1
|
Faulkner IE, Pajak RZ, Harte MK, Glazier JD, Hager R. Voltage-gated potassium channels as a potential therapeutic target for the treatment of neurological and psychiatric disorders. Front Cell Neurosci 2024; 18:1449151. [PMID: 39411003 PMCID: PMC11473391 DOI: 10.3389/fncel.2024.1449151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/17/2024] [Indexed: 10/19/2024] Open
Abstract
Voltage-gated potassium channels are a widely distributed subgroup of potassium channels responsible for the efflux of potassium in the repolarisation of the cell membrane, and hence contribute to the latency and propagation of action potentials. As they are causal to synaptic transmission, alterations to the structure of these channels can lead to a variety of neurological and psychiatric diseases. The Kv3 subfamily of voltage-gated potassium channels are found on many neurons in the brain, including inhibitory interneurons where they contribute to fast-frequency firing. Changes to the firing ability of these interneurons can lead to an imbalance of inhibitory and excitatory neurotransmission. To date, we have little understanding of the mechanism by which excitatory and inhibitory inputs become imbalanced. This imbalance is associated with cognitive deficits seen across neurological and neuropsychiatric disorders, which are currently difficult to treat. In this review, we collate evidence supporting the hypothesis that voltage-gated potassium channels, specifically the Kv3 subfamily, are central to many neurological and psychiatric disorders, and may thus be considered as an effective drug target. The collective evidence provided by the studies reviewed here demonstrates that Kv3 channels may be amenable to novel treatments that modulate the activity of these channels, with the prospect of improved patient outcome.
Collapse
Affiliation(s)
- Isabel E. Faulkner
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Rachael Z. Pajak
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Michael K. Harte
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Jocelyn D. Glazier
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Reinmar Hager
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
2
|
Zhong G, Fang Z, Sun T, Ying M, Wang A, Chen Y, Wang H, Ma C, Wang C, Ge R, Liu G, Guo Y. Ubiquitin ligase RFWD2 promotes dendritic spine and synapse formation by activating the ERK/PEA3/c-Jun pathway in rat cerebral cortical neurons. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167319. [PMID: 38909848 DOI: 10.1016/j.bbadis.2024.167319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 06/25/2024]
Abstract
The regulation of protein degradation through the ubiquitin-proteasome system is essential for normal brain development, axon growth, synaptic growth and plasticity. The E3 ubiquitin ligase RFWD2 plays a key role in the onset and development of neurological diseases, including the pathogenesis of Alzheimer's disease (AD), but the mechanisms controlling the homeostasis of neuronal synaptic proteins are still poorly understood. Here, we showed that the expression level of RFWD2 gradually decreased with the age of the rats and was negatively correlated with the development of cerebral cortical neurons and dendrites in vivo. RFWD2 was shown to localize to presynaptic terminals and some postsynaptic sides of both excitatory synapses and inhibitory synapses via colocalization with neuronal synaptic proteins (SYN, PSD95, Vglut1 and GAD67). Overexpression of RFWD2 promoted dendrite development and dendritic spine formation and markedly decreased the expression of synaptophysin and PSD95 by reducing the expression of ETV1, ETV4, ETV5 and c-JUN in vitro. Furthermore, the whole-cell membrane slice clamp results showed that RFWD2 overexpression resulted in greater membrane capacitance in neuronal cells, inadequate cell repolarization, and a longer time course for neurons to emit action potentials with decreased excitability. RFWD2 regulates dendritic development and plasticity, dendritic spine formation and synaptic function in rat cerebral cortex neurons by activating the ERK/PEA3/c-Jun pathway via a posttranslational regulatory mechanism and can be used as an efficient treatment target for neurological diseases.
