1
|
Champsas D, Zhang X, Rosch R, Ioannidou E, Gilmour K, Cooray G, Woodhall G, Pujar S, Kaliakatsos M, Wright SK. NORSE/FIRES: how can we advance our understanding of this devastating condition? Front Neurol 2024; 15:1426051. [PMID: 39175762 PMCID: PMC11338801 DOI: 10.3389/fneur.2024.1426051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/29/2024] [Indexed: 08/24/2024] Open
Abstract
Introduction New onset refractory status epilepticus (NORSE) is a rare and devastating condition characterised by the sudden onset of refractory status epilepticus (RSE) without an identifiable acute or active structural, toxic, or metabolic cause in an individual without a pre-existing diagnosis of epilepsy. Febrile infection-related epilepsy syndrome (FIRES) is considered a subcategory of NORSE and presents following a febrile illness prior to seizure onset. NORSE/FIRES is associated with high morbidity and mortality in children and adults. Methods and results In this review we first briefly summarise the reported clinical, paraclinical, treatment and outcome data in the literature. We then report on existing knowledge of the underlying pathophysiology in relation to in vitro and in vivo pre-clinical seizure and epilepsy models of potential relevance to NORSE/FIRES. Discussion We highlight how pre-clinical models can enhance our understanding of FIRES/NORSE and propose future directions for research.
Collapse
Affiliation(s)
- Dimitrios Champsas
- Department of Neurology, Great Ormond Street Hospital (GOSH), London, United Kingdom
- Institute of Health and Neurodevelopment, School of Health and Life Sciences, Aston University, Birmingham, United Kingdom
| | - Xushuo Zhang
- Institute of Health and Neurodevelopment, School of Health and Life Sciences, Aston University, Birmingham, United Kingdom
| | - Richard Rosch
- Department of Clinical Neurophysiology, King’s College Hospital London NHS Foundation Trust, London, United Kingdom
- Departments of Neurology and Pediatrics, Columbia University, New York, NY, United States
| | - Evangelia Ioannidou
- Department of Neurology, Great Ormond Street Hospital (GOSH), London, United Kingdom
| | - Kimberly Gilmour
- Department of Immunology, Great Ormond Street Hospital (GOSH), London, United Kingdom
- Biomedical Research Centre (BRC), London, United Kingdom
- Institute of Child Health, University College London, London, United Kingdom
| | - Gerald Cooray
- Department of Neurophysiology, Great Ormond Street Hospital (GOSH), London, United Kingdom
- Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Gavin Woodhall
- Institute of Health and Neurodevelopment, School of Health and Life Sciences, Aston University, Birmingham, United Kingdom
| | - Suresh Pujar
- Department of Neurology, Great Ormond Street Hospital (GOSH), London, United Kingdom
- Institute of Child Health, University College London, London, United Kingdom
| | - Marios Kaliakatsos
- Department of Neurology, Great Ormond Street Hospital (GOSH), London, United Kingdom
- Institute of Child Health, University College London, London, United Kingdom
| | - Sukhvir K. Wright
- Institute of Health and Neurodevelopment, School of Health and Life Sciences, Aston University, Birmingham, United Kingdom
- Birmingham Women’s and Children’s Hospital NHS Trust, Birmingham, United Kingdom
| |
Collapse
|
2
|
Dutra LA, Silva PVDC, Ferreira JHF, Marques AC, Toso FF, Vasconcelos CCF, Brum DG, Pereira SLDA, Adoni T, Rocha LJDA, Sampaio LPDB, Sousa NADC, Paolilo RB, Pizzol AD, Costa BKD, Disserol CCD, Pupe C, Valle DAD, Diniz DS, Abrantes FFD, Schmidt FDR, Cendes F, Oliveira FTMD, Martins GJ, Silva GD, Lin K, Pinto LF, Santos MLSF, Gonçalves MVM, Krueger MB, Haziot MEJ, Barsottini OGP, Nascimento OJMD, Nóbrega PR, Proveti PM, Castilhos RMD, Daccach V, Glehn FV. Brazilian consensus recommendations on the diagnosis and treatment of autoimmune encephalitis in the adult and pediatric populations. ARQUIVOS DE NEURO-PSIQUIATRIA 2024; 82:1-15. [PMID: 39089672 DOI: 10.1055/s-0044-1788586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
BACKGROUND Autoimmune encephalitis (AIE) is a group of inflammatory diseases characterized by the presence of antibodies against neuronal and glial antigens, leading to subacute psychiatric symptoms, memory complaints, and movement disorders. The patients are predominantly young, and delays in treatment are associated with worse prognosis. OBJECTIVE With the support of the Brazilian Academy of Neurology (Academia Brasileira de Neurologia, ABN) and the Brazilian Society of Child Neurology (Sociedade Brasileira de Neurologia Infantil, SBNI), a consensus on the diagnosis and treatment of AIE in Brazil was developed using the Delphi method. METHODS A total of 25 panelists, including adult and child neurologists, participated in the study. RESULTS The panelists agreed that patients fulfilling criteria for possible AIE should be screened for antineuronal antibodies in the