1
|
Li M, Zhou X, Wang Y, Lu J, Zhu Y, Jiang P, Hu K, Wang X. Whole-course power evolution in childhood absence epilepsy: A multi-frequency magnetoencephalography study. Seizure 2025; 124:9-17. [PMID: 39603048 DOI: 10.1016/j.seizure.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/18/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
OBJECTIVE This study explores the whole-course neuromagnetic activity changes in childhood absence epilepsy (CAE) using multifrequency magnetoencephalogram (MEG) analysis. We aim to uncover the underlying neurophysiological mechanisms and identify functional signal targets with potential clinical applications. METHODS We recruited 37 drug-naive children with CAE and collected magnetoencephalography (MEG) data from 62 seizures and interictal periods using a CTF-275 channel MEG system. The seizure course was segmented with temporal unification and subjected to dynamic frequency band analysis. Minimum norm estimation combined with Welch's method was employed for spectral power calculation, followed by correlation analysis between power and seizure duration. RESULTS Whole-brain magnetic source power changes in 2-60 Hz largely paralleled the progression of spike and wave discharges (SWDs), while power in 60-90 Hz was suppressed during seizures. Alpha band (8-12 Hz) activity showed a prompt loss of occipital dominance at seizure onset, with concurrent elevation in frontal alpha activity. This frontal alpha dominance persisted throughout the ictal period and reverted to occipital dominance at termination. Beta and gamma1 band (15-59 Hz) activity characteristically declined before SWDs cessation. The power of SWDs during ictal period was negatively correlated with seizure duration. CONCLUSION Spectral power analysis of neuromagnetic signals throughout CAE process identifies specific frequency-dependent characteristic changes, among which, the distribution of alpha band (8-12 Hz) activity is closely related to absence manifestations, beta band (15-29 Hz) power decline induces seizure termination. Additionally, ictal SWDs power can serve as a neuroimaging indicator of epilepsy severity.
Collapse
Affiliation(s)
- Minghao Li
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210024, China
| | - Xinyi Zhou
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210024, China
| | - Yingfan Wang
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210024, China
| | - Jing Lu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210024, China
| | - Yinjie Zhu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210024, China
| | - Peilin Jiang
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210024, China
| | - Ke Hu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210024, China
| | - Xiaoshan Wang
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210024, China.
| |
Collapse
|
2
|
Khan W, Chopra S, Zheng X, Liu S, Paszkowski P, Valcarce-Aspegren M, Sieu LA, Mcgill S, Mccafferty C, Blumenfeld H. Neuronal rhythmicity and cortical arousal in a mouse model of absence epilepsy. Exp Neurol 2024; 381:114925. [PMID: 39151596 DOI: 10.1016/j.expneurol.2024.114925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 07/15/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
OBJECTIVES Absence seizures impair psychosocial function, yet their detailed neuronal basis remains unknown. Recent work in a rat model suggests that cortical arousal state changes prior to seizures and that single neurons show diverse firing patterns during seizures. Our aim was to extend these investigations to a mouse model with studies of neuronal activity and arousal state to facilitate future fundamental investigations of absence epilepsy. METHODS We performed in vivo extracellular single unit recordings on awake head-fixed C3H/HeJ mice. Mice were implanted with tripolar electrodes for cortical electroencephalography (EEG). Extracellular single unit recordings were obtained with glass micropipettes in the somatosensory barrel cortex, while animals ambulated freely on a running wheel. Signals were digitized and analyzed during seizures and at baseline. RESULTS Neuronal activity was recorded from 36 cortical neurons in 19 mice while EEG showed characteristic 7-8 Hz spike-wave discharges. Different single neurons showed distinct firing patterns during seizures, but the overall mean population neuronal firing rate during seizures was no different from pre-seizure baseline. However, the rhythmicity of neuronal firing during seizures was significantly increased (p < 0.001). In addition, beginning 10s prior to seizure initiation, we observed a progressive decrease in cortical high frequency (>40 Hz) EEG and an increase in lower frequency (1-39 Hz) activity suggesting decreased arousal state. SIGNIFICANCE We found that the awake head-fixed C3H/HeJ mouse model demonstrated rhythmic neuronal firing during seizures, and a decreased cortical arousal state prior to seizure onset. Unlike the rat model we did not observe an overall decrease in neuronal firing during seizures. Similarities and differences across species strengthen the ability to investigate fundamental key mechanisms. Future work in the mouse model will identify the molecular basis of neurons with different firing patterns, their role in seizure initiation and behavioral deficits, with ultimate translation to human absence epilepsy.
Collapse
Affiliation(s)
- Waleed Khan
- Department of Neurology, Yale University, School of Medicine, New Haven, CT, United States
| | - Samiksha Chopra
- Department of Neurology, Yale University, School of Medicine, New Haven, CT, United States
| | - Xinyuan Zheng
- Department of Neurology, Yale University, School of Medicine, New Haven, CT, United States; Department of Biomedical Engineering, Yale University, School of Medicine, New Haven, CT, United States
| | - Shixin Liu
- Department of Neurology, Yale University, School of Medicine, New Haven, CT, United States
| | - Patrick Paszkowski
- Department of Neurology, Yale University, School of Medicine, New Haven, CT, United States
| | | | - Lim-Anna Sieu
- Department of Neurology, Yale University, School of Medicine, New Haven, CT, United States
| | - Sarah Mcgill
- Department of Neurology, Yale University, School of Medicine, New Haven, CT, United States; Interdepartmental Neuroscience Program, Yale University, School of Medicine, New Haven, CT, United States
| | - Cian Mccafferty
- Department of Neurology, Yale University, School of Medicine, New Haven, CT, United States; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Hal Blumenfeld
- Department of Neurology, Yale University, School of Medicine, New Haven, CT, United States; Interdepartmental Neuroscience Program, Yale University, School of Medicine, New Haven, CT, United States; Department of Neuroscience, Yale University, School of Medicine, New Haven, CT, United States; Department of Neurosurgery, Yale University, School of Medicine, New Haven, CT, United States.