Collapse
Affiliation(s)
- Guangshang Zhong
- School of Laboratory Medicine, Bengbu Medical University, Bengbu 233000, Anhui, China; School of Life Sciences, Bengbu Medical University, Bengbu 233000, Anhui, China
| | - Zhuling Fang
- School of Laboratory Medicine, Bengbu Medical University, Bengbu 233000, Anhui, China
| | - Tingting Sun
- School of Life Sciences, Bengbu Medical University, Bengbu 233000, Anhui, China
| | - Mengjiao Ying
- School of Life Sciences, Bengbu Medical University, Bengbu 233000, Anhui, China
| | - Ao Wang
- School of Laboratory Medicine, Bengbu Medical University, Bengbu 233000, Anhui, China
| | - Ying Chen
- School of Life Sciences, Bengbu Medical University, Bengbu 233000, Anhui, China
| | - Haojie Wang
- School of Clinical Medicine, Bengbu Medical University, Bengbu 233000, Anhui, China
| | - Caiyun Ma
- School of Life Sciences, Bengbu Medical University, Bengbu 233000, Anhui, China
| | - Chunjing Wang
- School of Life Sciences, Bengbu Medical University, Bengbu 233000, Anhui, China
| | - Rongjing Ge
- School of Clinical Medicine, Bengbu Medical University, Bengbu 233000, Anhui, China; Anhui Engineering Research Center for Neural Regeneration Technology and Medical New Materials, Bengbu Medical University, Bengbu, 233000, China
| | - Gaofeng Liu
- School of Life Sciences, Bengbu Medical University, Bengbu 233000, Anhui, China; Anhui Engineering Research Center for Neural Regeneration Technology and Medical New Materials, Bengbu Medical University, Bengbu, 233000, China.
| | - Yu Guo
- School of Laboratory Medicine, Bengbu Medical University, Bengbu 233000, Anhui, China; Anhui Engineering Research Center for Neural Regeneration Technology and Medical New Materials, Bengbu Medical University, Bengbu, 233000, China.
| |
Collapse
|
3
|
Becker L, Makridis KL, Abad‐Perez AT, Thomale U, Tietze A, Elger CE, Horn D, Kaindl AM. The importance of routine genetic testing in pediatric epilepsy surgery. Epilepsia Open 2024; 9:800-807. [PMID: 38366963 PMCID: PMC10984286 DOI: 10.1002/epi4.12916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/18/2024] [Accepted: 01/30/2024] [Indexed: 02/19/2024] Open
Abstract
Genetic variants in relevant genes coexisting with MRI lesions in children with drug-resistant epilepsy (DRE) can negatively influence epilepsy surgery outcomes. Still, presurgical evaluation does not include genetic diagnostics routinely. Here, we report our presurgical evaluation algorithm that includes routine genetic testing. We analyzed retrospectively the data of 68 children with DRE operated at a mean age of 7.8 years (IQR: 8.1 years) at our center. In 49 children, genetic test results were available. We identified 21 gene variants (ACMG III: n = 7, ACMG IV: n = 2, ACMG V: n = 12) in 19 patients (45.2%) in the genes TSC1, TSC2, MECP2, DEPDC5, HUWE1, GRIN1, ASH1I, TRIO, KIF5C, CDON, ANKD11, TGFBR2, ATN1, COL4A1, JAK2, KCNQ2, ATP1A2, and GLI3 by whole-exome sequencing as well as deletions and duplications by array CGH in six patients. While the results did not change the surgery indication, they supported counseling with respect to postoperative chance of seizure freedom and weaning of antiseizure medication (ASM). The presence of genetic findings leads to the postoperative retention of at least one ASM. In our cohort, the International League against Epilepsy (ILAE) seizure outcome did not differ between patients with and without abnormal genetic findings. However, in the 7/68 patients with an unsatisfactory ILAE seizure outcome IV or V 12 months postsurgery, 2 had an abnormal or suspicious genetic finding as a putative explanation for persisting seizures postsurgery, and 3 had received palliative surgery including one TSC patient. This study highlights the importance of genetic testing in children with DRE to address putative underlying germline variants as genetic epilepsy causes or predisposing factors that guide patient and/or parent counseling on a case-by-case with respect to their individual chance of postoperative seizure freedom and ASM weaning. PLAIN LANGUAGE SUMMARY: Genetic variants in children with drug-resistant epilepsy (DRE) can negatively influence epilepsy surgery outcomes. However, presurgical evaluation does not include genetic diagnostics routinely. This retrospective study analyzed the genetic testing results of the 68 pediatric patients who received epilepsy surgery in our center. We identified 21 gene variants by whole-exome sequencing as well as deletions and duplications by array CGH in 6 patients. These results highlight the importance of genetic testing in children with DRE to guide patient and/or parent counseling on a case-by-case with respect to their individual chance of postoperative seizure freedom and ASM weaning.
