1
|
Rubboli G, Bø MH, Alfstad K, Armand Larsen S, Jacobsen MDH, Vlachou M, Weisdorf S, Rasmussen R, Egge A, Henning O, Lossius M, Beniczky S. Clinical utility of ultra long-term subcutaneous electroencephalographic monitoring in drug-resistant epilepsies: a "real world" pilot study. Epilepsia 2024. [PMID: 39340394 DOI: 10.1111/epi.18121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/25/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024]
Abstract
OBJECTIVE This study was undertaken to assess the clinical utility, safety, and tolerability in epilepsy patients of ultra long-term monitoring with a novel subcutaneous electroencephalographic (EEG) device (sqEEG). METHODS Five patients with drug-resistant focal epilepsy were implanted (one patient bilaterally) with sqEEG. In phase 1, we assessed sqEEG sensitivity for seizure recording by recording seizures simultaneously with scalp EEG in the epilepsy monitoring unit (EMU). sqEEG was scored either visually (v-sqEEG) or by using a semiautomatic algorithm (EpiSight; E-sqEEG). In phase 2, the patients were monitored as outpatients for 3-6 months. sqEEG data were analyzed monthly, evaluating concordance of data obtained by v-sqEEG, E-sqEEG, and patients' diaries. v-sqEEG data were used to guide treatment adjustments. sqEEG-related side effects were assessed throughout the study. RESULTS In phase 1, v-sqEEG detected all seizures recorded in the EMU in all patients, whereas E-sqEEG was as effective in three patients. In the other two patients, E-sqEEG detected only a proportion or none of the seizures, respectively. Sensitivity of E-sqEEG depended on the ictal EEG features. In phase 2, a 100% concordance between E-sqEEG and v-sqEEG in seizure detection was observed for the same three patients as in phase 1. In the other two patients (one implanted bilaterally), effectiveness of E-sqEEG in detecting seizure as compared to v-sqEEG ranged from 0% to 83%. v-sqEEG showed that all patients reported in their diaries fewer seizures than they actually suffered. In four of five patients, v-sqEEG showed that the treatment adjustments had been ineffective or associated with a seizure increment. The only side effect was an infection at the implantation site in one patient. SIGNIFICANCE The sqEEG system could collect reliable information on seizure activity, thus providing clinically relevant information. Sensitivity of EpiSight in detecting seizures varied across patients, depending on the ictal EEG features. sqEEG ultra long-term monitoring was feasible and well tolerated.
Collapse
Affiliation(s)
- Guido Rubboli
- Danish Epilepsy Center, member of the European Reference Network EpiCARE, Dianalund, Denmark
- University of Copenhagen, Copenhagen, Denmark
| | - Margrete Halvorsen Bø
- National Center for Epilepsy, Oslo University Hospital, member of the European Reference Network EpiCARE, Oslo, Norway
| | - Kristin Alfstad
- National Center for Epilepsy, Oslo University Hospital, member of the European Reference Network EpiCARE, Oslo, Norway
| | - Sidsel Armand Larsen
- Danish Epilepsy Center, member of the European Reference Network EpiCARE, Dianalund, Denmark
| | - Mads Due Holm Jacobsen
- Danish Epilepsy Center, member of the European Reference Network EpiCARE, Dianalund, Denmark
| | - Maria Vlachou
- Department of Neurophysiology, Aarhus University, Aarhus, Denmark
| | - Sigge Weisdorf
- Danish Epilepsy Center, member of the European Reference Network EpiCARE, Dianalund, Denmark
| | - Rune Rasmussen
- Department of Neurosurgery, Rigshospitalet, Copenhagen, Denmark
| | - Arild Egge
- Department of Neurosurgery, Oslo University Hospital, Oslo, Norway
| | - Oliver Henning
- National Center for Epilepsy, Oslo University Hospital, member of the European Reference Network EpiCARE, Oslo, Norway
| | - Morten Lossius
- National Center for Epilepsy, Oslo University Hospital, member of the European Reference Network EpiCARE, Oslo, Norway
| | - Sandor Beniczky
- Danish Epilepsy Center, member of the European Reference Network EpiCARE, Dianalund, Denmark
- Department of Clinical Neurophysiology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
2
|
Klein P, Kaminski RM, Koepp M, Löscher W. New epilepsy therapies in development. Nat Rev Drug Discov 2024; 23:682-708. [PMID: 39039153 DOI: 10.1038/s41573-024-00981-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2024] [Indexed: 07/24/2024]
Abstract
Epilepsy is a common brain disorder, characterized by spontaneous recurrent seizures, with associated neuropsychiatric and cognitive comorbidities and increased mortality. Although people at risk can often be identified, interventions to prevent the development of the disorder are not available. Moreover, in at least 30% of patients, epilepsy cannot be controlled by current antiseizure medications (ASMs). As a result of considerable progress in epilepsy genetics and the development of novel disease models, drug screening technologies and innovative therapeutic modalities over the past 10 years, more than 200 novel epilepsy therapies are currently in the preclinical or clinical pipeline, including many treatments that act by new mechanisms. Assisted by diagnostic and predictive biomarkers, the treatment of epilepsy is undergoing paradigm shifts from symptom-only ASMs to disease prevention, and from broad trial-and-error treatments for seizures in general to mechanism-based treatments for specific epilepsy syndromes. In this Review, we assess recent progress in ASM development and outline future directions for the development of new therapies for the treatment and prevention of epilepsy.