serum and cerebrospinal fluid (CSF) using the tissue-based assay (TBA) and cell-based assay (CBA) techniques. Children should also be screened for anti-myelin oligodendrocyte glucoprotein antibodies (anti-MOG). Treatment should be started within the first 4 weeks of symptoms. The first-line option is methylprednisolone plus intravenous immunoglobulin (IVIG) or plasmapheresis, the second-line includes rituximab and/or cyclophosphamide, while third-line treatment options are bortezomib and tocilizumab. Most seizures in AIE are symptomatic, and antiseizure medications may be weaned after the acute stage. In anti-N-methyl-D-aspartate receptor (anti-NMDAR) encephalitis, the panelists have agreed that oral immunosuppressant agents should not be used. Patients should be evaluated at the acute and postacute stages using functional and cognitive scales, such as the Mini-Mental State Examination (MMSE), the Montreal Cognitive Assessment (MoCA), the Modified Rankin Scale (mRS), and the Clinical Assessment Scale in Autoimmune Encephalitis (CASE). CONCLUSION The present study provides tangible evidence for the effective management of AIE patients within the Brazilian healthcare system.
Collapse
Affiliation(s)
- Lívia Almeida Dutra
- Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, São Paulo SP, Brazil
| | | | | | | | - Fabio Fieni Toso
- Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, São Paulo SP, Brazil
| | | | - Doralina Guimarães Brum
- Universidade Estadual Paulista, Faculdade de Medicina de Botucatu, Departamento de Neurologia, Psicologia e Psiquiatria, Botucatu SP, Brazil
| | - Samira Luisa Dos Apóstolos Pereira
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Departamento de Neurologia e Neurocirurgia, São Paulo SP, Brazil
| | - Tarso Adoni
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Departamento de Neurologia e Neurocirurgia, São Paulo SP, Brazil
| | | | | | | | - Renata Barbosa Paolilo
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Instituto da Criança, São Paulo SP, Brazil
| | - Angélica Dal Pizzol
- Hospital Moinhos de Vento, Departamento de Neurologia, Porto Alegre RS, Brazil
| | - Bruna Klein da Costa
- Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre RS, Brazil
- Santa Casa de Misericórdia de Porto Alegre, Porto Alegre RS, Brazil
| | - Caio César Diniz Disserol
- Universidade Federal do Paraná, Hospital das Clínicas, Curitiba PR, Brazil
- Instituto de Neurologia de Curitiba, Curitiba PR, Brazil
| | - Camila Pupe
- Universidade Federal Fluminense, Niterói RJ, Brazil
| | | | | | | | | | | | | | | | - Guilherme Diogo Silva
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Departamento de Neurologia e Neurocirurgia, São Paulo SP, Brazil
| | - Katia Lin
- Universidade Federal de Santa Catarina, Florianópolis SC, Brazil
| | - Lécio Figueira Pinto
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Departamento de Neurologia e Neurocirurgia, São Paulo SP, Brazil
| | | | | | | | | | | | | | | | | | | | - Vanessa Daccach
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Ribeirão Preto SP, Brazil
| | | |
Collapse
|
3
|
Wesselingh R, Broadley J, Buzzard K, Tarlinton D, Seneviratne U, Kyndt C, Stankovich J, Sanfilippo P, Nesbitt C, D'Souza W, Macdonell R, Butzkueven H, O'Brien TJ, Monif M. Prevalence, risk factors, and prognosis of drug-resistant epilepsy in autoimmune encephalitis. Epilepsy Behav 2022; 132:108729. [PMID: 35623203 DOI: 10.1016/j.yebeh.2022.108729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/10/2022] [Accepted: 05/05/2022] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To evaluate the prevalence and biomarkers of drug-resistant epilepsy (DRE) in patients with autoimmune encephalitis (AIE). METHODS Sixty-nine patients with AIE were recruited retrospectively and electroencephalographies (EEGs) were reviewed using a standard reporting proforma. Associations between EEG biomarkers and DRE development at 12 months were examined using logistic regression modeling and were utilized to create a DRE risk score. RESULTS Sixteen percent of patients with AIE developed DRE at 12-month follow-up. The presence of status epilepticus (SE) (OR 11.50, 95% CI [2.81, 51.86], p-value <0.001), temporal lobe focality (OR 9.90, 95% CI [2.60, 50.71], p-value 0.001) and periodic discharges (OR 19.12, 95% CI [3.79, 191.10], p-value 0.001) on the admission EEG were associated with the development of DRE at 12 months. These variables were utilized to create a clinically applicable risk score for the prediction of DRE development. CONCLUSIONS Drug-resistant epilepsy is an infrequent complication of AIE. Electroencephalography changes during the acute illness can predict the risk of DRE at 12 months post-acute AIE. SIGNIFICANCE The identified EEG biomarkers provide the basis to generate a clinically applicable prediction tool which could be used to inform treatment, prognosis, and select patients for acute treatment trials.