Collapse
Affiliation(s)
- Lena‐Luise Becker
- Department of Pediatric NeurologyCharité – Universitätsmedizin BerlinBerlinGermany
- Center for Chronically Sick ChildrenCharité – Universitätsmedizin BerlinBerlinGermany
- German Epilepsy Center for Children and AdolescentsCharité – Universitätsmedizin BerlinBerlinGermany
- Institute of Cell and NeurobiologyCharité – Universitätsmedizin BerlinBerlinGermany
| | - Konstantin L. Makridis
- Department of Pediatric NeurologyCharité – Universitätsmedizin BerlinBerlinGermany
- Center for Chronically Sick ChildrenCharité – Universitätsmedizin BerlinBerlinGermany
- German Epilepsy Center for Children and AdolescentsCharité – Universitätsmedizin BerlinBerlinGermany
- Institute of Cell and NeurobiologyCharité – Universitätsmedizin BerlinBerlinGermany
| | | | | | - Anna Tietze
- NeuroradiologyCharité – Universitätsmedizin BerlinBerlinGermany
| | | | - Denise Horn
- Institute of Human GeneticsCharité – Universitätsmedizin BerlinBerlinGermany
| | - Angela M. Kaindl
- Department of Pediatric NeurologyCharité – Universitätsmedizin BerlinBerlinGermany
- Center for Chronically Sick ChildrenCharité – Universitätsmedizin BerlinBerlinGermany
- German Epilepsy Center for Children and AdolescentsCharité – Universitätsmedizin BerlinBerlinGermany
- Institute of Cell and NeurobiologyCharité – Universitätsmedizin BerlinBerlinGermany
| |
Collapse
|
4
|
Feng H, Clatot J, Kaneko K, Flores-Mendez M, Wengert ER, Koutcher C, Hoddeson E, Lopez E, Lee D, Arias L, Liang Q, Zhang X, Somarowthu A, Covarrubias M, Gunthorpe MJ, Large CH, Akizu N, Goldberg EM. Targeted therapy improves cellular dysfunction, ataxia, and seizure susceptibility in a model of a progressive myoclonus epilepsy. Cell Rep Med 2024; 5:101389. [PMID: 38266642 PMCID: PMC10897515 DOI: 10.1016/j.xcrm.2023.101389] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 11/09/2023] [Accepted: 12/20/2023] [Indexed: 01/26/2024]
Abstract
The recurrent variant KCNC1-p.Arg320His causes progressive myoclonus epilepsy (EPM) type 7, defined by progressive myoclonus, epilepsy, and ataxia, and is without effective treatment. KCNC1 encodes the voltage-gated potassium channel subunit Kv3.1, specifically expressed in high-frequency-firing neurons. Variant subunits act via loss of function; hence, EPM7 pathogenesis may involve impaired excitability of Kv3.1-expressing neurons, while enhancing Kv3 activity could represent a viable therapeutic strategy. We generate a mouse model, Kcnc1-p.Arg320His/+, which recapitulates the core features of EPM7, including progressive ataxia and seizure susceptibility. Kv3.1-expressing cerebellar granule cells and neocortical parvalbumin-positive GABAergic interneurons exhibit abnormalities consistent with Kv3 channel dysfunction. A Kv3-specific positive modulator (AUT00206) selectively enhances the firing frequency of Kv3.1-expressing neurons and improves motor function and seizure susceptibility in Kcnc1-Arg320His/+ mice. This work identifies a cellular and circuit basis of dysfunction in EPM7 and demonstrates that Kv3 positive modulators such as AUT00206 have therapeutic potential for the treatment of EPM7.