Collapse
Affiliation(s)
- Pavel Klein
- Mid-Atlantic Epilepsy and Sleep Center, Bethesda, MD, USA.
| | | | - Matthias Koepp
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Wolfgang Löscher
- Translational Neuropharmacology Lab., NIFE, Department of Experimental Otology of the ENT Clinics, Hannover Medical School, Hannover, Germany.
- Center for Systems Neuroscience, Hannover, Germany.
| |
Collapse
|
3
|
Rogers CB, Meller S, Meyerhoff N, Volk HA. Comparative subcutaneous and submuscular implantation of an electroencephalography device for long term electroencephalographic monitoring in dogs. Front Vet Sci 2024; 11:1419792. [PMID: 39071780 PMCID: PMC11272624 DOI: 10.3389/fvets.2024.1419792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/02/2024] [Indexed: 07/30/2024] Open
Abstract
Background Implantable electroencephalography (EEG) recording devices have been used for ultra-long-term epilepsy monitoring both in clinical and home settings in people. Objective and accurate seizure detection and recording at home could be of great benefit in diagnosis, management and research in canine idiopathic epilepsy (IE). Continuous EEG monitoring would allow accurate detection of seizure patterns, seizure cycles, and seizure frequency. An EEG acquisition system usable in an "out of clinic" setting could improve owner and veterinary compliance for EEG diagnostics and seizure management. Objectives Whether a subcutaneous ultra-long term EEG monitoring device designed for humans could be implanted in dogs. Animals Cadaver study with 8 medium to large breed dogs. Methods Comparatively using a subcutaneous and submuscular approach to implant the UNEEG SubQ-Implant in each dog. Positioning was controlled via CT post implantation and cranial measurements were taken. Results In four of the eight dogs a submuscular implantation without any complications was possible. Complications were close contact to the optic nerve in the first approaches, before the implantation angle was changed and in the smallest dog contact of the implant with the orbital fat body. Cranial measurements of less than 95 mm length proved to be too small for reliable implantation via this approach. The subcutaneous approach showed severe limitations and the implant was prone to dislocation. Conclusion The UNEEQ SubQ-Implant can be implanted in dogs, via submuscular approach. CT imaging and cranial measurements should be taken prior to implantation.
Collapse
Affiliation(s)
- Casey B. Rogers
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Sebastian Meller
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Nina Meyerhoff
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Holger A. Volk
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hannover, Germany
- Center for Systems Neuroscience Hannover, Hannover, Germany
| |
Collapse
|
4
|
Kerr WT, McFarlane KN, Figueiredo Pucci G. The present and future of seizure detection, prediction, and forecasting with machine learning, including the future impact on clinical trials. Front Neurol 2024; 15:1425490. [PMID: 39055320 PMCID: PMC11269262 DOI: 10.3389/fneur.2024.1425490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/03/2024] [Indexed: 07/27/2024] Open
Abstract
Seizures have a profound impact on quality of life and mortality, in part because they can be challenging both to detect and forecast. Seizure detection relies upon accurately differentiating transient neurological symptoms caused by abnormal epileptiform activity from similar symptoms with different causes. Seizure forecasting aims to identify when a person has a high or low likelihood of seizure, which is related to seizure prediction. Machine learning and artificial intelligence are data-driven techniques integrated with neurodiagnostic monitoring technologies that attempt to accomplish both of those tasks. In this narrative review, we describe both the existing software and hardware approaches for seizure detection and forecasting, as well as the concepts for how to evaluate the performance of new technologies for future application in clinical practice. These technologies include long-term monitoring both with and without electroencephalography (EEG) that report very high sensitivity as well as reduced false positive detections. In addition, we describe the implications of seizure detection and forecasting upon the evaluation of novel treatments for seizures within clinical trials. Based on these existing data, long-term seizure detection and forecasting with machine learning and artificial intelligence could fundamentally change the clinical care of people with seizures, but there are multiple validation steps necessary to rigorously demonstrate their benefits and costs, relative to the current standard.