| |
Collapse
|
3
|
Leitch B. Molecular Mechanisms Underlying the Generation of Absence Seizures: Identification of Potential Targets for Therapeutic Intervention. Int J Mol Sci 2024; 25:9821. [PMID: 39337309 PMCID: PMC11432152 DOI: 10.3390/ijms25189821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Understanding the molecular mechanisms underlying the generation of absence seizures is crucial for developing effective, patient-specific treatments for childhood absence epilepsy (CAE). Currently, one-third of patients remain refractive to the antiseizure medications (ASMs), previously called antiepileptic drugs (AEDs), available to treat CAE. Additionally, these ASMs often produce serious side effects and can even exacerbate symptoms in some patients. Determining the precise cellular and molecular mechanisms directly responsible for causing this type of epilepsy has proven challenging as they appear to be complex and multifactorial in patients with different genetic backgrounds. Aberrant neuronal activity in CAE may be caused by several mechanisms that are not fully understood. Thus, dissecting the causal factors that could be targeted in the development of precision medicines without side effects remains a high priority and the ultimate goal in this field of epilepsy research. The aim of this review is to highlight our current understanding of potential causative mechanisms for absence seizure generation, based on the latest research using cutting-edge technologies. This information will be important for identifying potential targets for future therapeutic intervention.
Collapse
Affiliation(s)
- Beulah Leitch
- Department of Anatomy, School of Biomedical Sciences, Brain Health Research Centre, University of Otago, Dunedin 9054, New Zealand
| |
Collapse
|
4
|
Jerskey BA, Reid AA, Spencer K, Diekroger E, Fogler J. Co-occurring Epilepsy and Attention-Deficit/Hyperactivity Disorder in a 6-Year-Old Boy. J Dev Behav Pediatr 2024; 45:e387-e389. [PMID: 38900453 PMCID: PMC11326006 DOI: 10.1097/dbp.0000000000001284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
CASE "Andrew" is a 6-year-old, right-handed, cisgender boy who presents for neuropsychological testing to determine whether he meets criteria for attention-deficit/hyperactivity disorder (ADHD). Andrew's parents report that he is easily distracted, has poor concentration, and is unable to sustain attention for discrete periods of time. Andrew is the product of an uncomplicated pregnancy and delivery, and there were no reported concerns in the postnatal period. Andrew met all of his language and motor milestones on time. He was described as having an "easy" temperament in his infancy and toddler years. Difficulties with attention started in preschool in that Andrew was described as frequently "getting lost" in his play or the task he was working on. He was easy to redirect and responded to cues and reminders. Socially, Andrew was described as friendly but not always "picking up on social cues." Andrew's kindergarten teachers first noted that sometimes Andrew would "blank out" and appear to stare off, which was attributed to inattention. His teachers brought their concerns to Andrew's parents, and his parents began to observe Andrew more carefully and noted that these episodes also occurred at home daily. When queried, his parents reported that these episodes would last 4 to 5 seconds and Andrew would not respond to his name being called or to being physically touched. Andrew's medical history, and that of his immediate and extended family, is unremarkable. Routine hearing and vision screenings are also unremarkable. There are no reports of head injuries or concussions. Andrew's gait is stable, and there are no signs of motor weakness. There are no reports of sensory seeking or avoiding behaviors. There are no reports of witnessing or experiencing trauma; motor or vocal tics; or compulsions, ritualized behaviors, or restricted interests.Testing revealed high average verbal comprehension skills, average perceptual and fluid reasoning, and lower end of average working memory and processing speed. During testing, the examiner noted a rapid eye flutter, which Andrew did not see to recognize himself but did ask the examiner to repeat the previous question. Parent and teacher rating scales of emotional and behavioral functioning showed elevations in the areas of inattention and adaptability and 1 scale of executive functioning noted elevations in task monitoring but no other difficulties. Socially, Andrew is well liked by his peers, although he can present as "silly." He has many same-aged friends and enjoys group activities. His parents have been hesitant to get him involved in sports because he has been known to have these staring episodes right after competing in sporting events. He also tends to have them more often during the school week when he has less sleep, which his parents attribute to having a difficult time falling asleep at night. What would you do next?
