.
| | - Aristea S. Galanopoulou
- Laboratory of Developmental EpilepsySaul R. Korey Department of NeurologyAlbert Einstein College of MedicineBronxNew YorkU.S.A.
- Dominick P. Purpura Department of NeuroscienceMontefiore/Einstein Epilepsy CenterAlbert Einstein College of MedicineBronxNew YorkU.S.A.
| |
Collapse
|
27
|
Pittau F, Ferri L, Fahoum F, Dubeau F, Gotman J. Contributions of EEG-fMRI to Assessing the Epileptogenicity of Focal Cortical Dysplasia. Front Comput Neurosci 2017; 11:8. [PMID: 28265244 PMCID: PMC5316536 DOI: 10.3389/fncom.2017.00008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/02/2017] [Indexed: 12/16/2022] Open
Abstract
Purpose: To examine the ability of the BOLD response to EEG spikes to assess the epileptogenicity of the lesion in patients with focal cortical dysplasia (FCD). Method: Patients with focal epilepsy and FCD who underwent 3T EEG-fMRI from 2006 to 2010 were included. Diagnosis of FCD was based on neuroradiology (MRI+), or histopathology in MRI-negative cases (MRI−). Patients underwent 120 min EEG-fMRI recording session. Spikes similar to those recorded outside the scanner were marked in the filtered EEG. The lesion (in MRI+) or the removed cortex (in MRI−) was marked on the anatomical T1 sequence, blindly to the BOLD response, after reviewing the FLAIR images. For each BOLD response we assessed the concordance with the spike field and with the lesion in MRI+ or the removed cortex in MRI−. BOLD responses were considered “concordant” if the maximal t-value was inside the marking. Follow-up after resection was used as gold-standard. Results: Twenty patients were included (13 MRI+, 7 MRI−), but in seven the EEG was not active or there were artifacts during acquisition. In all 13 studied patients, at least one BOLD response was concordant with the spike field; in 9/13 (69%) at least one BOLD response was concordant with the lesion: in 6/7 (86%) MRI+ and in 3/6 (50%) MRI− patients. Conclusions: Our study shows a high level of concordance between FCD and BOLD response. This data could provide useful information especially for MRI negative patients. Moreover, it shows in almost all FCD patients, a metabolic involvement of remote cortical or subcortical structures, corroborating the concept of epileptic network.
Collapse
Affiliation(s)
- Francesca Pittau
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill UniversityQuébec, QC, Canada; Neurology Department, Geneva University HospitalsGeneva, Switzerland
| | - Lorenzo Ferri
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University Québec, QC, Canada
| | - Firas Fahoum
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University Québec, QC, Canada
| | - François Dubeau
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University Québec, QC, Canada
| | - Jean Gotman
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University Québec, QC, Canada
| |
Collapse
|
28
|
Nakagawa JM, Donkels C, Fauser S, Schulze-Bonhage A, Prinz M, Zentner J, Haas CA. Characterization of focal cortical dysplasia with balloon cells by layer-specific markers: Evidence for differential vulnerability of interneurons. Epilepsia 2017; 58:635-645. [PMID: 28206669 DOI: 10.1111/epi.13690] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/27/2016] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Focal cortical dysplasia (FCD) is a major cause of pharmacoresistant focal epilepsy. Little is known about the pathomechanisms underlying the characteristic cytoarchitectural abnormalities associated with FCD. In the present study, a broad panel of markers identifying layer-specific neuron subpopulations was applied to characterize dyslamination and structural alterations in FCD with balloon cells (FCD 2b). METHODS Pan-neuronal neuronal nuclei (NeuN) and layer-specific protein expression (Reelin, Calbindin, Calretinin, SMI32 (nonphosphorylated neurofilament H), Parvalbumin, transducin-like enhancer protein 4 (TLE4), and Vimentin) was studied by immunohistochemistry on paraffin sections of FCD2b cases (n = 22) and was compared to two control groups with (n = 7) or without epilepsy (n = 4 postmortem cases). Total and layer-specific neuron densities were systematically quantified by cell counting considering age at surgery and brain region. RESULTS We show that in FCD2b total neuron densities across all six cortical layers were not significantly different from controls. In addition, we present evidence that a basic laminar arrangement of layer-specific neuron subtypes was preserved despite the severe disturbance of cortical structure. SMI32-positive pyramidal neurons showed no significant difference in total numbers, but a reduction in layers III and V. The densities of supragranular Calbindin- and Calretinin-positive interneurons in layers II and III were not different from controls, whereas Parvalbumin-expressing interneurons, primarily located in layer IV, were significantly reduced in numbers when compared to control cases without epilepsy. In layer VI, the density of TLE4-positive projection neurons was significantly increased. Altogether, these data show that changes in cellular composition mainly affect deep cortical layers in FCD2b. SIGNIFICANCE The application of a broad panel of markers defining layer-specific neuronal subpopulations revealed that in FCD2b neuronal diversity and a basic laminar arrangement are maintained despite the severe disturbance of cytoarchitecture. Moreover, it showed that Parvalbumin-positive, inhibitory interneurons are highly vulnerable in contrast to other interneuron subtypes, possibly related to the epileptic condition.
Collapse
Affiliation(s)
- Julia M Nakagawa
- Experimental Epilepsy Research, Department of Neurosurgery, Medical Center-University of Freiburg, Freiburg, Germany.,Department of Neurosurgery, Medical Center-University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Catharina Donkels
- Experimental Epilepsy Research, Department of Neurosurgery, Medical Center-University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | | | - Andreas Schulze-Bonhage
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Epilepsy Center, Medical Center-University of Freiburg, Freiburg, Germany.,BrainLinks-BrainTools, Cluster of Excellence, University of Freiburg, Freiburg, Germany
| | - Marco Prinz
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,BIOSS, Center for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Josef Zentner
- Department of Neurosurgery, Medical Center-University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Carola A Haas
- Experimental Epilepsy Research, Department of Neurosurgery, Medical Center-University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,BrainLinks-BrainTools, Cluster of Excellence, University of Freiburg, Freiburg, Germany
| |
Collapse
|