Collapse
Affiliation(s)
- Robb Wesselingh
- Department of Neurosciences, Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Level 6, Alfred Centre, 99 Commercial Road, Melbourne, Victoria 3004, Australia; Department of Neurology, Alfred Health, Level 6, Alfred Centre, 99 Commercial Road, Melbourne, Victoria 3004, Australia
| | - James Broadley
- Department of Neurosciences, Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Level 6, Alfred Centre, 99 Commercial Road, Melbourne, Victoria 3004, Australia; Department of Neurology, Alfred Health, Level 6, Alfred Centre, 99 Commercial Road, Melbourne, Victoria 3004, Australia
| | - Katherine Buzzard
- Department of Neurology, Melbourne Health, 300 Grattan Street, Parkville, Victoria 3050, Australia; Department of Neuroscience, Eastern Health, Level 2, 5 Arnold Street, Box Hill, Victoria 3128, Australia
| | - David Tarlinton
- Department of Immunology and Pathology, Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Level 6, Burnett Building, 89 Commercial Road, Melbourne, Victoria 3004, Australia
| | - Udaya Seneviratne
- Department of Neurosciences, Monash Health, Clayton Road, Clayton, Victoria 3168, Australia
| | - Chris Kyndt
- Department of Neurology, Melbourne Health, 300 Grattan Street, Parkville, Victoria 3050, Australia; Department of Neuroscience, Eastern Health, Level 2, 5 Arnold Street, Box Hill, Victoria 3128, Australia
| | - Jim Stankovich
- Department of Neurosciences, Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Level 6, Alfred Centre, 99 Commercial Road, Melbourne, Victoria 3004, Australia
| | - Paul Sanfilippo
- Department of Neurosciences, Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Level 6, Alfred Centre, 99 Commercial Road, Melbourne, Victoria 3004, Australia
| | - Cassie Nesbitt
- Department of Neurosciences, Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Level 6, Alfred Centre, 99 Commercial Road, Melbourne, Victoria 3004, Australia; Department of Neurology, University Hospital of Geelong, Level 2, Kardinia House, Bellerine Street, Geelong, Victoria 3220, Australia
| | - Wendyl D'Souza
- Department of Neurosciences, Building D - Daly Wing, Level 5, St Vincent's Hospital, Fitzroy, Victoria 3065, Australia
| | - Richard Macdonell
- Department of Neurology, Austin Health, Level 6 North Austin Tower, 145 Studley Road, Heidelberg, Victoria 3084, Australia
| | - Helmut Butzkueven
- Department of Neurosciences, Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Level 6, Alfred Centre, 99 Commercial Road, Melbourne, Victoria 3004, Australia; Department of Neurology, Alfred Health, Level 6, Alfred Centre, 99 Commercial Road, Melbourne, Victoria 3004, Australia
| | - Terence J O'Brien
- Department of Neurosciences, Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Level 6, Alfred Centre, 99 Commercial Road, Melbourne, Victoria 3004, Australia; Department of Neurology, Alfred Health, Level 6, Alfred Centre, 99 Commercial Road, Melbourne, Victoria 3004, Australia
| | - Mastura Monif
- Department of Neurosciences, Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Level 6, Alfred Centre, 99 Commercial Road, Melbourne, Victoria 3004, Australia; Department of Neurology, Alfred Health, Level 6, Alfred Centre, 99 Commercial Road, Melbourne, Victoria 3004, Australia; Department of Neurology, Melbourne Health, 300 Grattan Street, Parkville, Victoria 3050, Australia.