Collapse
Affiliation(s)
- Huijie Feng
- Division of Neurology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jerome Clatot
- Division of Neurology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; The Epilepsy Neurogenetics Initiative, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Keisuke Kaneko
- Division of Neurology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Anesthesiology, Nihon University, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Marco Flores-Mendez
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Eric R Wengert
- Division of Neurology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Carly Koutcher
- Division of Neurology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Emily Hoddeson
- Division of Neurology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Emily Lopez
- The University of Pennsylvania School of Arts and Sciences, Philadelphia, PA, USA
| | - Demetrius Lee
- Division of Neurology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Leroy Arias
- The University of Pennsylvania School of Arts and Sciences, Philadelphia, PA, USA
| | - Qiansheng Liang
- Department of Neuroscience and Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Xiaohong Zhang
- Division of Neurology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Ala Somarowthu
- Division of Neurology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Manuel Covarrubias
- Department of Neuroscience and Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Martin J Gunthorpe
- Autifony Therapeutics, Ltd., Stevenage Bioscience Catalyst, Stevenage SG1 2FX, UK
| | - Charles H Large
- Autifony Therapeutics, Ltd., Stevenage Bioscience Catalyst, Stevenage SG1 2FX, UK
| | - Naiara Akizu
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Departments of Pathology & Laboratory Medicine, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Ethan M Goldberg
- Division of Neurology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; The Epilepsy Neurogenetics Initiative, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Neurology, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Neuroscience, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
5
|
Zimmern V, Minassian B. Progressive Myoclonus Epilepsy: A Scoping Review of Diagnostic, Phenotypic and Therapeutic Advances. Genes (Basel) 2024; 15:171. [PMID: 38397161 PMCID: PMC10888128 DOI: 10.3390/genes15020171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
The progressive myoclonus epilepsies (PME) are a diverse group of disorders that feature both myoclonus and seizures that worsen gradually over a variable timeframe. While each of the disorders is individually rare, they collectively make up a non-trivial portion of the complex epilepsy and myoclonus cases that are seen in tertiary care centers. The last decade has seen substantial progress in our understanding of the pathophysiology, diagnosis, prognosis, and, in select disorders, therapies of these diseases. In this scoping review, we examine English language publications from the past decade that address diagnostic, phenotypic, and therapeutic advances in all PMEs. We then highlight the major lessons that have been learned and point out avenues for future investigation that seem promising.
Collapse
Affiliation(s)
- Vincent Zimmern
- Division of Child Neurology, University of Texas Southwestern, Dallas, TX 75390, USA;
| | | |
Collapse
|
6
|
Khan R, Chaturvedi P, Sahu P, Ludhiadch A, Singh P, Singh G, Munshi A. Role of Potassium Ion Channels in Epilepsy: Focus on Current Therapeutic Strategies. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:67-87. [PMID: 36578258 DOI: 10.2174/1871527322666221227112621] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND Epilepsy is one of the prevalent neurological disorders characterized by disrupted synchronization between inhibitory and excitatory neurons. Disturbed membrane potential due to abnormal regulation of neurotransmitters and ion transport across the neural cell membrane significantly contributes to the pathophysiology of epilepsy. Potassium ion channels (KCN) regulate the resting membrane potential and are involved in neuronal excitability. Genetic alterations in the potassium ion channels (KCN) have been reported to result in the enhancement of the release of neurotransmitters, the excitability of neurons, and abnormal rapid firing rate, which lead to epileptic phenotypes, making these ion channels a potential therapeutic target for epilepsy. The aim of this study is to explore the variations reported in different classes of potassium ion channels (KCN) in epilepsy patients, their functional evaluation, and therapeutic strategies to treat epilepsy targeting KCN. METHODOLOGY A review of all the relevant literature was carried out to compile this article. RESULTS A large number of variations have been reported in different genes encoding various classes of KCN. These genetic alterations in KCN have been shown to be responsible for disrupted firing properties of neurons. Antiepileptic drugs (AEDs) are the main therapeutic strategy to treat epilepsy. Some patients do not respond favorably to the AEDs treatment, resulting in pharmacoresistant epilepsy. CONCLUSION Further to address the challenges faced in treating epilepsy, recent approaches like optogenetics, chemogenetics, and genome editing, such as clustered regularly interspaced short palindromic repeats (CRISPR), are emerging as target-specific therapeutic strategies.
