1
|
Reiter JT, Schulte F, Bauer T, David B, Endler C, Isaak A, Schuch F, Bitzer F, Witt JA, Hattingen E, Deichmann R, Attenberger U, Becker AJ, Helmstaedter C, Radbruch A, Surges R, Friedman A, Rüber T. Evidence for interictal blood-brain barrier dysfunction in people with epilepsy. Epilepsia 2024; 65:1462-1474. [PMID: 38436479 DOI: 10.1111/epi.17929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 02/11/2024] [Accepted: 02/12/2024] [Indexed: 03/05/2024]
Abstract
OBJECTIVE Interictal blood-brain barrier dysfunction in chronic epilepsy has been demonstrated in animal models and pathological specimens. Ictal blood-brain barrier dysfunction has been shown in humans in vivo using an experimental quantitative magnetic resonance imaging (MRI) protocol. Here, we hypothesized that interictal blood-brain barrier dysfunction is also present in people with drug-resistant epilepsy. METHODS Thirty-nine people (21 females, mean age at MRI ± SD = 30 ± 8 years) with drug-resistant epilepsy were prospectively recruited and underwent interictal T1-relaxometry before and after administration of a paramagnetic contrast agent. Likewise, quantitative T1 was acquired in 29 people without epilepsy (12 females, age at MRI = 48 ± 18 years). Quantitative T1 difference maps were calculated and served as a surrogate imaging marker for blood-brain barrier dysfunction. Values of quantitative T1 difference maps inside hemispheres ipsilateral to the presumed seizure onset zone were then compared, on a voxelwise level and within presumed seizure onset zones, to the contralateral side of people with epilepsy and to people without epilepsy. RESULTS Compared to the contralateral side, ipsilateral T1 difference values were significantly higher in white matter (corrected p < .05), gray matter (uncorrected p < .05), and presumed seizure onset zones (p = .04) in people with epilepsy. Compared to people without epilepsy, significantly higher T1 difference values were found in the anatomical vicinity of presumed seizure onset zones (p = .004). A subgroup of people with hippocampal sclerosis demonstrated significantly higher T1 difference values in the ipsilateral hippocampus and in regions strongly interconnected with the hippocampus compared to people without epilepsy (corrected p < .01). Finally, z-scores reflecting the deviation of T1 difference values within the presumed seizure onset zone were associated with verbal memory performance (p = .02) in people with temporal lobe epilepsy. SIGNIFICANCE Our results indicate a blood-brain barrier dysfunction in drug-resistant epilepsy that is detectable interictally in vivo, anatomically related to the presumed seizure onset zone, and associated with cognitive deficits.
Collapse
Affiliation(s)
- Johannes T Reiter
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
- Department of Neuroradiology, University Hospital Bonn, Bonn, Germany
| | - Freya Schulte
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
- Department of Neuroradiology, University Hospital Bonn, Bonn, Germany
| | - Tobias Bauer
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
- Department of Neuroradiology, University Hospital Bonn, Bonn, Germany
| | - Bastian David
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Christoph Endler
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
| | - Alexander Isaak
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
| | - Fabiane Schuch
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Felix Bitzer
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
- Department of Neuroradiology, University Hospital Bonn, Bonn, Germany
| | | | - Elke Hattingen
- Institute of Neuroradiology, University Hospital and Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Ralf Deichmann
- Brain Imaging Center, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Ulrike Attenberger
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
| | - Albert J Becker
- Department of Neuropathology, University Hospital Bonn, Bonn, Germany
| | | | | | - Rainer Surges
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Alon Friedman
- Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
- Departments of Cognitive and Brain Sciences, Physiology, and Cell Biology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Theodor Rüber
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
- Department of Neuroradiology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
2
|
Putra M, Vasanthi SS, Rao NS, Meyer C, Van Otterloo M, Thangi L, Thedens DR, Kannurpatti SS, Thippeswamy T. Inhibiting Inducible Nitric Oxide Synthase with 1400W Reduces Soman (GD)-Induced Ferroptosis in Long-Term Epilepsy-Associated Neuropathology: Structural and Functional Magnetic Resonance Imaging Correlations with Neurobehavior and Brain Pathology. J Pharmacol Exp Ther 2024; 388:724-738. [PMID: 38129129 PMCID: PMC10801728 DOI: 10.1124/jpet.123.001929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