Collapse
Affiliation(s)
- Beth A. Jerskey
- Boston Child Study Center, Boston, MA
- The Warren Alpert Medical School of Brown University, Providence, RI
| | - Alexis A. Reid
- Reid Connect, LLC, Boston, MA
- Merrimack College, North Andover, MA
| | - Karen Spencer
- Boston Children's Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Elizabeth Diekroger
- UH Rainbow Babies and Children's Hospital, Cleveland, OH; and
- Case Western Reserve University School of Medicine, Cleveland, OH
| | - Jason Fogler
- Boston Children's Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| |
Collapse
|
5
|
Tiryaki ES, Arslan G, Günaydın C, Ayyıldız M, Ağar E. The role of HCN channels on the effects of T-type calcium channels and GABA A receptors in the absence epilepsy model of WAG/Rij rats. Pflugers Arch 2024; 476:337-350. [PMID: 38159130 DOI: 10.1007/s00424-023-02900-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/07/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
In this study we used ivabradine (IVA), a hyperpolarization-activated cyclic nucleotide-gated (HCN) channel blocker, to identify its effect on spike-wave discharges (SWDs); and aimed to determine the role of IVA on the effects of T-type calcium channel blocker NNC 55-0396, GABAA receptor agonist muscimol and antagonist bicuculline in male WAG/Rij rats. After tripolar electrodes for electrocorticogram (ECoG) recordings were placed on the WAG/Rij rats' skulls, 5, 10, and 20 mg/kg IVA were intraperitoneally administered for 7 consecutive days and ECoG recordings were obtained on days 0th, 3rd, 6th, and 7th for three hours before and after injections. While acute injection of 5, 10, and 20 mg/kg IVA did not affect the total number and the mean duration of SWDs, subacute administration (7 days) of IVA decreased the SWDs parameters 24 hours after the 7th injection. Interestingly, when IVA was administered again 24 hours after the 6th IVA injection, it increased the SWDs parameters. Western-blot analyses showed that HCN1 and HCN2 expressions decreased and HCN4 increased in the 5-month-old WAG/Rij rats compared to the 1-month-old WAG/Rij and 5-month-old native Wistar rats, while subacute IVA administration increased the levels of HCN1 and HCN2 channels, except HCN4. Subacute administration of IVA reduced the antiepileptic activity of NNC, while the proepileptic activity of muscimol and the antiepileptic activity of bicuculline were abolished. It might be suggested that subacute IVA administration reduces absence seizures by changing the HCN channel expressions in WAG/Rij rats, and this affects the T-type calcium channels and GABAA receptors.
Collapse
Affiliation(s)
- Emre Soner Tiryaki
- Department of Physiology, Faculty of Medicine, University of Ondokuz Mayıs, Samsun, Türkiye
| | - Gökhan Arslan
- Department of Physiology, Faculty of Medicine, University of Ondokuz Mayıs, Samsun, Türkiye.
| | - Caner Günaydın
- Department of Pharmacology, Faculty of Medicine, University of Samsun, Samsun, Türkiye
| | - Mustafa Ayyıldız
- Department of Physiology, Faculty of Medicine, University of Ondokuz Mayıs, Samsun, Türkiye
| | - Erdal Ağar
- Department of Physiology, Faculty of Medicine, University of Ondokuz Mayıs, Samsun, Türkiye
| |
Collapse
|
6
|
Ji W, Zhu H, Xing B, Chu C, Ji T, Ge W, Wang J, Peng X. Tetrastigma hemsleyanum suppresses neuroinflammation in febrile seizures rats via regulating PKC-δ/caspase-1 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116912. [PMID: 37451489 DOI: 10.1016/j.jep.2023.116912] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/06/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tetrastigma hemsleyanum Diels et Gilg (T. hemsleyanum, Sanyeqing) has been used in the prevention and treatment of repetitive Febrile seizures (FS) over the centuries in China. AIM OF THE STUDY T. hemsleyanum exerts wide pharmacological action, which has been widely used for treating various diseases, including infantile febrile seizure. However, the systematic study on this herb's material basis and the functional mechanism is lacking. This study intended to systematically elucidate the mechanism of T. hemsleyanum against febrile seizures. MATERIALS AND METHODS The efficacy of T. hemsleyanum was estimated by using a hot bath as a model of FS, the onset and duration of seizure, morphological structure changes of hippocampal neurons as well as magnetoencephalography were applied to evaluate the effects. Meanwhile, the bioactive components of T. hemsleyanum responsible for the therapeutic effect of T. hemsleyanum on FS were identified by UPLC-MS/MS. Then we systematically elucidated the mechanism of T. hemsleyanum based on metabonomics, transcriptomics, network pharmacological and experimental validation. RESULTS In a hyperthermia-induced FS model of rats, T. hemsleyanum significantly increased the seizure latency and decreased seizure duration, alleviating the abnormal delta and gamma band activity during epileptic discharge. Furthermore, ten chemical components of ethanol extracts from T. hemsleyanum were identified by UPLC-MS/MS, including quercetin, kaempferol, and procyanidin B1 and so on, which was consistent with the network pharmacology prediction. The serum metabolomics indicated that T. hemsleyanum mainly acts on inflammation regulation and neuroprotection by the glycerophospholipid metabolism pathway. Ninety-two potential targets of T. hemsleyanum on FS were identified by network pharmacology, and TNF, IL-6, and IL-1β were considered the pivotal targets. In the hippocampus transcriptomics, 17 KEGG pathways were identified after T. hemsleyanum treatment compared with the FS model group, among which 15 pathways overlapped with those identified by network pharmacology, and the PKC-δ/caspase-1 signaling pathway was a critical node. Finally, in vivo experiments also verified T. hemsleyanum inhibited the activation of microglia and resulted in a significant reduction in the level of PKCδ, NLRC4, caspase-1, IL-1β, IL-6 and TNF-α in hippocampus of FS rats. CONCLUSIONS Our study suggested that the therapeutic effect of T. hemsleyanum on FS might be regulated by inhibiting the neuroinflammation, thus exerting an anticonvulsant effect in vivo, and the mechanism might be related to regulating the PKC-δ/caspase-1 signaling pathway.