| |
Collapse
|
4
|
Lee WJ, Lee ST, Kim DY, Kim S, Chu K. Disease progression and brain atrophy in NMDAR encephalitis: Associated factor & clinical implication. Ann Clin Transl Neurol 2022; 9:912-924. [PMID: 35715951 PMCID: PMC9268893 DOI: 10.1002/acn3.51604] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/23/2022] [Accepted: 05/17/2022] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE We investigated the longitudinal pattern, determining factors, and clinical implications of brain volume changes in N-methyl d-aspartate receptor-antibody (NMDAR) encephalitis. METHODS Baseline clinical profiles, treatment profiles, and outcome measured using the Clinical Assessment Scale in Autoimmune Encephalitis (CASE) and modified Rankin scale (mRS) were obtained from a long-term clinical database documenting an NMDAR encephalitis cohort. In serial MRI, the change in the normalized volume of different brain regions from the baseline evaluation was measured. At each MRI evaluation time point, the cumulative disease burden (CASE score × months) and the cumulative duration of status epilepticus were also evaluated. RESULTS Thirty-six patients were followed-up for 28.5 months (range 12-63 months). The volume ratio at last MRI to baseline was the lowest in the cerebellum (94.4 ± 5.7%, p < 0.001). Once developed, cerebellar volume reduction followed a progressive course until 2 years from disease onset. The degree of cerebellar volume reduction was positively correlated with mRS and total CASE scores (all, p < 0.001), and CASE scores in the domains of memory, language, and psychiatric problems, gait instability/ataxia, and weakness (all, p < 0.01). In linear mixed model analyses, the degree of cerebellar volume reduction was associated with cumulative disease burden up to 2 years (p < 0.001) and duration of status epilepticus (p < 0.001), and delayed removal of teratoma for ≥1 month (p = 0.006). INTERPRETATION In NMDAR encephalitis, cerebellar volume reduction was progressive once developed. Cerebellar volume reduction might reflect disease burden and extent of progression and be associated with poor outcomes in multiple functional domains.
Collapse
Affiliation(s)
- Woo-Jin Lee
- Department of Neurology, Seoul National University Hospital, Seoul, South Korea.,Department of Neurology, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, South Korea
| | - Soon-Tae Lee
- Department of Neurology, Seoul National University Hospital, Seoul, South Korea
| | - Do-Yong Kim
- Department of Neurology, Seoul National University Hospital, Seoul, South Korea
| | - Soyun Kim
- Department of Neurology, Seoul National University Hospital, Seoul, South Korea
| | - Kon Chu
- Department of Neurology, Seoul National University Hospital, Seoul, South Korea
| |
Collapse
|
5
|
Wesselingh R, Broadley J, Buzzard K, Tarlinton D, Seneviratne U, Kyndt C, Stankovich J, Sanfilippo P, Nesbitt C, D'Souza W, Macdonell R, Butzkueven H, O'Brien TJ, Monif M. Electroclinical biomarkers of autoimmune encephalitis. Epilepsy Behav 2022; 128:108571. [PMID: 35101840 DOI: 10.1016/j.yebeh.2022.108571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/25/2021] [Accepted: 01/10/2022] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To evaluate the utility of electroencephalography (EEG) changes as diagnostic and prognostic biomarkers in acute autoimmune encephalitis (AIE). METHODS One hundred and thirty-one patients with AIE were recruited retrospectively across 7 hospitals. Clinical data were collected during admission and at 12 months. EEGs were reviewed using a standard reporting proforma. Associations between EEG biomarkers, AIE subtypes, and clinical outcomes were assessed using logistic regression modeling. RESULTS Presence of superimposed fast activity (OR 34.33; 95% CI 3.90, 4527.27; p < 0.001), fluctuating EEG abnormality (OR 6.60; 95% CI 1.60, 37.59; p = 0.008), and hemispheric focality (OR 28.48; 95% CI 3.14, 3773.14; p < 0.001) were significantly more common in N-methyl-d-aspartate receptor (NMDAR) antibody-associated patients with AIE compared to other AIE subtypes. Abnormal background rhythm was associated with a poor mRS (modified Rankin score) at discharge (OR 0.29; 95% CI 0.10, 0.75; p = 0.01) and improvement in mRS at 12 months compared with admission mRS (3.72; 95% CI 1.14, 15.23; p = 0.04). SIGNIFICANCE We have identified EEG biomarkers that differentiate NMDAR AIE from other subtypes. We have also demonstrated EEG biomarkers that are associated with poor functional outcomes.