Organophosphate (OP) nerve agent (OPNA) intoxication leads to long-term brain dysfunctions. The ineffectiveness of current treatments for OPNA intoxication prompts a quest for the investigation of the mechanism and an alternative effective therapeutic approach. Our previous studies on 1400W, a highly selective inducible nitric oxide synthase (iNOS) inhibitor, showed improvement in epilepsy and seizure-induced brain pathology in rat models of kainate and OP intoxication. In this study, magnetic resonance imaging (MRI) modalities, behavioral outcomes, and biomarkers were comprehensively investigated for brain abnormalities following soman (GD) intoxication in a rat model. T1 and T2 MRI robustly identified pathologic microchanges in brain structures associated with GD toxicity, and 1400W suppressed those aberrant alterations. Moreover, functional network reduction was evident in the cortex, hippocampus, and thalamus after GD exposure, and 1400W rescued the losses except in the thalamus. Behavioral tests showed protection by 1400W against GD-induced memory dysfunction, which also correlated with the extent of brain pathology observed in structural and functional MRIs. GD exposure upregulated iron-laden glial cells and ferritin levels in the brain and serum, 1400W decreased ferritin levels in the epileptic foci in the brain but not in the serum. The levels of brain ferritin also correlated with MRI parameters. Further, 1400W mitigated the overproduction of nitroxidative markers after GD exposure. Overall, this study provides direct evidence for the relationships of structural and functional MRI modalities with behavioral and molecular abnormalities following GD exposure and the neuroprotective effect of an iNOS inhibitor, 1400W. SIGNIFICANT STATEMENT: Our studies demonstrate the MRI microchanges in the brain following GD toxicity, which strongly correlate with neurobehavioral performances and iron homeostasis. The inhibition of iNOS with 1400W mitigates GD-induced cognitive decline, iron dysregulation, and aberrant brain MRI findings.
Collapse
Affiliation(s)
- Marson Putra
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa (M.P., S.S.V., N.S.R., C.M., M.V.O., L.T., T.T.); Department of Radiology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa (D.R.T.); and Department of Radiology, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Newark, New Jersey (S.S.K.)
| | - Suraj S Vasanthi
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa (M.P., S.S.V., N.S.R., C.M., M.V.O., L.T., T.T.); Department of Radiology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa (D.R.T.); and Department of Radiology, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Newark, New Jersey (S.S.K.)
| | - Nikhil S Rao
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa (M.P., S.S.V., N.S.R., C.M., M.V.O., L.T., T.T.); Department of Radiology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa (D.R.T.); and Department of Radiology, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Newark, New Jersey (S.S.K.)
| | - Christina Meyer
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa (M.P., S.S.V., N.S.R., C.M., M.V.O., L.T., T.T.); Department of Radiology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa (D.R.T.); and Department of Radiology, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Newark, New Jersey (S.S.K.)
| | - Madison Van Otterloo
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa (M.P., S.S.V., N.S.R., C.M., M.V.O., L.T., T.T.); Department of Radiology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa (D.R.T.); and Department of Radiology, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Newark, New Jersey (S.S.K.)
| | - Lal Thangi
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa (M.P., S.S.V., N.S.R., C.M., M.V.O., L.T., T.T.); Department of Radiology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa (D.R.T.); and Department of Radiology, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Newark, New Jersey (S.S.K.)
| | - Daniel R Thedens
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa (M.P., S.S.V., N.S.R., C.M., M.V.O., L.T., T.T.); Department of Radiology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa (D.R.T.); and Department of Radiology, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Newark, New Jersey (S.S.K.)
| | - Sridhar S Kannurpatti
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa (M.P., S.S.V., N.S.R., C.M., M.V.O., L.T., T.T.); Department of Radiology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa (D.R.T.); and Department of Radiology, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Newark, New Jersey (S.S.K.)
| | - Thimmasettappa Thippeswamy
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa (M.P., S.S.V., N.S.R., C.M., M.V.O., L.T., T.T.); Department of Radiology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa (D.R.T.); and Department of Radiology, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Newark, New Jersey (S.S.K.)