Collapse
Affiliation(s)
- Weiwei Ji
- College of Traditional Chinese Medicine, Zhejiang Pharmaceutical University, No. 666, Siming Road, Fenghua District, Ningbo, Zhejiang Province, 315100, PR China.
| | - Huaqiang Zhu
- College of Traditional Chinese Medicine, Zhejiang Pharmaceutical University, No. 666, Siming Road, Fenghua District, Ningbo, Zhejiang Province, 315100, PR China.
| | - Bincong Xing
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, No. 666, Wusu Street, Lin'an District, Hangzhou, Zhejiang Province, 311300, PR China.
| | - Chu Chu
- College of Pharmaceutical Science, Zhejiang University of Technology, No. 18, Chaowang Road, Gongshu District, Hangzhou, Zhejiang Province, 310014, PR China.
| | - Tao Ji
- College of Traditional Chinese Medicine, Zhejiang Pharmaceutical University, No. 666, Siming Road, Fenghua District, Ningbo, Zhejiang Province, 315100, PR China.
| | - Wen Ge
- College of Traditional Chinese Medicine, Zhejiang Pharmaceutical University, No. 666, Siming Road, Fenghua District, Ningbo, Zhejiang Province, 315100, PR China.
| | - Juan Wang
- College of Traditional Chinese Medicine, Zhejiang Pharmaceutical University, No. 666, Siming Road, Fenghua District, Ningbo, Zhejiang Province, 315100, PR China.
| | - Xin Peng
- Ningbo Municipal Hospital of TCM, Affiliated Hospital of Zhejiang Chinese Medical University, No. 819, Liyuan North Road, Ningbo, Zhejiang Province, 315100, PR China.
| |
Collapse
|
7
|
Sun F, Wang S, Wang Y, Sun J, Li Y, Li Y, Xu Y, Wang X. Differences in generation and maintenance between ictal and interictal generalized spike-and-wave discharges in childhood absence epilepsy: A magnetoencephalography study. Epilepsy Behav 2023; 148:109440. [PMID: 37748416 DOI: 10.1016/j.yebeh.2023.109440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/05/2023] [Accepted: 09/05/2023] [Indexed: 09/27/2023]
Abstract
PURPOSE Childhood absence epilepsy (CAE) is characterized by impaired consciousness and distinct electroencephalogram (EEG) patterns. However, interictal epileptiform discharges (IEDs) do not lead to noticeable symptoms. This study examines the disparity between ictal and interictal generalized spike-and-wave discharges (GSWDs) to determine the mechanisms behind CAE and consciousness. METHODS We enrolled 24 patients with ictal and interictal GSWDs in the study. The magnetoencephalography (MEG) data were recorded before and during GSWDs at a sampling rate of 6000 Hz and analyzed across six frequency bands. The absolute and relative spectral power were estimated with the Minimum Norm Estimate (MNE) combined with the Welch technique. All the statistical analyses were performed using paired-sample tests. RESULTS During GSWDs, the right lateral occipital cortex indicated a significant difference in the theta band (5-7 Hz) with stronger power (P = 0.027). The interictal group possessed stronger spectral power in the delta band (P < 0.01) and weaker power in the alpha band (P < 0.01) as early as 10 s before GSWDs in absolute and relative spectral power. Additionally, the ictal group revealed enhanced spectral power inside the occipital cortex in the alpha band and stronger spectral power in the right frontal regions within beta (15-29 Hz), gamma 1 (30-59 Hz), and gamma 2 (60-90 Hz) bands. CONCLUSIONS GSWDs seem to change gradually, with local neural activity changing even 10 s before discharge. During GSWDs, visual afferent stimulus insensitivity could be related to the impaired response state in CAE. The inhibitory signal in the low-frequency band can shorten GSWD duration, thereby achieving seizure control through inhibitory effect strengthening.
Collapse
Affiliation(s)
- Fangling Sun
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Siyi Wang
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yingfan Wang
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Jintao Sun
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yihan Li
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yanzhang Li
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yue Xu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoshan Wang
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
8
|
Wolf MC, Butner KS, Brinkley EB, Campo JB, Olejniczak P, Mader EC. Nonconvulsive Status Epilepticus With Generalized Spike-and-Wave Discharges: Pathophysiological and Nosological Considerations. Cureus 2023; 15:e47401. [PMID: 37869047 PMCID: PMC10589733 DOI: 10.7759/cureus.47401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2023] [Indexed: 10/24/2023] Open
Abstract
Absence status epilepticus (ASE) is the most common type of status epilepticus in patients with idiopathic generalized epilepsy (IGE). Like absence seizure, ASE is characterized by generalized spike-and-wave discharges (GSWDs) on the electroencephalogram (EEG). Once considered specific for IGE, GSWDs have increasingly been observed in other forms of epilepsy, as well as in patients with no prior epilepsy. Here, we report three patients with different types of nonconvulsive status epilepticus (NCSE) in which the EEG correlate was GSWDs: a 44-year-old woman with juvenile absence epilepsy who manifested ASE, a 73-year-old woman with anoxic brain injury complicated by NCSE with well-formed GSWDs (as seen in IGE and de novo ASE), and a 41-year-old woman with frontal lobe epilepsy who developed focal NCSE with impaired consciousness. Evidently, patients with generalized epilepsy, focal epilepsy, and no prior epilepsy can all manifest NCSE with similar electroclinical characteristics, i.e., GSWDs and impaired consciousness. This observation adds to the existing evidence that seizures, whether classified as focal or generalized, often involve focal and generalized elements in their pathophysiology. To fully understand seizure pathophysiology, we must steer away from the focal-versus-generalized paradigm that has dominated the nosology of seizures and epilepsy for a very long time.