Collapse
Affiliation(s)
- Rahul Khan
- Department of Human Genetics and Molecular Medicine Central University of Punjab, Bathinda 151401, India
| | - Pragya Chaturvedi
- Department of Human Genetics and Molecular Medicine Central University of Punjab, Bathinda 151401, India
| | - Prachi Sahu
- Department of Human Genetics and Molecular Medicine Central University of Punjab, Bathinda 151401, India
| | - Abhilash Ludhiadch
- Department of Human Genetics and Molecular Medicine Central University of Punjab, Bathinda 151401, India
| | - Paramdeep Singh
- Department of Radiology, All India Institute of Medical Sciences, Bathinda, Punjab, 151001 India
| | - Gagandeep Singh
- Department of Neurology, Dayanand Medical College and Hospital, Ludhiana, Punjab, India
| | - Anjana Munshi
- Department of Human Genetics and Molecular Medicine Central University of Punjab, Bathinda 151401, India
| |
Collapse
|
7
|
Alam KA, Svalastoga P, Martinez A, Glennon JC, Haavik J. Potassium channels in behavioral brain disorders. Molecular mechanisms and therapeutic potential: A narrative review. Neurosci Biobehav Rev 2023; 152:105301. [PMID: 37414376 DOI: 10.1016/j.neubiorev.2023.105301] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/26/2023] [Accepted: 06/30/2023] [Indexed: 07/08/2023]
Abstract
Potassium channels (K+-channels) selectively control the passive flow of potassium ions across biological membranes and thereby also regulate membrane excitability. Genetic variants affecting many of the human K+-channels are well known causes of Mendelian disorders within cardiology, neurology, and endocrinology. K+-channels are also primary targets of many natural toxins from poisonous organisms and drugs used within cardiology and metabolism. As genetic tools are improving and larger clinical samples are being investigated, the spectrum of clinical phenotypes implicated in K+-channels dysfunction is rapidly expanding, notably within immunology, neurosciences, and metabolism. K+-channels that previously were considered to be expressed in only a few organs and to have discrete physiological functions, have recently been found in multiple tissues and with new, unexpected functions. The pleiotropic functions and patterns of expression of K+-channels may provide additional therapeutic opportunities, along with new emerging challenges from off-target effects. Here we review the functions and therapeutic potential of K+-channels, with an emphasis on the nervous system, roles in neuropsychiatric disorders and their involvement in other organ systems and diseases.
Collapse
Affiliation(s)
| | - Pernille Svalastoga
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway; Children and Youth Clinic, Haukeland University Hospital, Bergen, Norway
| | | | - Jeffrey Colm Glennon
- Conway Institute for Biomolecular and Biomedical Research, School of Medicine, University College Dublin, Dublin, Ireland.
| | - Jan Haavik
- Department of Biomedicine, University of Bergen, Norway; Division of Psychiatry, Haukeland University Hospital, Norway.