Collapse
Affiliation(s)
- Robb Wesselingh
- Department of Neurosciences, Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Level 6, Alfred Centre, 99 Commercial Road, Melbourne, Victoria 3004, Australia; Department of Neurology, Alfred Health, Level 6, Alfred Centre, 99 Commercial Road, Melbourne, Victoria 3004, Australia
| | - James Broadley
- Department of Neurosciences, Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Level 6, Alfred Centre, 99 Commercial Road, Melbourne, Victoria 3004, Australia; Department of Neurology, Alfred Health, Level 6, Alfred Centre, 99 Commercial Road, Melbourne, Victoria 3004, Australia
| | - Katherine Buzzard
- Department of Neurology, Melbourne Health, 300 Grattan Street, Parkville, Victoria 3050, Australia; Department of Neuroscience, Eastern Health, Level 2, 5 Arnold Street, Box Hill, Victoria 3128, Australia
| | - David Tarlinton
- Department of Immunology, Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Level 6, Burnett Building, 89 Commercial Road, Melbourne, Victoria 3004, Australia
| | - Udaya Seneviratne
- Department of Neurosciences, Monash Health, Clayton Road, Clayton, Victoria 3168, Australia
| | - Chris Kyndt
- Department of Neurology, Melbourne Health, 300 Grattan Street, Parkville, Victoria 3050, Australia; Department of Neuroscience, Eastern Health, Level 2, 5 Arnold Street, Box Hill, Victoria 3128, Australia
| | - Jim Stankovich
- Department of Neurosciences, Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Level 6, Alfred Centre, 99 Commercial Road, Melbourne, Victoria 3004, Australia
| | - Paul Sanfilippo
- Department of Neurosciences, Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Level 6, Alfred Centre, 99 Commercial Road, Melbourne, Victoria 3004, Australia
| | - Cassie Nesbitt
- Department of Neurosciences, Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Level 6, Alfred Centre, 99 Commercial Road, Melbourne, Victoria 3004, Australia; Barwon Neurology, Level 2, Kardinia House, Bellerine Street, Geelong, Victoria 3220, Australia
| | - Wendyl D'Souza
- Department of Neurosciences, Building D - Daly Wing, Level 5, St Vincent's Hospital, Fitzroy, Victoria 3065, Australia
| | - Richard Macdonell
- Department of Neurology, Austin Health, Level 6 North Austin Tower, 145 Studley Road, Heidelberg, Victoria 3084, Australia
| | - Helmut Butzkueven
- Department of Neurosciences, Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Level 6, Alfred Centre, 99 Commercial Road, Melbourne, Victoria 3004, Australia; Department of Neurology, Alfred Health, Level 6, Alfred Centre, 99 Commercial Road, Melbourne, Victoria 3004, Australia
| | - Terence J O'Brien
- Department of Neurosciences, Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Level 6, Alfred Centre, 99 Commercial Road, Melbourne, Victoria 3004, Australia; Department of Neurology, Alfred Health, Level 6, Alfred Centre, 99 Commercial Road, Melbourne, Victoria 3004, Australia
| | - Mastura Monif
- Department of Neurosciences, Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Level 6, Alfred Centre, 99 Commercial Road, Melbourne, Victoria 3004, Australia; Department of Neurology, Alfred Health, Level 6, Alfred Centre, 99 Commercial Road, Melbourne, Victoria 3004, Australia; Department of Neurology, Melbourne Health, 300 Grattan Street, Parkville, Victoria 3050, Australia.
| |
Collapse
|
6
|
Huang F, Wu Y, Nong W, Mao F, Cao X, Huang W, Zheng J. Factors Influencing the Withdrawal of Antiepileptic Drugs in Adult Patients with Symptomatic Seizures Secondary to Neuronal Surface Antibodies-Associated Autoimmune Encephalitis. J Inflamm Res 2022; 15:927-937. [PMID: 35173460 PMCID: PMC8842726 DOI: 10.2147/jir.s347893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/16/2022] [Indexed: 12/27/2022] Open
Affiliation(s)
- Fang Huang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Guangxi, People’s Republic of China
| | - Yu Wu
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Guangxi, People’s Republic of China
| | - Weidong Nong
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Guangxi, People’s Republic of China
| | - Fengping Mao
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Guangxi, People’s Republic of China
| | - Xiaoli Cao
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Guangxi, People’s Republic of China
| | - Wen Huang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Guangxi, People’s Republic of China
- Correspondence: Wen Huang; Jinou Zheng, Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, No. 6 shuangyong Road, Qingxiu District, Nanning, 530021, Guangxi, People’s Republic of China, Tel +86-18277197957; 86-13977166059, Email ;
| | - Jinou Zheng
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Guangxi, People’s Republic of China
| |
Collapse
|
7
|
Chen L, Zhu L, Lu D, Dai S, Han Y, Wu Z, Xu P, Chang L, Wu Q. Association between autoimmune encephalitis and epilepsy: Systematic review and meta-analysis. Seizure 2021; 91:346-359. [PMID: 34284303 DOI: 10.1016/j.seizure.2021.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 07/04/2021] [Accepted: 07/06/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Diverse neuronal antibodies are related to autoimmune encephalitis (AE) and AE-related epilepsy. However, the epidemiological characteristics of AE, AE-associated antibodies, and AE-related seizures are still unclear. AIMS This research evaluated the relationship between AE, AE-related seizures, and neuronal antibodies, as well as the morbidity of AE with early incidence. METHODS The PubMed, Embase, Cochrane, and Web of Science databases were searched. Pooled estimates and 95% confidence intervals (CIs) were calculated using a random-effects model. RESULTS Of the 4,869 citations identified, 100 articles were reviewed in full, and 42 subgroups were analyzed. The overall incidence of AE patients with seizures was 42% (95% CI: 0.40-0.44), and among them, the incidence of epilepsy in anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis patients was 73% (95% CI: 0.70-0.77). Subsequently, we found that the prevalence of AE as the cause of epilepsy within the pooled period was 1% (95% CI: 0.01-0.02), while the overall positive rate of neuronal antibodies in epilepsy patients was 4% (95% CI: 0.03-0.05). Additionally, the detection rates of different antibodies among epilepsy patients were as follows: anti-NMDAR, 1%; anti-leucine-rich glioma inactivated 1 (LGI1), 1%; anti-contactin-associated protein-like 2 (CASPR2), 2%. CONCLUSION Based on our findings, neuronal antibodies may serve as a bridge to study AE and immune-related epilepsy. To further understand the differences in outcomes following different treatment measures, and to provide more information for public health policy and prevention, more research is needed to improve the accuracy of estimations.