Collapse
Affiliation(s)
- Wesley T. Kerr
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States
| | | | | |
Collapse
|
5
|
Porcaro C, Seppi D, Pellegrino G, Dainese F, Kassabian B, Pellegrino L, De Nardi G, Grego A, Corbetta M, Ferreri F. Characterization of antiseizure medications effects on the EEG neurodynamic by fractal dimension. Front Neurosci 2024; 18:1401068. [PMID: 38911599 PMCID: PMC11192015 DOI: 10.3389/fnins.2024.1401068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/20/2024] [Indexed: 06/25/2024] Open
Abstract
Objectives An important challenge in epilepsy is to define biomarkers of response to treatment. Many electroencephalography (EEG) methods and indices have been developed mainly using linear methods, e.g., spectral power and individual alpha frequency peak (IAF). However, brain activity is complex and non-linear, hence there is a need to explore EEG neurodynamics using nonlinear approaches. Here, we use the Fractal Dimension (FD), a measure of whole brain signal complexity, to measure the response to anti-seizure therapy in patients with Focal Epilepsy (FE) and compare it with linear methods. Materials Twenty-five drug-responder (DR) patients with focal epilepsy were studied before (t1, named DR-t1) and after (t2, named DR-t2) the introduction of the anti-seizure medications (ASMs). DR-t1 and DR-t2 EEG results were compared against 40 age-matched healthy controls (HC). Methods EEG data were investigated from two different angles: frequency domain-spectral properties in δ, θ, α, β, and γ bands and the IAF peak, and time-domain-FD as a signature of the nonlinear complexity of the EEG signals. Those features were compared among the three groups. Results The δ power differed between DR patients pre and post-ASM and HC (DR-t1 vs. HC, p < 0.01 and DR-t2 vs. HC, p < 0.01). The θ power differed between DR-t1 and DR-t2 (p = 0.015) and between DR-t1 and HC (p = 0.01). The α power, similar to the δ, differed between DR patients pre and post-ASM and HC (DR-t1 vs. HC, p < 0.01 and DR-t2 vs. HC, p < 0.01). The IAF value was lower for DR-t1 than DR-t2 (p = 0.048) and HC (p = 0.042). The FD value was lower in DR-t1 than in DR-t2 (p = 0.015) and HC (p = 0.011). Finally, Bayes Factor analysis showed that FD was 195 times more likely to separate DR-t1 from DR-t2 than IAF and 231 times than θ. Discussion FD measured in baseline EEG signals is a non-linear brain measure of complexity more sensitive than EEG power or IAF in detecting a response to ASMs. This likely reflects the non-oscillatory nature of neural activity, which FD better describes. Conclusion Our work suggests that FD is a promising measure to monitor the response to ASMs in FE.