| |
Collapse
|
8
|
Rossini L, De Santis D, Cecchini E, Cagnoli C, Maderna E, Cartelli D, Morgan BP, Torvell M, Spreafico R, di Giacomo R, Tassi L, de Curtis M, Garbelli R. Dendritic spine loss in epileptogenic Type II focal cortical dysplasia: Role of enhanced classical complement pathway activation. Brain Pathol 2022; 33:e13141. [PMID: 36564349 PMCID: PMC10154370 DOI: 10.1111/bpa.13141] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/08/2022] [Indexed: 12/25/2022] Open
Abstract
Dendritic spines are the postsynaptic sites for most excitatory glutamatergic synapses. We previously demonstrated a severe spine loss and synaptic reorganization in human neocortices presenting Type II focal cortical dysplasia (FCD), a developmental malformation and frequent cause of drug-resistant focal epilepsy. We extend the findings, investigating the potential role of complement components C1q and C3 in synaptic pruning imbalance. Data from Type II FCD were compared with those obtained in focal epilepsies with different etiologies. Neocortical tissues were collected from 20 subjects, mainly adults with a mean age at surgery of 31 years, admitted to epilepsy surgery with a neuropathological diagnosis of: cryptogenic, temporal lobe epilepsy with hippocampal sclerosis, and Type IIa/b FCD. Dendritic spine density quantitation, evaluated in a previous paper using Golgi impregnation, was available in a subgroup. Immunohistochemistry, in situ hybridization, electron microscopy, and organotypic cultures were utilized to study complement/microglial activation patterns. FCD Type II samples presenting dendritic spine loss were characterized by an activation of the classical complement pathway and microglial reactivity. In the same samples, a close relationship between microglial cells and dendritic segments/synapses was found. These features were consistently observed in Type IIb FCD and in 1 of 3 Type IIa cases. In other patient groups and in perilesional areas outside the dysplasia, not presenting spine loss, these features were not observed. In vitro treatment with complement proteins of organotypic slices of cortical tissue with no sign of FCD induced a reduction in dendritic spine density. These data suggest that dysregulation of the complement system plays a role in microglia-mediated spine loss. This mechanism, known to be involved in the removal of redundant synapses during development, is likely reactivated in Type II FCD, particularly in Type IIb; local treatment with anticomplement drugs could in principle modify the course of disease in these patients.
Collapse
Affiliation(s)
- Laura Rossini
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Dalia De Santis
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Erica Cecchini
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Cinzia Cagnoli
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Emanuela Maderna
- Division of Neurology V and Neuropathology, Fondazione IRCCS, Istituto Neurologico Carlo Besta, Milan, Italy
| | - Daniele Cartelli
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, Italy
| | | | - Megan Torvell
- UK Dementia Research Institute, Cardiff University, Cardiff, UK
| | - Roberto Spreafico
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Roberta di Giacomo
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Laura Tassi
- "Claudio Munari" Epilepsy Surgery Center, GOM Niguarda Hospital, Milan, Italy
| | - Marco de Curtis
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Rita Garbelli
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
9
|
Qiu Y, O’Neill N, Maffei B, Zourray C, Almacellas-Barbanoj A, Carpenter JC, Jones SP, Leite M, Turner TJ, Moreira FC, Snowball A, Shekh-Ahmad T, Magloire V, Barral S, Kurian MA, Walker MC, Schorge S, Kullmann DM, Lignani G. On-demand cell-autonomous gene therapy for brain circuit disorders. Science 2022; 378:523-532. [PMID: 36378958 PMCID: PMC7613996 DOI: 10.1126/science.abq6656] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Several neurodevelopmental and neuropsychiatric disorders are characterized by intermittent episodes of pathological activity. Although genetic therapies offer the ability to modulate neuronal excitability, a limiting factor is that they do not discriminate between neurons involved in circuit pathologies and "healthy" surrounding or intermingled neurons. We describe a gene therapy strategy that down-regulates the excitability of overactive neurons in closed loop, which we tested in models of epilepsy. We used an immediate early gene promoter to drive the expression of Kv1.1 potassium channels specifically in hyperactive neurons, and only for as long as they exhibit abnormal activity. Neuronal excitability was reduced by seizure-related activity, leading to a persistent antiepileptic effect without interfering with normal behaviors. Activity-dependent gene therapy is a promising on-demand cell-autonomous treatment for brain circuit disorders.