Collapse
Affiliation(s)
- Lu Chen
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China
| | - Lin Zhu
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China
| | - Di Lu
- Biomedicine Engineering Research Centre, Kunming Medical University, 1168 Chun Rong West Road, Kunming, Yunnan 650032, PR China
| | - Shujuan Dai
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China
| | - Yanbing Han
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China
| | - Zhe Wu
- Department of Psychology, The First People's Hospital of Yunnan Province, 157 Jin Bi Road, Kunming, Yunnan 650100, PR China
| | - Puying Xu
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China
| | - Lvhua Chang
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China
| | - Qian Wu
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China.
| |
Collapse
|
8
|
Evangelista G, Dono F, Carrarini C, Russo M, Bonanni L. Late-onset Rasmussen encephalitis in Parry-Romberg syndrome: a case report. Neurol Sci 2021; 42:4345-4348. [PMID: 34196856 DOI: 10.1007/s10072-021-05445-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/26/2021] [Indexed: 11/30/2022]
Affiliation(s)
- Giacomo Evangelista
- Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Fedele Dono
- Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.
| | - Claudia Carrarini
- Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Mirella Russo
- Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Laura Bonanni
- Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
9
|
Taraschenko O, Fox HS, Zekeridou A, Pittock SJ, Eldridge E, Farukhuddin F, Al-Saleem F, Devi Kattala C, Dessain SK, Casale G, Willcockson G, Dingledine R. Seizures and memory impairment induced by patient-derived anti-N-methyl-D-aspartate receptor antibodies in mice are attenuated by anakinra, an interleukin-1 receptor antagonist. Epilepsia 2021; 62:671-682. [PMID: 33596332 DOI: 10.1111/epi.16838] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Neuroinflammation associated with anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis may facilitate seizures. We previously showed that intraventricular administration of cerebrospinal fluid from patients with anti-NMDAR encephalitis to mice precipitates seizures, thereby confirming that antibodies are directly pathogenic. To determine whether interleukin (IL)-1-mediated inflammation exacerbates autoimmune seizures, we asked whether blocking the effects of IL-1 by anakinra, a selective IL-1 receptor antagonist, blunts antibody-induced seizures. METHODS We infused C57BL/6 mice intraventricularly with purified serum IgG from patients with anti-NMDAR encephalitis or monoclonal anti-NMDAR IgG; subdural electroencephalogram was continuously recorded. After a 6-day interval, mice received anakinra (25 mg/kg sc, twice daily) or vehicle for 5 days. Following a 4-day washout period, we performed behavioral tests to assess motor function, anxiety, and memory, followed by hippocampus tissue analysis to assess astrocytic (glial fibrillary acidic protein [GFAP]) and microglial (ionized calcium-binding adapter molecule [Iba]-1) activation. RESULTS Of 31 mice infused with purified patient NMDAR-IgG (n = 17) or monoclonal NMDAR-IgG (n = 14), 81% developed seizures. Median baseline daily seizure count during exposure to antibodies was 3.9; most seizures were electrographic. Median duration of seizures during the baseline was 82.5 s. Anakinra administration attenuated daily seizure frequency by 60% (p = .02). Anakinra reduced seizure duration; however, the effect was delayed and became apparent only after the cessation of treatment (p = .04). Anakinra improved novel object recognition in mice with antibody-induced seizures (p = .03) but did not alter other behaviors. Anakinra reduced the expression of GFAP and Iba-1 in the hippocampus of mice with seizures, indicating decreased astrocytic and microglial activation. SIGNIFICANCE Our evidence supports a role for IL-1 in the pathogenesis of seizures in anti-NMDAR encephalitis. These data are consistent with therapeutic effects of anakinra in other severe autoimmune and inflammatory seizure syndromes. Targeting inflammation via blocking IL-1 receptor-mediated signaling may be promising for developing novel treatments for refractory autoimmune seizures.