Collapse
Affiliation(s)
- Camillo Porcaro
- Department of Neuroscience and Padova Neuroscience Center (PNC), University of Padova, Padova, Italy
- Institute of Cognitive Sciences and Technologies (ISTC) – National Research Council (CNR), Rome, Italy
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, United Kingdom
| | - Dario Seppi
- Neurology Clinics, Azienda Ospedale Università, Padua, Italy
- Unit of Clinical Neurophysiology, Azienda Ospedale Università, Padua, Italy
| | - Giovanni Pellegrino
- Epilepsy Program, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Filippo Dainese
- Neurology Clinics, Azienda Ospedale Università, Padua, Italy
- Unit of Clinical Neurophysiology, Azienda Ospedale Università, Padua, Italy
| | - Benedetta Kassabian
- Neurology Clinics, Azienda Ospedale Università, Padua, Italy
- Unit of Clinical Neurophysiology, Azienda Ospedale Università, Padua, Italy
| | - Luciano Pellegrino
- Neurology Clinics, Azienda Ospedale Università, Padua, Italy
- Unit of Clinical Neurophysiology, Azienda Ospedale Università, Padua, Italy
| | - Gianluigi De Nardi
- Neurology Clinics, Azienda Ospedale Università, Padua, Italy
- Unit of Clinical Neurophysiology, Azienda Ospedale Università, Padua, Italy
| | - Alberto Grego
- Neurology Clinics, Azienda Ospedale Università, Padua, Italy
- Unit of Clinical Neurophysiology, Azienda Ospedale Università, Padua, Italy
| | - Maurizio Corbetta
- Department of Neuroscience and Padova Neuroscience Center (PNC), University of Padova, Padova, Italy
- Neurology Clinics, Azienda Ospedale Università, Padua, Italy
- Veneto Institute of Molecular Medicine (VIMM), Fondazione Biomedica, Padua, Italy
| | - Florinda Ferreri
- Department of Neuroscience and Padova Neuroscience Center (PNC), University of Padova, Padova, Italy
- Neurology Clinics, Azienda Ospedale Università, Padua, Italy
- Unit of Clinical Neurophysiology, Azienda Ospedale Università, Padua, Italy
| |
Collapse
|
6
|
Ahrens E, Jennum P, Duun-Henriksen J, Borregaard HWS, Nielsen SS, Taptiklis N, Cormack F, Djurhuus BD, Homøe P, Kjær TW, Hemmsen MC. The Ultra-Long-Term Sleep study: Design, rationale, data stability and user perspective. J Sleep Res 2024:e14197. [PMID: 38572813 DOI: 10.1111/jsr.14197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 02/26/2024] [Accepted: 03/04/2024] [Indexed: 04/05/2024]
Abstract
Sleep deprivation and poor sleep quality are significant societal challenges that negatively impact individuals' health. The interaction between subjective sleep quality, objective sleep measures, physical and cognitive performance, and their day-to-day variations remains poorly understood. Our year-long study of 20 healthy individuals, using subcutaneous electroencephalography, aimed to elucidate these interactions, assessing data stability and participant satisfaction, usability, well-being and adherence. In the study, 25 participants were fitted with a minimally invasive subcutaneous electroencephalography lead, with 20 completing the year of subcutaneous electroencephalography recording. Signal stability was measured using covariance of variation. Participant satisfaction, usability and well-being were measured with questionnaires: Perceived Ease of Use questionnaire, System Usability Scale, Headache questionnaire, Major Depression Inventory, World Health Organization 5-item Well-Being Index, and interviews. The subcutaneous electroencephalography signals remained stable for the entire year, with an average participant adherence rate of 91%. Participants rated their satisfaction with the subcutaneous electroencephalography device as easy to use with minimal or no discomfort. The System Usability Scale score was high at 86.3 ± 10.1, and interviews highlighted that participants understood how to use the subcutaneous electroencephalography device and described a period of acclimatization to sleeping with the device. This study provides compelling evidence for the feasibility of longitudinal sleep monitoring during everyday life utilizing subcutaneous electroencephalography in healthy subjects, showcasing excellent signal stability, adherence and user experience. The amassed subcutaneous electroencephalography data constitutes the largest dataset of its kind, and is poised to significantly advance our understanding of day-to-day variations in normal sleep and provide key insights into subjective and objective sleep quality.