Collapse
Affiliation(s)
- Yichen Qiu
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Nathanael O’Neill
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Benito Maffei
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Clara Zourray
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK
- Department of Developmental Neurosciences, Zayed Centre for Research Into Rare Disease in Children, GOS−Institute of Child Health, University College London, London, UK
| | - Amanda Almacellas-Barbanoj
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Jenna C. Carpenter
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Steffan P. Jones
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Marco Leite
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Thomas J. Turner
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Francisco C. Moreira
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Albert Snowball
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Tawfeeq Shekh-Ahmad
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Vincent Magloire
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Serena Barral
- Department of Developmental Neurosciences, Zayed Centre for Research Into Rare Disease in Children, GOS−Institute of Child Health, University College London, London, UK
| | - Manju A. Kurian
- Department of Developmental Neurosciences, Zayed Centre for Research Into Rare Disease in Children, GOS−Institute of Child Health, University College London, London, UK
- Department of Neurology, Great Ormond Street Hospital for Children, London, UK
| | - Matthew C. Walker
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Stephanie Schorge
- Department of Neuroscience, Physiology and Pharmacology University College London, London, UK
| | - Dimitri M. Kullmann
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Gabriele Lignani
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK
| |
Collapse
|
10
|
McTague A, Brunklaus A, Barcia G, Varadkar S, Zuberi SM, Chatron N, Parrini E, Mei D, Nabbout R, Lesca G. Defining causal variants in rare epilepsies: an essential team effort between biomedical scientists, geneticists and epileptologists. Eur J Med Genet 2022; 65:104531. [PMID: 35618197 DOI: 10.1016/j.ejmg.2022.104531] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 05/01/2022] [Accepted: 05/19/2022] [Indexed: 11/23/2022]
Abstract
In the last few years, with the advent of next generation sequencing (NGS), our knowledge of genes associated with monogenic epilepsies has significantly improved. NGS is also a powerful diagnostic tool for patients with epilepsy, through gene panels, exomes and genomes. This has improved diagnostic yield, reducing the time between the first seizure and a definitive molecular diagnosis. However, these developments have also increased the complexity of data interpretation, due to the large number of variants identified in a given patient and due to the phenotypic variability associated with many of the epilepsy-related genes. In this paper, we present examples of variant classification in "real life" clinic situations. We emphasize the importance of accurate phenotyping of the epilepsies including recognising variable/milder phenotypes and expansion of previously described phenotypes. There are some important issues specific to rare epilepsies - mosaicism and reduced penetrance - which affect genetic counselling. These challenges may be overcome through multidisciplinary meetings including epileptologists, pediatric neurologists, and clinical and molecular geneticists, in which every specialist learns from the others in a process which leads to for rapid and accurate diagnosis. This is an important milestone to achieve as targeted therapiesbased on the functional effects of pathogenic variants become available.
Collapse
Affiliation(s)
- Amy McTague
- Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, Member of the ERN EpiCARE, London, UK; Department of Neurology, Great Ormond Street Institute of Child Health, Member of the ERN EpiCARE, London, UK.
| | - Andreas Brunklaus
- The Pediatric Neurosciences Research Group, Royal Hospital for Children, Member of the ERN EpiCARE, Glasgow, UK; Institute of Health and Wellbeing, University of Glasgow, Member of the ERN EpiCARE, Glasgow, UK
| | - Giulia Barcia
- Department of Pediatric Neurology, Centre de Reference Epilepsies Rares, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Member of the ERN EpiCARE, Paris, France
| | - Sophia Varadkar
- Department of Neurology, Great Ormond Street Institute of Child Health, Member of the ERN EpiCARE, London, UK
| | - Sameer M Zuberi
- The Pediatric Neurosciences Research Group, Royal Hospital for Children, Member of the ERN EpiCARE, Glasgow, UK; Institute of Health and Wellbeing, University of Glasgow, Member of the ERN EpiCARE, Glasgow, UK