| |
Collapse
|
3
|
Garcia V, Blaquiere M, Janvier A, Cresto N, Lana C, Genin A, Hirbec H, Audinat E, Faucherre A, Barbier EL, Hamelin S, Kahane P, Jopling C, Marchi N. PIEZO1 expression at the glio-vascular unit adjusts to neuroinflammation in seizure conditions. Neurobiol Dis 2023; 187:106297. [PMID: 37717661 DOI: 10.1016/j.nbd.2023.106297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/19/2023] Open
Abstract
Mechanosensors are emerging players responding to hemodynamic and physical inputs. Their significance in the central nervous system remains relatively uncharted. Using human-derived brain specimens or cells and a pre-clinical model of mesio-temporal lobe epilepsy (MTLE), we examined how the mRNA levels of the mechanosensitive channel PIEZO1 adjust to disease-associated pro-inflammatory trajectories. In brain tissue micro-punches obtained from 18 drug-resistant MTLE patients, PIEZO1 expression positively correlated with pro-inflammatory biomarkers TNFα, IL-1β, and NF-kB in the epileptogenic hippocampus compared to the adjacent amygdala and temporal cortex tissues. In an experimental MTLE model, hippocampal Piezo1 and cytokine expression levels were increased post-status epilepticus (SE) and during epileptogenesis. Piezo1 expression positively correlated with Tnfα, Il1β, and Nf-kb in the hippocampal foci. Next, by combining RNAscope with immunohistochemistry, we identified Piezo1 in glio-vascular cells. Post-SE and during epileptogenesis, ameboid IBA1 microglia, hypertrophic GFAP astrocytes, and damaged NG2DsRed pericytes exhibited time-dependent patterns of increased Piezo1 expression. Digital droplet PCR analysis confirmed the Piezo1 trajectory in isolated hippocampal microvessels in the ipsi and contralateral hippocampi. The combined examinations performed in this model showed Piezo1 expression returning towards basal levels after the epileptogenesis-associated peak inflammation. From these associations, we next asked whether pro-inflammatory players directly regulate PIEZO1 expression. We used human-derived brain cells and confirmed that endothelium, astrocytes, and pericytes expressed PIEZO1. Exposure to human recombinant TNFα or IL1β upregulated NF-kB in all cells. Furthermore, TNFα induced PIEZO1 expression in a dose and time-dependent manner, primarily in astrocytes. This exploratory study describes a spatiotemporal dialogue between PIEZO1 brain cell-mechanobiology and neuro-inflammatory cell remodeling. The precise functional mechanisms regulating this interplay in disease conditions warrant further investigation.
Collapse
Affiliation(s)
- Valentin Garcia
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Marine Blaquiere
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Alicia Janvier
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Noemie Cresto
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Carla Lana
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Athenais Genin
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Helene Hirbec
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Etienne Audinat
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Adele Faucherre
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Emmanuel L Barbier
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, Grenoble Institute Neuroscience, U1216 Grenoble, France
| | - Sophie Hamelin
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, Grenoble Institute Neuroscience, U1216 Grenoble, France
| | - Philippe Kahane
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, Grenoble Institute Neuroscience, U1216 Grenoble, France
| | - Chris Jopling
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Nicola Marchi
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France.
| |
Collapse
|
4
|
Cresto N, Janvier A, Marchi N. From neurons to the neuro-glio-vascular unit: Seizures and brain homeostasis in networks. Rev Neurol (Paris) 2023; 179:308-315. [PMID: 36759301 DOI: 10.1016/j.neurol.2022.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 02/10/2023]
Abstract
While seizures are undoubtedly neuronal events, an ensemble of auxiliary brain cells profoundly shapes synaptic transmission in health and disease conditions. Endothelial-astrocyte-pericyte assemblies at the blood-brain barrier (BBB) and neuroglia within the neuro-glio-vascular unit (NGVU) finely tune brain parenchymal homeostasis, safeguarding the ionic and molecular compositions of the interstitial fluid. BBB permeability with neuroinflammation and the resulting loss of brain homeostatic control are unifying mechanisms sustaining aberrant neuronal discharges, with temporal specificities linked to acute (head trauma, stroke, infections) and pre-existent (genetic) or chronic ( dysplasia, tumors, neurodegenerative disorders) pathological conditions. Within this research template, one hypothesis is that the topography of BBB damage and neuroinflammation could associate with symptoms, e.g., limbic structures for seizures or pre-frontal for psychiatric episodes. Another uncharted matter is whether seizure activity, without tissue lesions or sclerosis, is sufficient to promote stable cellular-level maladaptations in networks. Contingent to localization and duration, BBB damage and inflammation forecast pathological trajectories, and the concept of an epileptic NGVU could enable time-sensitive biomarkers to predict disease progression. The coherence between electrographic, imaging and molecular NGVU biomarkers could be established from the epileptogenic to the propagating zones. This paradigm shift could lead to new diagnostic and therapeutic modalities germane to specific epilepsies or when seizure activity represents a comorbidity.