Collapse
Affiliation(s)
- Madison C Wolf
- Electrodiagnostic Technology, LCMC Health, New Orleans, USA
| | | | | | | | - Piotr Olejniczak
- Neurology, Louisiana State University (LSU) Health Sciences Center, New Orleans, USA
| | - Edward C Mader
- Neurology, Louisiana State University (LSU) Health Sciences Center, New Orleans, USA
| |
Collapse
|
9
|
Sun F, Wang Y, Li Y, Li Y, Wang S, Xu F, Wang X. Variation in functional networks between clinical and subclinical discharges in childhood absence epilepsy: A multi-frequency MEG study. Seizure 2023; 111:109-121. [PMID: 37598560 DOI: 10.1016/j.seizure.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/06/2023] [Accepted: 08/09/2023] [Indexed: 08/22/2023] Open
Abstract
OBJECTIVE Two types of spike-and-wave discharges (SWDs) exist in childhood absence epilepsy (CAE): clinical discharges are prolonged and manifest primarily as impaired consciousness, whereas subclinical discharges are brief with few objectively visible symptoms. This study aimed to compare neural functional network and default mode network (DMN) activity between clinical and subclinical discharges to better understand the underlying mechanism of CAE. METHODS Using magnetoencephalography (MEG) data from 21 patients, we obtained 25 segments each of clinical discharges and subclinical discharges. Amplitude envelope correlation analysis was used to construct functional networks and graph theory was used to calculate network topological data. We then compared differences in functional connectivity within the DMN between clinical and subclinical discharges. All statistical comparisons were performed using paired-sample tests. RESULTS Compared to subclinical discharges, the functional network of clinical discharges exhibited higher synchronization - particularly in the parahippocampal gyrus - as early as 10 s before the seizure. Additionally, the functional network of clinical SWDs presented an anterior shift of key nodes in the alpha frequency band. Regarding clinical discharge progression, there were gradual increases in the parameter node strengths (S), clustering coefficients (C), and global efficiency (E) of the functional networks, while the path lengths (L) decreased. These changes were most prominent at the onset of discharges and followed by some recovery in the high-frequency bands, but no significant change in the low-frequency bands. Furthermore, connections within the DMN during the discharge period were significantly stronger for clinical discharge compared to subclinical discharges. CONCLUSIONS These findings suggest that a more regular network before abnormal discharges in clinical discharges contributes to SWD explosion and that the parahippocampal gyrus plays an important role in maintaining oscillations. An absence seizure is a gradual process and the emergence of SWDs may be accompanied by initiation of inhibitory mechanisms. Enhanced functional connectivity among DMN brain regions may indicate that patients have entered a state of introspection, and functional abnormalities in the parahippocampal gyrus may be associated with patients' transient memory loss.
Collapse
Affiliation(s)
- Fangling Sun
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yingfan Wang
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yihan Li
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yanzhang Li
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Siyi Wang
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Fengyuan Xu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoshan Wang
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
10
|
Barone V, Piastra MC, van Dijk JP, Visser GH, Debeij-van Hall MHJA, van Putten MJAM. Neurophysiological signatures reflect differences in visual attention during absence seizures. Clin Neurophysiol 2023; 152:34-42. [PMID: 37269771 DOI: 10.1016/j.clinph.2023.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 06/05/2023]
Abstract
OBJECTIVE Absences affect visual attention and eye movements variably. Here, we explore whether the dissimilarity of these symptoms during absences is reflected in differences in electroencephalographic (EEG) features, functional connectivity, and activation of the frontal eye field. METHODS Pediatric patients with absences performed a computerized choice reaction time task, with simultaneous recording of EEG and eye-tracking. We quantified visual attention and eye movements with reaction times, response correctness, and EEG features. Finally, we studied brain networks involved in the generation and propagation of seizures. RESULTS Ten pediatric patients had absences during the measurement. Five patients had preserved eye movements (preserved group) and five patients showed disrupted eye movements (unpreserved group) during seizures. Source reconstruction showed a stronger involvement of the right frontal eye field during absences in the unpreserved group than in the preserved group (dipole fraction 1.02% and 0.34%, respectively, p < 0.05). Graph analysis revealed different connection fractions of specific channels. CONCLUSIONS The impairment of visual attention varies among patients with absences and is associated with differences in EEG features, network activation, and involvement of the right frontal eye field. SIGNIFICANCE Assessing the visual attention of patients with absences can be usefully employed in clinical practice for tailored advice to the individual patient.