Collapse
Affiliation(s)
- Esben Ahrens
- T&W Engineering A/S, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Poul Jennum
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Danish Center for Sleep Medicine, Department of Clinical Neurophysiology, Glostrup, Denmark
| | | | | | | | | | - Francesca Cormack
- Cambridge Cognition Ltd, Cambridge, UK
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Bjarki Ditlev Djurhuus
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Otorhinolaryngology and Maxillofacial Surgery, Zealand University Hospital, Køge, Denmark
| | - Preben Homøe
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Otorhinolaryngology and Maxillofacial Surgery, Zealand University Hospital, Køge, Denmark
| | - Troels W Kjær
- T&W Engineering A/S, Denmark
- UNEEG medical A/S, Lillerød, Lillerød, Denmark
| | | |
Collapse
|
7
|
Liao J, Wang J, Zhan CA, Yang F. Parameterized aperiodic and periodic components of single-channel EEG enables reliable seizure detection. Phys Eng Sci Med 2024; 47:31-47. [PMID: 37747646 DOI: 10.1007/s13246-023-01340-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 09/14/2023] [Indexed: 09/26/2023]
Abstract
Although it is clinically important, a reliable and economical solution to automatic seizure detection for patients at home is yet to be developed. Traditional algorithms rely on multi-channel EEG signals and features of canonical EEG power description. This study is aimed to propose an effective single-channel EEG seizure detection method centered on novel EEG power parameterization and channel selection algorithms. We employed the publicly available multi-channel CHB-MIT Scalp EEG database to gauge the effectiveness of our approach. We first adapted a power spectra parameterization algorithm to characterize the aperiodic and periodic components of the ictal and inter-ictal EEGs. We selected four features based on their statistical significance and interpretability, and developed a ranking approach to channel selection for each patient. We then tested the effectiveness of our approaches to channel and feature selection for automatic seizure detection using support vector machine (SVM) as the classifier. The performance of our algorithm was evaluated using five-fold cross-validation and compared to those methods of comparable complexity (using one or two channels of EEG), in terms of accuracy, specificity, sensitivity, precision and F1 score. Some channels of EEG signals show strikingly different distributions of PSD features between the ictal and inter-ictal states. Four features including the offset and exponent parameters for the aperiodic component and the first and second highest total power (TPW1 and TPW2) form the basis of channel selection and the input of SVM classifier. The selected channel is found to be patient-specific. Our approach has achieved a mean sensitivity of 95.6%, specificity of 99.2%, accuracy of 98.6%, precision of 95.5%, and F1 score of 95.5%. Compared with algorithms in previous studies that used one or two channels of EEG signals, ours outperforms in specificity and accuracy with comparable sensitivity. EEG power spectra parameterization to feature extraction and feature ranking-based channel selection are found to enable efficient and effective automatic seizure detection based on single-channel EEG signal.
Collapse
Affiliation(s)
- Jiahui Liao
- School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, China
| | - Jun Wang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Chang'an A Zhan
- School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China.
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, China.
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
| | - Feng Yang
- School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China.
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, China.
| |
Collapse
|
8
|
Ulate-Campos A, Loddenkemper T. Review on the current long-term, limited lead electroencephalograms. Epilepsy Behav 2024; 150:109557. [PMID: 38070411 DOI: 10.1016/j.yebeh.2023.109557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 01/14/2024]
Abstract
In the last century, 10-20 lead EEG recordings became the gold standard of surface EEG recordings, and the 10-20 system provided comparability between international studies. With the emergence of advanced EEG sensors, that may be able to record and process signals in much more compact units, this additional sensor technology now opens up opportunities to revisit current ambulatory EEG recording practices and specific patient populations, and even electrodes that are embedded into the head surface. Here, we aim to provide an overview of current limited sensor long-term EEG systems. We performed a literature review using Pubmed as a database and included the relevant articles. The review identified several systems for recording long-term ambulatory EEGs. In general, EEGs recorded with these modalities can be acquired in ambulatory and home settings, achieve good sensitivity with low false detection rates, are used for automatic seizure detection as well as seizure forecasting, and are well tolerated by patients, but each of them has advantages and disadvantages. Subcutaneous, subgaleal, and subscalp electrodes are minimally invasive and provide stable signals that can record ultra--long-term EEG and are in general less noisy than scalp EEG, but they have limited spatial coverage and require anesthesia, a surgical procedure and a trained surgeon to be placed. Behind and in the ear electrodes are discrete, unobtrusive with a good sensitivity mainly for temporal seizures but might miss extratemporal seizures, recordings could be obscured by muscle artifacts and bilateral ictal patterns might be difficult to register. Finally, recording systems using electrodes in a headband can be easily and quickly placed by the patient or caregiver, but have less spatial coverage and are more prone to movement because electrodes are not attached. Overall, limited EEG recording systems offer a promising opportunity to potentially record targeted EEG with focused indications for prolonged periods, but further validation work is needed.