Collapse
Affiliation(s)
- N Cresto
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - A Janvier
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - N Marchi
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France.
| |
Collapse
|
5
|
Abstract
PURPOSE OF REVIEW We review significant advances in epilepsy imaging in recent years. RECENT FINDINGS Structural MRI at 7T with optimization of acquisition and postacquisition image processing increases the diagnostic yield but artefactual findings remain a challenge. MRI analysis from multiple sites indicates different atrophy patterns and white matter diffusion abnormalities in temporal lobe and generalized epilepsies, with greater abnormalities close to the presumed seizure source. Structural and functional connectivity relate to seizure spread and generalization; longitudinal studies are needed to clarify the causal relationship of these associations. Diffusion MRI may help predict surgical outcome and network abnormalities extending beyond the epileptogenic zone. Three-dimensional multimodal imaging can increase the precision of epilepsy surgery, improve seizure outcome and reduce complications. Language and memory fMRI are useful predictors of postoperative deficits, and lead to risk minimization. FDG PET is useful for clinical studies and specific ligands probe the pathophysiology of neurochemical fluxes and receptor abnormalities. SUMMARY Improved structural MRI increases detection of abnormalities that may underlie epilepsy. Diffusion, structural and functional MRI indicate the widespread associations of epilepsy syndromes. These can assist stratification of surgical outcome and minimize risk. PET has continued utility clinically and for research into the pathophysiology of epilepsies.
Collapse
Affiliation(s)
- John S Duncan
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London
- MRI Unit, Chalfont Centre for Epilepsy, Chalfont St Peter, UK
| | - Karin Trimmel
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London
- MRI Unit, Chalfont Centre for Epilepsy, Chalfont St Peter, UK
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
6
|
Canet G, Zub E, Zussy C, Hernandez C, Blaquiere M, Garcia V, Vitalis M, deBock F, Moreno-Montano M, Audinat E, Desrumaux C, Planel E, Givalois L, Marchi N. Seizure activity triggers tau hyperphosphorylation and amyloidogenic pathways. Epilepsia 2022; 63:919-935. [PMID: 35224720 DOI: 10.1111/epi.17186] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/31/2022] [Accepted: 01/31/2022] [Indexed: 01/21/2023]
Abstract
OBJECTIVE Although epilepsies and neurodegenerative disorders show pathophysiological similarities, their direct functional associations are unclear. Here, we tested the hypothesis that experimental seizures can induce tau hyperphosphorylation and amyloidogenic modifications over time, with intersections with neuroinflammation. METHODS We used a model of mesial temporal lobe epilepsy (MTLE) where unilateral intrahippocampal injection of kainic acid (KA) in C57BL/6 mice elicits epileptogenesis and spontaneous focal seizures. We used a model of generalized status epilepticus (SE) obtained by intraperitoneal KA injection in C57BL/6 mice. We performed analyses and cross-comparisons according to a schedule of 72 h, 1 week, and 8 weeks after KA injection. RESULTS In experimental MTLE, we show AT100, PHF1, and CP13 tau hyperphosphorylation during epileptogenesis (72 h-1 week) and long-term (8 weeks) during spontaneous seizures in the ipsilateral hippocampi, the epileptogenic zone. These pathological modifications extended to the contralateral hippocampus, a seizure propagating zone with no histological lesion or sclerosis. Two kinases, Cdk5 and GSK3β, implicated in the pathological phosphorylation of tau, were activated. In this MTLE model, the induction of the amyloidogenic pathway (APP, C99, BACE1) was prominent and long-lasting in the epileptogenic zone. These Alzheimer's disease (AD)-relevant markers, established during seizure progression and recurrence, reciprocated an enduring glial (GFAP, Iba1) inflammation and the inadequate activation of the endogenous, anti-inflammatory, glucocorticoid receptor system. By contrast, a generalized SE episode provoked a predominantly transient induction of tau hyperphosphorylation and amyloidogenic markers in the hippocampus, along with resolving inflammation. Finally, we identified overlapping profiles of long-term hippocampal tau hyperphosphorylation by comparing MTLE to J20 mice, the latter a model relevant to AD. SIGNIFICANCE MTLE and a generalized SE prompt persistent and varying tau hyperphosphorylation or amyloidogenic modifications in the hippocampus. In MTLE, an AD-relevant molecular trajectory intertwines with neuroinflammation, spatiotemporally involving epileptogenic and nonlesional seizure propagating zones.
