1
|
Li J, Qi H, Chen Y, Zhu X. Epilepsy and demyelination: Towards a bidirectional relationship. Prog Neurobiol 2024; 234:102588. [PMID: 38378072 DOI: 10.1016/j.pneurobio.2024.102588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 02/13/2024] [Indexed: 02/22/2024]
Abstract
Demyelination stands out as a prominent feature in individuals with specific types of epilepsy. Concurrently, individuals with demyelinating diseases, such as multiple sclerosis (MS) are at a greater risk of developing epilepsy compared to non-MS individuals. These bidirectional connections raise the question of whether both pathological conditions share common pathogenic mechanisms. This review focuses on the reciprocal relationship between epilepsy and demyelination diseases. We commence with an overview of the neurological basis of epilepsy and demyelination diseases, followed by an exploration of how our comprehension of these two disorders has evolved in tandem. Additionally, we discuss the potential pathogenic mechanisms contributing to the interactive relationship between these two diseases. A more nuanced understanding of the interplay between epilepsy and demyelination diseases has the potential to unveiling the molecular intricacies of their pathological relationships, paving the way for innovative directions in future clinical management and treatment strategies for these diseases.
Collapse
Affiliation(s)
- Jiayi Li
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China; Clinical Medicine, Medical School of Southeast University, Nanjing, China
| | - Honggang Qi
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China
| | - Yuzhou Chen
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China; Clinical Medicine, Medical School of Southeast University, Nanjing, China
| | - Xinjian Zhu
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China.
| |
Collapse
|
2
|
Leung WL, Dill LK, Perucca P, O'Brien TJ, Casillas-Espinosa PM, Semple BD. Inherent Susceptibility to Acquired Epilepsy in Selectively Bred Rats Influences the Acute Response to Traumatic Brain Injury. J Neurotrauma 2023; 40:2174-2192. [PMID: 37221897 DOI: 10.1089/neu.2022.0463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023] Open
Abstract
Traumatic brain injury (TBI) often causes seizures associated with a neuroinflammatory response and neurodegeneration. TBI responses may be influenced by differences between individuals at a genetic level, yet this concept remains understudied. Here, we asked whether inherent differences in one's vulnerability to acquired epilepsy would determine acute physiological and neuroinflammatory responses acutely after experimental TBI, by comparing selectively bred "seizure-prone" (FAST) rats with "seizure-resistant" (SLOW) rats, as well as control parental strains (Long Evans and Wistar rats). Eleven-week-old male rats received a moderate-to-severe lateral fluid percussion injury (LFPI) or sham surgery. Rats were assessed for acute injury indicators and neuromotor performance, and blood was serially collected. At 7 days post-injury, brains were collected for quantification of tissue atrophy by cresyl violet (CV) histology, and immunofluorescent staining of activated inflammatory cells. FAST rats showed an exacerbated physiological response acutely post-injury, with a 100% seizure rate and mortality within 24 h. Conversely, SLOW rats showed no acute seizures and a more rapid neuromotor recovery compared with controls. Brains from SLOW rats also showed only modest immunoreactivity for microglia/macrophages and astrocytes in the injured hemisphere compared with controls. Further, group differences were apparent between the control strains, with greater neuromotor deficits observed in Long Evans rats compared with Wistars post-TBI. Brain-injured Long Evans rats also showed the most pronounced inflammatory response to TBI across multiple brain regions, whereas Wistar rats showed the greatest extent of regional brain atrophy. These findings indicate that differential genetic predisposition to develop acquired epilepsy (i.e., FAST vs. SLOW rat strains) determines acute responses after experimental TBI. Differences in the neuropathological response to TBI between commonly used control rat strains is also a novel finding, and an important consideration for future study design. Our results support further investigation into whether genetic predisposition to acute seizures predicts the chronic outcomes after TBI, including the development of post-traumatic epilepsy.