Collapse
Affiliation(s)
- Olga Taraschenko
- Department of Neurological Sciences, Division of Epilepsy, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Howard S Fox
- Department of Neurological Sciences, Division of Epilepsy, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Anastasia Zekeridou
- Departments of Neurology, Laboratory Medicine, and Pathology, Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Sean J Pittock
- Departments of Neurology, Laboratory Medicine, and Pathology, Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Ember Eldridge
- Department of Neurological Sciences, Division of Epilepsy, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Fnu Farukhuddin
- Department of Neurological Sciences, Division of Epilepsy, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Fetweh Al-Saleem
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania, USA
| | | | - Scott K Dessain
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania, USA
| | - George Casale
- Department of Surgery, Division of Vascular Surgery, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Gregory Willcockson
- Department of Surgery, Division of Vascular Surgery, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Raymond Dingledine
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
10
|
|
11
|
Morano A, Fanella M, Cerulli Irelli E, Barone FA, Fisco G, Orlando B, Albini M, Fattouch J, Manfredi M, Casciato S, Di Gennaro G, Giallonardo AT, Di Bonaventura C. Seizures in autoimmune encephalitis: Findings from an EEG pooled analysis. Seizure 2020; 83:160-168. [PMID: 33161244 DOI: 10.1016/j.seizure.2020.10.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/14/2020] [Accepted: 10/19/2020] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Seizures are common in autoimmune encephalitis (AE), and an extensive work-up is required to exclude alternative etiologies. The aim of our study was to identify possible clinical/EEG peculiarities suggesting the immune-mediated origin of late-onset seizures. METHODS Thirty patients diagnosed with AE (19 men, median age 68 years, 18 seronegative) were included. Overall 212 video-electroencephalographic (EEG) and 31 24-h ambulatory EEG (AEEG) recordings were retrospectively reviewed. Posterior dominant rhythm, interictal epileptiform discharges (IEDs), clinical (CSs) and subclinical seizures (SCSs) were analyzed. RESULTS Six-hundred-nineteen ictal events were recorded in 19/30 subjects, mostly (568/619) during AE acute stage. Among ten patients with CSs other than faciobrachial dystonic seizures, 7 showed prominent autonomic and emotional manifestations. SCSs were detected in 11 subjects, mainly via AEEG (260/287 SCSs vs 150/332 CSs, p < 0.001). Eight patients presented seizures during hyperventilation. IEDs, documented in 21 cases, were bilateral in 14 and focal temporal in 13. Multiple ictal EEG patterns were detected in 9/19 patients, 6 of whom had both CSs and SCSs, bilateral asynchronous seizures and ictal activities arising from temporal and extra-temporal regions. No correlation was found between the lateralization of MRI alterations and that of EEG findings. CONCLUSION Our study confirms that adult-onset, high frequency focal seizures with prominent autonomic and emotional manifestations should be investigated for AE. Multiple ictal EEG patterns could represent a 'red flag', reflecting a widespread neuronal excitability related to the underlying immune-mediated process. Finally, our work enhances the crucial role of long-lasting EEG monitoring in revealing subclinical and relapsing seizures.
Collapse
Affiliation(s)
- Alessandra Morano
- Epilepsy Unit, Department of Human Neurosciences, "Sapienza" University of Rome, Rome, Italy
| | - Martina Fanella
- Epilepsy Unit, Department of Human Neurosciences, "Sapienza" University of Rome, Rome, Italy; Neurology Unit, "San Camillo de' Lellis" General Hospital, Rieti, Italy
| | - Emanuele Cerulli Irelli
- Epilepsy Unit, Department of Human Neurosciences, "Sapienza" University of Rome, Rome, Italy
| | - Francesca A Barone
- Epilepsy Unit, Department of Human Neurosciences, "Sapienza" University of Rome, Rome, Italy
| | - Giacomo Fisco
- Epilepsy Unit, Department of Human Neurosciences, "Sapienza" University of Rome, Rome, Italy
| | - Biagio Orlando
- Epilepsy Unit, Department of Human Neurosciences, "Sapienza" University of Rome, Rome, Italy
| | | | - Jinane Fattouch
- Epilepsy Unit, Department of Human Neurosciences, "Sapienza" University of Rome, Rome, Italy
| | - Mario Manfredi
- Epilepsy Unit, Department of Human Neurosciences, "Sapienza" University of Rome, Rome, Italy
| | - Sara Casciato
- Epilepsy Surgery Unit, IRCCS "Neuromed", Pozzilli, IS, Italy
| | | | - Anna Teresa Giallonardo
- Epilepsy Unit, Department of Human Neurosciences, "Sapienza" University of Rome, Rome, Italy
| | - Carlo Di Bonaventura
- Epilepsy Unit, Department of Human Neurosciences, "Sapienza" University of Rome, Rome, Italy.