Collapse
|
9
|
Hirsch M, Novitskaya Y, Schulze‐Bonhage A. Value of ultralong-term subcutaneous EEG monitoring for treatment decisions in temporal lobe epilepsy: A case report. Epilepsia Open 2023; 8:1616-1621. [PMID: 37842739 PMCID: PMC10690663 DOI: 10.1002/epi4.12844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/09/2023] [Indexed: 10/17/2023] Open
Abstract
Treatment decisions in epilepsy critically depend on information on the course of the disease, its severity and options for specific local interventions. We here report a patient with pharmaco-resistant non-lesional temporal lobe epilepsy with evidence for predominant right temporal epileptogenesis. While seizure frequency had been grossly underestimated for many years, ultralong-term monitoring with a subcutaneous EEG device revealed actual seizure frequency (66 over 11 months vs four patient-documented seizures), providing objective data on treatment efficacy and additional supportive lateralizing information that played a decisive role for the choice of surgical treatment, which had been rejected by the patient prior to this information.
Collapse
Affiliation(s)
- Martin Hirsch
- Epilepsy Center, University Medical CenterUniversity of FreiburgFreiburgGermany
- European Reference Network EpiCareBronFrance
| | - Yulia Novitskaya
- Epilepsy Center, University Medical CenterUniversity of FreiburgFreiburgGermany
- European Reference Network EpiCareBronFrance
| | - Andreas Schulze‐Bonhage
- Epilepsy Center, University Medical CenterUniversity of FreiburgFreiburgGermany
- European Reference Network EpiCareBronFrance
| |
Collapse
|
10
|
Viana PF, Attia TP, Nasseri M, Duun-Henriksen J, Biondi A, Winston JS, Martins IP, Nurse ES, Dümpelmann M, Schulze-Bonhage A, Freestone DR, Kjaer TW, Richardson MP, Brinkmann BH. Seizure forecasting using minimally invasive, ultra-long-term subcutaneous electroencephalography: Individualized intrapatient models. Epilepsia 2023; 64 Suppl 4:S124-S133. [PMID: 35395101 PMCID: PMC9547037 DOI: 10.1111/epi.17252] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/05/2022] [Accepted: 04/05/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVE One of the most disabling aspects of living with chronic epilepsy is the unpredictability of seizures. Cumulative research in the past decades has advanced our understanding of the dynamics of seizure risk. Technological advances have recently made it possible to record pertinent biological signals, including electroencephalogram (EEG), continuously. We aimed to assess whether patient-specific seizure forecasting is possible using remote, minimally invasive ultra-long-term subcutaneous EEG. METHODS We analyzed a two-center cohort of ultra-long-term subcutaneous EEG recordings, including six patients with drug-resistant focal epilepsy monitored for 46-230 days with median 18 h/day of recorded data, totaling >11 000 h of EEG. Total electrographic seizures identified by visual review ranged from 12 to 36 per patient. Three candidate subject-specific long short-term memory network deep learning classifiers were trained offline and pseudoprospectively on preictal (1 h before) and interictal (>1 day from seizures) EEG segments. Performance was assessed relative to a random predictor. Periodicity of the final forecasts was also investigated with autocorrelation. RESULTS Depending on each architecture, significant forecasting performance was achieved in three to five of six patients, with overall mean area under the receiver operating characteristic curve of .65-.74. Significant forecasts showed sensitivity ranging from 64% to 80% and time in warning from 10.9% to 44.4%. Overall, the output of the forecasts closely followed patient-specific circadian patterns of seizure occurrence. SIGNIFICANCE This study demonstrates proof-of-principle for the possibility of subject-specific seizure forecasting using a minimally invasive subcutaneous EEG device capable of ultra-long-term at-home recordings. These results are encouraging for the development of a prospective seizure forecasting trial with minimally invasive EEG.