Collapse
Affiliation(s)
- Valentina Barone
- Clinical Neurophysiology (CNPH), TechMed Centre, University of Twente, Enschede, the Netherlands.
| | - Maria Carla Piastra
- Clinical Neurophysiology (CNPH), TechMed Centre, University of Twente, Enschede, the Netherlands.
| | - Johannes P van Dijk
- Academic Center for Epileptology Kempenhaeghe, Heeze, the Netherlands; Eindhoven University of Technology, Eindhoven, the Netherlands.
| | - Gerhard H Visser
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, the Netherlands.
| | | | - Michel J A M van Putten
- Clinical Neurophysiology (CNPH), TechMed Centre, University of Twente, Enschede, the Netherlands; Department of Clinical Neurophysiology, Medisch Spectrum Twente, Enschede, the Netherlands.
| |
Collapse
|
11
|
Beniczky S, Tatum WO, Blumenfeld H, Stefan H, Mani J, Maillard L, Fahoum F, Vinayan KP, Mayor LC, Vlachou M, Seeck M, Ryvlin P, Kahane P. Seizure semiology: ILAE glossary of terms and their significance. Epileptic Disord 2022; 24:447-495. [PMID: 35770761 DOI: 10.1684/epd.2022.1430] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/19/2022] [Indexed: 11/17/2022]
Abstract
This educational topical review and Task Force report aims to address learning objectives of the International League Against Epilepsy (ILAE) curriculum. We sought to extract detailed features involving semiology from video recordings and interpret semiological signs and symptoms that reflect the likely localization for focal seizures in patients with epilepsy. This glossary was developed by a working group of the ILAE Commission on Diagnostic Methods incorporating the EEG Task Force. This paper identifies commonly used terms to describe seizure semiology, provides definitions, signs and symptoms, and summarizes their clinical value in localizing and lateralizing focal seizures based on consensus in the published literature. Video-EEG examples are included to illustrate important features of semiology in patients with epilepsy.
Collapse
|
12
|
Different circuitry dysfunction in drug-naive patients with juvenile myoclonic epilepsy and juvenile absence epilepsy. Epilepsy Behav 2021; 125:108443. [PMID: 34837842 DOI: 10.1016/j.yebeh.2021.108443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/10/2021] [Accepted: 11/10/2021] [Indexed: 11/22/2022]
Abstract
RATIONALE Juvenile myoclonic epilepsy (JME) and juvenile absence epilepsy (JAE) are generalized epileptic syndromes presenting in the same age range. To explore whether uneven network dysfunctions may underlie the two different phenotypes, we examined drug-naive patients with JME and JAE at the time of their earliest presentation. METHODS Patients were recruited based on typical JME (n = 23) or JAE (n = 18) presentation and compared with 16 age-matched healthy subjects (HS). We analyzed their awake EEG signals by Partial Directed Coherence and graph indexes. RESULTS Out-density and betweenness centrality values were different between groups. With respect to both JAE and HS, JME showed unbalanced out-density and out-strength in alpha and beta bands on central regions and reduced alpha out-strength from fronto-polar to occipital regions, correlating with photosensitivity. With respect to HS, JAE showed enhanced alpha out-density and out-strength on fronto-polar regions. In gamma band, JAE showed reduced Global/Local Efficiency and Clustering Coefficient with respect to HS, while JME showed more scattered values. CONCLUSIONS Our data suggest that regional network changes in alpha and beta bands underlie the different presentation distinguishing JME and JAE resulting in motor vs non-motor seizures characterizing these two syndromes. Conversely, impaired gamma-activity within the network seems to be a non-local marker of defective inhibition.
Collapse
|
13
|
Sitnikova E. Sleep Disturbances in Rats With Genetic Pre-disposition to Spike-Wave Epilepsy (WAG/Rij). Front Neurol 2021; 12:766566. [PMID: 34803898 PMCID: PMC8602200 DOI: 10.3389/fneur.2021.766566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 10/01/2021] [Indexed: 11/13/2022] Open
Abstract
Wistar Albino Glaxo Rijswijk (WAG/Rij) rats are widely used in basic and pre-clinical studies as a valid genetic model of absence epilepsy. Adult WAG/Rij rats exhibit generalized 8–10-Hz spike-wave discharges (SWDs) in the electroencephalogram. SWDs are known to result from thalamocortical circuit dysfunction, and this implies an intimate relationship between slow-wave EEG activity, sleep spindles, and SWDs. The present mini review summarizes relevant research on sleep-related disturbances associated with spike-wave epilepsy in WAG/Rij rats in the domain of slow-wave sleep EEG and microarousals. It also discusses enhancement of the intermediate stage of sleep. In general, sleep EEG studies provide important information about epileptogenic processes related to spike-wave epilepsy.