Collapse
Affiliation(s)
- Wai Lam Leung
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Larissa K Dill
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
- The Perron Institute for Neurological and Translational Science, Nedlands, Western Australia, Australia
| | - Piero Perucca
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
- Epilepsy Research Centre, Department of Medicine (Austin Health), The University of Melbourne, Heidelberg, Victoria, Australia
- Bladin-Berkovic Comprehensive Epilepsy Program, Department of Neurology, Austin Health, Heidelberg, Victoria, Australia
- Department of Neurology, The Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Terence J O'Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
- Department of Neurology, The Royal Melbourne Hospital, Parkville, Victoria, Australia
- Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Parkville, Victoria, Australia
| | - Pablo M Casillas-Espinosa
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
- Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Parkville, Victoria, Australia
| | - Bridgette D Semple
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
- Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
3
|
Li R, Millist L, Foster E, Yuan X, Guvenc U, Radfar M, Marendy P, Ni W, O'Brien TJ, Casillas-Espinosa PM. Spike and wave discharges detection in genetic absence epilepsy rat from Strasbourg and patients with genetic generalized epilepsy. Epilepsy Res 2023; 194:107181. [PMID: 37364342 DOI: 10.1016/j.eplepsyres.2023.107181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 05/02/2023] [Accepted: 06/13/2023] [Indexed: 06/28/2023]
Abstract
OBJECTIVE Generalised spike and wave discharges (SWDs) are pathognomonic EEG signatures for diagnosing absence seizures in patients with Genetic Generalized Epilepsy (GGE). The Genetic Absence Epilepsy Rats from Strasbourg (GAERS) is one of the best-validated animal models of GGE with absence seizures. METHODS We developed an SWDs detector for both GAERS rodents and GGE patients with absence seizures using a neural network method. We included 192 24-hour EEG sessions recorded from 18 GAERS rats, and 24-hour scalp-EEG data collected from 11 GGE patients. RESULTS The SWDs detection performance on GAERS showed a sensitivity of 98.01% and a false positive (FP) rate of 0.96/hour. The performance on GGE patients showed 100% sensitivity in five patients, while the remaining patients obtained over 98.9% sensitivity. Moderate FP rates were seen in our patients with 2.21/hour average FP. The detector trained within our patient cohort was validated in an independent dataset, TUH EEG Seizure Corpus (TUSZ), that showed 100% sensitivity in 11 of 12 patients and 0.56/hour averaged FP. CONCLUSIONS We developed a robust SWDs detector that showed high sensitivity and specificity for both GAERS rats and GGE patients. SIGNIFICANCE This detector can assist researchers and neurologists with the time-efficient and accurate quantification of SWDs.
Collapse
Affiliation(s)
- Rui Li
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia; Department of Neurology, The Alfred Hospital, Commercial Road, Melbourne, Victoria 3004, Australia
| | - Lyn Millist
- Department of Neurology, The Alfred Hospital, Commercial Road, Melbourne, Victoria 3004, Australia; Department of Neurology, The Royal Melbourne Hospital, Grattan Street, Parkville, Victoria 3050, Australia
| | - Emma Foster
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia; Department of Neurology, The Alfred Hospital, Commercial Road, Melbourne, Victoria 3004, Australia
| | - Xin Yuan
- Department of Cyber-Physical Systems, Data61, CSIRO, Marsfield, New South Wales 2122, Australia
| | - Umut Guvenc
- Department of Microsystems, Data61, CSIRO, Pullenvale, Queensland 4069, Australia
| | - Mohsen Radfar
- Department of Microsystems, Data61, CSIRO, Pullenvale, Queensland 4069, Australia
| | - Peter Marendy
- Department of Microsystems, Data61, CSIRO, Pullenvale, Queensland 4069, Australia
| | - Wei Ni
- Department of Cyber-Physical Systems, Data61, CSIRO, Marsfield, New South Wales 2122, Australia
| | - Terence J O'Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia; Department of Neurology, The Alfred Hospital, Commercial Road, Melbourne, Victoria 3004, Australia; Department of Neurology, The Royal Melbourne Hospital, Grattan Street, Parkville, Victoria 3050, Australia; Department of Medicine, The University of Melbourne, Parkville 3050, Victoria, Australia
| | - Pablo M Casillas-Espinosa
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia; Department of Neurology, The Alfred Hospital, Commercial Road, Melbourne, Victoria 3004, Australia; Department of Medicine, The University of Melbourne, Parkville 3050, Victoria, Australia.