| | - Nicolas Chatron
- Department of Medical Genetics, Lyon University Hospital, Université Claude Bernard Lyon 1, Member of the ERN EpiCARE, Lyon, France
| | - Elena Parrini
- Pediatric Neurology, Neurogenetics, and Neurobiology Unit and Laboratories, Meyer Children's Hospital - University of Florence, Member of the ERN EpiCARE, Florence, Italy
| | - Davide Mei
- Pediatric Neurology, Neurogenetics, and Neurobiology Unit and Laboratories, Meyer Children's Hospital - University of Florence, Member of the ERN EpiCARE, Florence, Italy
| | - Rima Nabbout
- Department of Pediatric Neurology, Centre de Reference Epilepsies Rares, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Member of the ERN EpiCARE, Paris, France
| | - Gaetan Lesca
- Department of Medical Genetics, Lyon University Hospital, Université Claude Bernard Lyon 1, Member of the ERN EpiCARE, Lyon, France
| |
Collapse
|
11
|
Bee S, Ringland A, Coutellier L. Social impairments in mice lacking the voltage-gated potassium channel Kv3.1. Behav Brain Res 2021; 413:113468. [PMID: 34274375 DOI: 10.1016/j.bbr.2021.113468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 12/24/2022]
Abstract
Parvalbumin (PV)-expressing neurons have been implicated in the pathology of autism spectrum disorders (ASD). Loss of PV expression and/or reduced number of PV-expressing neurons have been reported not only in genetic and environmental rodent models of ASD, but also in post-mortem analyses of brain tissues from ASD vs. healthy control human subjects. PV-expressing neurons play a pivotal role in the maintenance of the balance between excitation and inhibition within neural circuits in part because of their fast-spiking properties. Their high firing rate is mostly regulated by the voltage-gated potassium channel Kv3.1. It is yet unknown whether disturbances in the electrophysiological properties of PV-expressing neurons per se can lead to behavioral disturbances. We assessed locomotor activity, social interaction, recognition and memory, and stereotypic behaviors in Kv3.1 wild-type (WT) and knockout (KO) mice. We then used Western Blot analyses to measure the impact of Kv3.1 deficiency on markers of GABA transmission (PV and GAD67) and neural circuit activity (Egr1). Deficiency in Kv3.1 channel is sufficient to induce social deficits, hyperactivity and stereotypic behaviors. These behavioral changes were independent of changes in GAD67 levels and associated with increased levels of PV protein in the prefrontal cortex and striatum. These findings reveal that a loss of PV expression is not a necessary factor to induce an ASD-like phenotype in mice and support the need for further investigation to fully understand the contribution of PV-expressing neurons to ASD pathology.
Collapse
Affiliation(s)
- Sarah Bee
- Department of Psychology, The Ohio State University, Columbus, OH, 43210, United States
| | - Amanda Ringland
- Department of Psychology, The Ohio State University, Columbus, OH, 43210, United States
| | - Laurence Coutellier
- Department of Psychology, The Ohio State University, Columbus, OH, 43210, United States; Department of Neuroscience, The Ohio State University, Columbus, OH, 43210, United States.
| |
Collapse
|
12
|
Carpenter JC, Lignani G. Gene Editing and Modulation: the Holy Grail for the Genetic Epilepsies? Neurotherapeutics 2021; 18:1515-1523. [PMID: 34235638 PMCID: PMC8608979 DOI: 10.1007/s13311-021-01081-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2021] [Indexed: 02/04/2023] Open
Abstract
Epilepsy is a complex neurological disorder for which there are a large number of monogenic subtypes. Monogenic epilepsies are often severe and disabling, featuring drug-resistant seizures and significant developmental comorbidities. These disorders are potentially amenable to a precision medicine approach, of which genome editing using CRISPR/Cas represents the holy grail. Here we consider mutations in some of the most 'common' rare epilepsy genes and discuss the different CRISPR/Cas approaches that could be taken to cure these disorders. We consider scenarios where CRISPR-mediated gene modulation could serve as an effective therapeutic strategy and discuss whether a single gene corrective approach could hold therapeutic potential in the context of homeostatic compensation in the developing, highly dynamic brain. Despite an incomplete understanding of the mechanisms of the genetic epilepsies and current limitations of gene editing tools, CRISPR-mediated approaches have game-changing potential in the treatment of genetic epilepsy over the next decade.
Collapse
Affiliation(s)
- Jenna C Carpenter
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, Queen Square House, London, WC1N 3BG, UK
| | - Gabriele Lignani
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, Queen Square House, London, WC1N 3BG, UK.
| |
Collapse
|