Collapse
Affiliation(s)
- Geoffrey Canet
- Molecular Mechanisms in Neurodegenerative Dementia Laboratory, University of Montpellier, EPHE-PSL, INSERM U1198, Montpellier, France.,Department of Psychiatry and Neurosciences, Laval University, CR-CHU of Québec, Québec, Canada
| | - Emma Zub
- Department of Psychiatry and Neurosciences, Laval University, CR-CHU of Québec, Québec, Canada
| | - Charleine Zussy
- Molecular Mechanisms in Neurodegenerative Dementia Laboratory, University of Montpellier, EPHE-PSL, INSERM U1198, Montpellier, France
| | - Célia Hernandez
- Molecular Mechanisms in Neurodegenerative Dementia Laboratory, University of Montpellier, EPHE-PSL, INSERM U1198, Montpellier, France
| | - Marine Blaquiere
- Institute of Functional Genomics, University of Montpellier, UMR 5203 CNRS - U 1191 INSERM, Montpellier, France
| | - Valentin Garcia
- Institute of Functional Genomics, University of Montpellier, UMR 5203 CNRS - U 1191 INSERM, Montpellier, France
| | - Mathieu Vitalis
- Molecular Mechanisms in Neurodegenerative Dementia Laboratory, University of Montpellier, EPHE-PSL, INSERM U1198, Montpellier, France
| | - Frederic deBock
- Institute of Functional Genomics, University of Montpellier, UMR 5203 CNRS - U 1191 INSERM, Montpellier, France
| | - Maria Moreno-Montano
- Institute of Functional Genomics, University of Montpellier, UMR 5203 CNRS - U 1191 INSERM, Montpellier, France
| | - Etienne Audinat
- Institute of Functional Genomics, University of Montpellier, UMR 5203 CNRS - U 1191 INSERM, Montpellier, France
| | - Catherine Desrumaux
- Molecular Mechanisms in Neurodegenerative Dementia Laboratory, University of Montpellier, EPHE-PSL, INSERM U1198, Montpellier, France
| | - Emmanuel Planel
- Department of Psychiatry and Neurosciences, Laval University, CR-CHU of Québec, Québec, Canada
| | - Laurent Givalois
- Molecular Mechanisms in Neurodegenerative Dementia Laboratory, University of Montpellier, EPHE-PSL, INSERM U1198, Montpellier, France.,Department of Psychiatry and Neurosciences, Laval University, CR-CHU of Québec, Québec, Canada
| | - Nicola Marchi
- Institute of Functional Genomics, University of Montpellier, UMR 5203 CNRS - U 1191 INSERM, Montpellier, France
| |
Collapse
|
7
|
van Vliet EA, Marchi N. Neurovascular unit dysfunction as a mechanism of seizures and epilepsy during aging. Epilepsia 2022; 63:1297-1313. [PMID: 35218208 PMCID: PMC9321014 DOI: 10.1111/epi.17210] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/23/2022] [Accepted: 02/23/2022] [Indexed: 11/30/2022]
Abstract
The term neurovascular unit (NVU) describes the structural and functional liaison between specialized brain endothelium, glial and mural cells, and neurons. Within the NVU, the blood‐brain barrier (BBB) is the microvascular structure regulating neuronal physiology and immune cross‐talk, and its properties adapt to brain aging. Here, we analyze a research framework where NVU dysfunction, caused by acute insults or disease progression in the aging brain, represents a converging mechanism underlying late‐onset seizures or epilepsy and neurological or neurodegenerative sequelae. Furthermore, seizure activity may accelerate brain aging by sustaining regional NVU dysfunction, and a cerebrovascular pathology may link seizures to comorbidities. Next, we focus on NVU diagnostic approaches that could be tailored to seizure conditions in the elderly. We also examine the impending disease‐modifying strategies based on the restoration of the NVU and, more in general, the homeostatic control of anti‐ and pro‐inflammatory players. We conclude with an outlook on current pre‐clinical knowledge gaps and clinical challenges pertinent to seizure onset and conditions in an aging population.
Collapse
Affiliation(s)
- Erwin A van Vliet
- Amsterdam UMC, University of Amsterdam, dept. of (Neuro)pathology, Amsterdam, the Netherlands.,University of Amsterdam, Swammerdam Institute for Life Sciences, Center for Neuroscience, Amsterdam, the Netherlands
| | - Nicola Marchi
- Cerebrovascular and Glia Research, Department of Neuroscience, Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| |
Collapse
|