| |
Collapse
|
4
|
Rosen JB, Schulkin J. Hyperexcitability: From Normal Fear to Pathological Anxiety and Trauma. Front Syst Neurosci 2022; 16:727054. [PMID: 35993088 PMCID: PMC9387392 DOI: 10.3389/fnsys.2022.727054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 06/20/2022] [Indexed: 11/16/2022] Open
Abstract
Hyperexcitability in fear circuits is suggested to be important for development of pathological anxiety and trauma from adaptive mechanisms of fear. Hyperexcitability is proposed to be due to acquired sensitization in fear circuits that progressively becomes more severe over time causing changing symptoms in early and late pathology. We use the metaphor and mechanisms of kindling to examine gains and losses in function of one excitatory and one inhibitory neuropeptide, corticotrophin releasing factor and somatostatin, respectively, to explore this sensitization hypothesis. We suggest amygdala kindling induced hyperexcitability, hyper-inhibition and loss of inhibition provide clues to mechanisms for hyperexcitability and progressive changes in function initiated by stress and trauma.
Collapse
Affiliation(s)
- Jeffrey B. Rosen
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, United States
- *Correspondence: Jeffrey B. Rosen,
| | - Jay Schulkin
- School of Medicine, University of Washington, Seattle, WA, United States
| |
Collapse
|
5
|
Semple BD, Dill LK, O'Brien TJ. Immune Challenges and Seizures: How Do Early Life Insults Influence Epileptogenesis? Front Pharmacol 2020; 11:2. [PMID: 32116690 PMCID: PMC7010861 DOI: 10.3389/fphar.2020.00002] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 01/03/2020] [Indexed: 12/16/2022] Open
Abstract
The development of epilepsy, a process known as epileptogenesis, often occurs later in life following a prenatal or early postnatal insult such as cerebral ischemia, stroke, brain trauma, or infection. These insults share common pathophysiological pathways involving innate immune activation including neuroinflammation, which is proposed to play a critical role in epileptogenesis. This review provides a comprehensive overview of the latest preclinical evidence demonstrating that early life immune challenges influence neuronal hyperexcitability and predispose an individual to later life epilepsy. Here, we consider the range of brain insults that may promote the onset of chronic recurrent spontaneous seizures at adulthood, spanning intrauterine insults (e.g. maternal immune activation), perinatal injuries (e.g. hypoxic–ischemic injury, perinatal stroke), and insults sustained during early postnatal life—such as fever-induced febrile seizures, traumatic brain injuries, infections, and environmental stressors. Importantly, all of these insults represent, to some extent, an immune challenge, triggering innate immune activation and implicating both central and systemic inflammation as drivers of epileptogenesis. Increasing evidence suggests that pro-inflammatory cytokines such as interleukin-1 and subsequent signaling pathways are important mediators of seizure onset and recurrence, as well as neuronal network plasticity changes in this context. Our current understanding of how early life immune challenges prime microglia and astrocytes will be explored, as well as how developmental age is a critical determinant of seizure susceptibility. Finally, we will consider the paradoxical phenomenon of preconditioning, whereby these same insults may conversely provide neuroprotection. Together, an improved appreciation of the neuroinflammatory mechanisms underlying the long-term epilepsy risk following early life insults may provide insight into opportunities to develop novel immunological anti-epileptogenic therapeutic strategies.
Collapse
Affiliation(s)
- Bridgette D Semple
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia.,Department of Neurology, Alfred Health, Melbourne, VIC, Australia
| | - Larissa K Dill
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Neurology, Alfred Health, Melbourne, VIC, Australia
| | - Terence J O'Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia.,Department of Neurology, Alfred Health, Melbourne, VIC, Australia
| |
Collapse
|