| |
Collapse
|
12
|
Zhang P, Yang Y, Zou J, Yang X, Liu Q, Chen Y. Seizures and epilepsy secondary to viral infection in the central nervous system. ACTA EPILEPTOLOGICA 2020. [DOI: 10.1186/s42494-020-00022-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
AbstractViral infection in the central nervous system (CNS) is a common cause of seizures and epilepsy. Acute symptomatic seizures can occur in the context of almost all types of acute CNS viral infection. However, late unprovoked seizures and epilepsy may not be frequent after viral infection of the CNS. The incidence of seizures and epilepsy after CNS viral infection is mainly dependent on the brain region of infection. It remains to be determined whether treatment of CNS viral infection using antiepileptic drugs (AEDs) can prevent seizures and subsequent epilepsy in patients, particularly with regard to the timing, drug choice and dosage, and duration of AEDs. The postoperative outcome of seizures in patients with intractable epilepsy caused by viral encephalitis primarily depends on the epileptogenic zone. In addition, neuroinflammation is known to be widely involved in the generation of seizures during CNS viral infection, and the effects of anti-inflammatory therapies in preventing seizures and epilepsy secondary to CNS viral infection require further studies. In this review, we discuss the incidence, mechanisms, clinical management and prognosis of seizures and epilepsy secondary to CNS viral infection, and summarize common CNS viral infections that cause seizures and epilepsy.
Collapse
|
13
|
Huang CN, Tian XB, Jiang SM, Chang SH, Wang N, Liu MQ, Zhang QX, Li T, Zhang LJ, Yang L. Comparisons Between Infectious and Autoimmune Encephalitis: Clinical Signs, Biochemistry, Blood Counts, and Imaging Findings. Neuropsychiatr Dis Treat 2020; 16:2649-2660. [PMID: 33177828 PMCID: PMC7649224 DOI: 10.2147/ndt.s274487] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/09/2020] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE Infectious encephalitis (IE) and autoimmune encephalitis (AE) are symptomatically similar in clinic, however essentially different in pathogenesis. Therefore, the objective of this study was to identify specific features to distinguish the two types of encephalitis for early effective diagnosis and treatments through a comparative analysis. METHODS Fifty-nine IE patients and 36 AE patients were enrolled. The patients with IE were divided into viral encephalitis (VE) and bacterial encephalitis (BE) according to the pathogens in cerebrospinal fluid (CSF). Patients with AE were categorized by with or without neural autoantibodies (NAAb). We further divided patients with NAAb into those with neural cell-surface antibodies (NSAbs) or intracellular antibodies (Abs). Clinical features, laboratory data, and imaging findings were compared between AE, IE, and subgroups. RESULTS Memory deficits, involuntary movement, and seizures were relatively more commonly presenting symptoms in AE patients (p < 0.05). The positive rate of Pandy test was higher in IE patients (p = 0.007). Decreased leukocyte, erythrocyte, and platelet counts in blood were found in IE patients (p < 0.05). Lower serum calcium level was found in VE compared to BE (p = 0.027). Meanwhile, higher serum calcium level was found in patients with NSAbs compared with intracellular Abs (p = 0.034). However, higher levels of LDH in CSF were found in patients with intracellular Abs (p = 0.009). In magnetic resonance imaging, hippocampus lesions were more commonly present in patients with AE (p = 0.042). Compared with AE patients, more IE patients displayed the background electroencephalogram rhythm of slow-frequency delta (p = 0.013). CONCLUSION Involuntary movement and memory deficits were more specifically present in AE patients. CSF Pandy, blood routine test and hippocampus lesions detections were potential markers for distinguishing AE and IE. Further, CSF LDH, and serum calcium levels were potentially useful to distinguish subgroups of encephalitis.
Collapse
Affiliation(s)
- Chen-Na Huang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, People's Republic of China
| | - Xiao-Bing Tian
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, People's Republic of China
| | - Shu-Min Jiang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, People's Republic of China
| | - Sheng-Hui Chang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, People's Republic of China
| | - Nan Wang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, People's Republic of China
| | - Ming-Qi Liu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, People's Republic of China
| | - Qiu-Xia Zhang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, People's Republic of China
| | - Ting Li
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, People's Republic of China
| | - Lin-Jie Zhang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, People's Republic of China
| | - Li Yang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, People's Republic of China
| |
Collapse
|