Collapse
Affiliation(s)
- Evgenia Sitnikova
- Institute of Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences (RAS), Moscow, Russia
| |
Collapse
|
14
|
Clinical Characterization of Epilepsy in Children With Angelman Syndrome. Pediatr Neurol 2021; 124:42-50. [PMID: 34536900 PMCID: PMC8500934 DOI: 10.1016/j.pediatrneurol.2021.08.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 08/18/2021] [Accepted: 08/23/2021] [Indexed: 11/23/2022]
Abstract
BACKGROUND Epilepsy is highly prevalent in children with Angelman syndrome (AS), and its detailed characterization and relationship to the genotype (deletion vs nondeletion) is important both for medical practice and for clinical trial design. METHODS AND MATERIALS We retrospectively analyzed the main clinical features of epilepsy in 265 children with AS who were enrolled in the AS Natural History Study, a multicenter, observational study conducted at six centers in the United States. Participants were prospectively followed up and classified by genotype. RESULTS Epilepsy was reported in a greater proportion of individuals with a deletion than a nondeletion genotype (171 of 187 [91%] vs. 48 of 78 [61%], P < 0.001). Compared with participants with a nondeletion genotype, those with deletions were younger at the time of the first seizure (age: median [95% confidence interval]: 24 [21-24] months vs. 57 [36-85] months, P < 0.001) and had a higher prevalence of generalized motor seizures. Hospitalization following a seizure was reported in more children with a deletion than a nondeletion genotype (92 of 171 [54%] vs. 17 of 48 [36%], P = 0.04). The overall prevalence of absence seizures was not significantly different between genotype groups. Forty-six percent (102/219) of the individuals reporting epilepsy were diagnosed with AS concurrently or after their first seizure. CONCLUSIONS Significant differences exist in the clinical expression of epilepsy in AS according to the underlying genotype, with earlier age of onset and more severe epilepsy in individuals with AS due to a chromosome 15 deletion.
Collapse
|
15
|
Marashly A. Seizure Semiology in Focal and Generalized Epilepsies: Distinctive and Overlapping Features. JOURNAL OF PEDIATRIC EPILEPSY 2021. [DOI: 10.1055/s-0040-1722300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
AbstractStudying seizure semiology is the first step in evaluating any patient with epilepsy which leads the way to further investigations and management, particularly in differentiating focal and generalized epilepsies. While the usefulness of semiological analysis has been confirmed through decades' worth of research and clinical practice, there remains some instances when the line between focal and generalized semiological features is blurred leading to difficulties identifying the type of epilepsy at hand. This in turn can lead to delayed or wrong diagnoses with significant implications.In this review article, we explain the role of semiology in epilepsy, specifically in differentiating focal versus generalized epilepsies and cover the semiological features for both groups. We also discuss the occasional overlapping semiology between the two groups and provide case examples.
Collapse
Affiliation(s)
- Ahmad Marashly
- Division of Pediatric Neurology, University of Washington/Seattle Children's Hospital, Seattle, Washington
| |
Collapse
|
16
|
Wang X, Chen B, Jin L, Zhang W, Liu Y. Eight years follow-up of a generalized epilepsy patient with eating-induced late-onset epileptic spasms and atypical absence with myoclonic jerks. Brain Dev 2021; 43:160-165. [PMID: 32792174 DOI: 10.1016/j.braindev.2020.07.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/22/2020] [Accepted: 07/27/2020] [Indexed: 11/28/2022]
Abstract
PURPOSE Eating epilepsy was previously known as a kind of focal reflex epilepsy. However, the development of eating-induced multiple generalized seizures and the associated EEG changes were rarely reported. Herein, we present a 13-year-old generalized epilepsy patient with eating-induced generalized seizures since the age of 5. CASE PRESENTATION The 13-year-old male patient had suffered from late-onset eating-induced epileptic spasms during the meal since the age of 5. Meanwhile, he also experienced spontaneous epileptic spasms during the period of sleep. The seizure frequency and type gradually increased from 7 years of age. In addition to epileptic spasms, he started experiencing atypical absence with myoclonic jerks during the meal. Ictal EEG presented as the appearance of an irregular slow-wave mixed with generalized polyspike wave with the intake of food, and gradually evolved to bursts of generalized polyspike wave complexes. At the end of the meal, the EEG returned to normal. Nevertheless, at the age of 13, his seizure frequency increased and appeared new seizure type, and besides epileptic spasm and atypical absence, he began to experience myoclonic seizure during sleep and awaking-generalized tonic-clonic seizure in the morning. In this period he started taking valproic acid, topiramate and clonazepam, and his seizure frequency was reduced. CONCLUSION In conclusion, this case demonstrated the variability of eating induced multiple generalized seizure types, and eight years follow-up also indicates that generalized epilepsy progressed with age. The EEG and clinical changes of our patient contribute to a better understanding of the electro-clinical features of eating-induced multiple generalized seizures and the course of generalized epilepsy with such seizures.
Collapse
Affiliation(s)
- Xiaoli Wang
- Epilepsy and Sleep Disorders Unit, Department of Neurology, Xijing Hospital, Air Force Military Medical University, Xi'an, China
| | - Beibei Chen
- Epilepsy and Sleep Disorders Unit, Department of Neurology, Xijing Hospital, Air Force Military Medical University, Xi'an, China
| | - Lang Jin
- Epilepsy and Sleep Disorders Unit, Department of Neurology, Xijing Hospital, Air Force Military Medical University, Xi'an, China
| | - Wenjuan Zhang
- Epilepsy and Sleep Disorders Unit, Department of Neurology, Xijing Hospital, Air Force Military Medical University, Xi'an, China
| | - Yonghong Liu
- Epilepsy and Sleep Disorders Unit, Department of Neurology, Xijing Hospital, Air Force Military Medical University, Xi'an, China.
| |
Collapse
|
17
|
Barone V, van Putten MJAM, Visser GH. Absence epilepsy: Characteristics, pathophysiology, attention impairments, and the related risk of accidents. A narrative review. Epilepsy Behav 2020; 112:107342. [PMID: 32861896 DOI: 10.1016/j.yebeh.2020.107342] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/10/2020] [Accepted: 07/11/2020] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Absence epilepsy (AE) is related to both cognitive and physical impairments. In this narrative review, we critically discuss the pathophysiology of AE and the impairment of attention in children and adolescents with AE. In particular, we contextualize the attentive dysfunctions of AE with the associated risks, such as accidental injuries. DATA SOURCE An extensive literature search on attention deficits and the rate of accidental injuries in AE was run. The search was conducted on Scopus, Pubmed, and the online libraries of the University of Twente and Maastricht University. Relevant references of the included articles were added. Retrospective and prospective studies, case reports, meta-analysis, and narrative reviews were included. Only studies written in English were considered. Date of last search is February 2020. The keywords used were "absence epilepsy" AND "attention"/"awareness", "absence epilepsy" AND "accidental injuries"/"accident*"/"injuries". RESULTS Ten retrospective and two prospective studies on cognition and AE were fully screened. Seventeen papers explicitly referring to attention in AE were reviewed. Just one paper was found to specifically focus on accidental injuries and AE, while twelve studies generally referring to epilepsy syndromes - among which AE - and related accidents were included. CONCLUSION Absence epilepsy and attention deficits show some patterns of pathophysiological association. This relation may account for dysfunctions in everyday activities in the pediatric population. Particular metrics, such as the risk related to biking in children with AE, should be used in future studies to address the problem in a novel way and to impact clinical indications.
Collapse
Affiliation(s)
- Valentina Barone
- Twente Medical System International B.V. (TMSi), Zutphenstraat 57, 7575EJ Oldenzaal, the Netherlands; Clinical Neurophysiology (CNPH), Technohal Univeristy of Twente, Hallenweg 5, 7522 NH, the Netherlands.
| | - Michel J A M van Putten
- Clinical Neurophysiology (CNPH), Technohal Univeristy of Twente, Hallenweg 5, 7522 NH, the Netherlands; Department of Clinical Neurophysiology, Medisch Spectrum Twente, Koningsplein 1, 7512 KZ Enschede, the Netherlands..
| | - Gerhard H Visser
- Stichting Epilepsie Instellingen Nederland (SEIN), Achterweg 2, 2103 SW Heemstede, the Netherlands.
| |
Collapse
|
18
|
Sun J, Gao Y, Miao A, Yu C, Tang L, Huang S, Wu C, Shi Q, Zhang T, Li Y, Sun Y, Wang X. Multifrequency Dynamics of Cortical Neuromagnetic Activity Underlying Seizure Termination in Absence Epilepsy. Front Hum Neurosci 2020; 14:221. [PMID: 32670039 PMCID: PMC7332835 DOI: 10.3389/fnhum.2020.00221] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/15/2020] [Indexed: 12/23/2022] Open
Abstract
Purpose This study aimed to investigate the spectral and spatial signatures of neuromagnetic activity underlying the termination of absence seizures. Methods Magnetoencephalography (MEG) data were recorded from 18 drug-naive patients with childhood absence epilepsy (CAE). Accumulated source imaging (ASI) was used to analyze MEG data at the source level in seven frequency ranges: delta (1–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), beta (12–30 Hz), gamma (30–80 Hz), ripple (80–250 Hz), and fast ripple (250–500 Hz). Result In the 1–4, 4–8, and 8–12 Hz ranges, the magnetic source during seizure termination appeared to be consistent over the ictal period and was mainly localized in the frontal cortex (FC) and parieto-occipito-temporal junction (POT). In the 12–30 and 30–80 Hz ranges, a significant reduction in source activity was observed in the frontal lobe during seizure termination as well as a decrease in peak source strength. The ictal peak source strength in the 1–4 Hz range was negatively correlated with the ictal duration of the seizure, whereas in the 30–80 Hz range, it was positively correlated with the course of epilepsy. Conclusion The termination of absence seizures is associated with a dynamic neuromagnetic process. Frequency-dependent changes in the FC were observed during seizure termination, which may be involved in the process of neural network interaction. Neuromagnetic activity in different frequency bands may play different roles in the pathophysiological mechanism during absence seizures.
Collapse
Affiliation(s)
- Jintao Sun
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Yuan Gao
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Ailiang Miao
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Chuanyong Yu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Lu Tang
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Shuyang Huang
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Caiyun Wu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Qi Shi
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Tingting Zhang
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Yihan Li
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Yulei Sun
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Xiaoshan Wang
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| |
Collapse
|
19
|
Quantitative characteristics of spike-wave paroxysms in genetic generalized epilepsy. Clin Neurophysiol 2020; 131:1230-1240. [DOI: 10.1016/j.clinph.2020.03.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/17/2020] [Accepted: 03/12/2020] [Indexed: 11/20/2022]
|
20
|
Mazzocchetti C, Striano P, Verrotti A. How to select the appropriate pharmacotherapy for absence seizures in children. Expert Opin Pharmacother 2018; 19:1045-1047. [PMID: 29924667 DOI: 10.1080/14656566.2018.1484902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Chiara Mazzocchetti
- a Department of Pediatrics, San Salvatore Hospital , University of L'Aquila , L'Aquila , Italy
| | - Pasquale Striano
- b Pediatric Neurology and Muscular Diseases Unit, DINOGMI-Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health , University of Genoa, "G. Gaslini" Institute , Genova , Italy
| | - Alberto Verrotti
- a Department of Pediatrics, San Salvatore Hospital , University of L'Aquila , L'Aquila , Italy
| |
Collapse
|