Collapse
Affiliation(s)
- Pedro F. Viana
- School of Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- Centre for Epilepsy, King’s College Hospital National Health Service Foundation Trust, London, UK
- Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - Tal Pal Attia
- Bioelectronics Neurology and Engineering Laboratory, Department of Neurology, Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Mona Nasseri
- Bioelectronics Neurology and Engineering Laboratory, Department of Neurology, Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
- School of Engineering, University of North Florida, Jacksonville, Florida, USA
| | | | - Andrea Biondi
- School of Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- Centre for Epilepsy, King’s College Hospital National Health Service Foundation Trust, London, UK
| | - Joel S. Winston
- School of Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- Centre for Epilepsy, King’s College Hospital National Health Service Foundation Trust, London, UK
| | | | - Ewan S. Nurse
- Seer Medical, Melbourne, Victoria, Australia
- Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Matthias Dümpelmann
- Epilepsy Center, Department for Neurosurgery, University Medical Center Freiburg, Freiburg, Germany
| | - Andreas Schulze-Bonhage
- Epilepsy Center, Department for Neurosurgery, University Medical Center Freiburg, Freiburg, Germany
| | - Dean R. Freestone
- Seer Medical, Melbourne, Victoria, Australia
- Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Troels W. Kjaer
- Department of Neurology, Zealand University Hospital, Roskilde, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Mark P. Richardson
- School of Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- Centre for Epilepsy, King’s College Hospital National Health Service Foundation Trust, London, UK
- National Institute for Health Research Biomedical Research Centre at South London and Maudsley National Health Service Foundation Trust, London, UK
| | - Benjamin H. Brinkmann
- Bioelectronics Neurology and Engineering Laboratory, Department of Neurology, Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
11
|
Attia TP, Viana PF, Nasseri M, Duun-Henriksen J, Biondi A, Winston JS, Martins IP, Nurse ES, Dümpelmann M, Worrell GA, Schulze-Bonhage A, Freestone DR, Kjaer TW, Brinkmann BH, Richardson MP. Seizure forecasting using minimally invasive, ultra-long-term subcutaneous EEG: Generalizable cross-patient models. Epilepsia 2023; 64 Suppl 4:S114-S123. [PMID: 35441703 PMCID: PMC9582039 DOI: 10.1111/epi.17265] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/17/2022] [Accepted: 04/18/2022] [Indexed: 11/29/2022]
Abstract
This study describes a generalized cross-patient seizure-forecasting approach using recurrent neural networks with ultra-long-term subcutaneous EEG (sqEEG) recordings. Data from six patients diagnosed with refractory epilepsy and monitored with an sqEEG device were used to develop a generalized algorithm for seizure forecasting using long short-term memory (LSTM) deep-learning classifiers. Electrographic seizures were identified by a board-certified epileptologist. One-minute data segments were labeled as preictal or interictal based on their relationship to confirmed seizures. Data were separated into training and testing data sets, and to compensate for the unbalanced data ratio in training, noise-added copies of preictal data segments were generated to expand the training data set. The mean and standard deviation (SD) of the training data were used to normalize all data, preserving the pseudo-prospective nature of the analysis. Different architecture classifiers were trained and tested using a leave-one-patient-out cross-validation method, and the area under the receiver-operating characteristic (ROC) curve (AUC) was used to evaluate the performance classifiers. The importance of each input signal was evaluated using a leave-one-signal-out method with repeated training and testing for each classifier. Cross-patient classifiers achieved performance significantly better than chance in four of the six patients and an overall mean AUC of 0.602 ± 0.126 (mean ± SD). A time in warning of 37.386% ± 5.006% (mean ± std) and sensitivity of 0.691 ± 0.068 (mean ± std) were observed for patients with better than chance results. Analysis of input channels showed a significant contribution (p < .05) by the Fourier transform of signals channels to overall classifier performance. The relative contribution of input signals varied among patients and architectures, suggesting that the inclusion of all signals contributes to robustness in a cross-patient classifier. These early results show that it is possible to forecast seizures training with data from different patients using two-channel ultra-long-term sqEEG.
Collapse
Affiliation(s)
- Tal Pal Attia
- Bioelectronics Neurophysiology and Engineering Lab, Mayo Clinic, Rochester, Minnesota, USA
| | - Pedro F. Viana
- Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- Centre for Epilepsy, King’s College Hospital NHS Foundation Trust, London, UK
- Centro de Estudos Egas Moniz, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - Mona Nasseri
- Bioelectronics Neurophysiology and Engineering Lab, Mayo Clinic, Rochester, Minnesota, USA
- School of Engineering, University of North Florida, Jacksonville, Florida, USA
| | | | - Andrea Biondi
- Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- Centre for Epilepsy, King’s College Hospital NHS Foundation Trust, London, UK
| | - Joel S. Winston
- Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- Centre for Epilepsy, King’s College Hospital NHS Foundation Trust, London, UK
| | - Isabel P. Martins
- Centro de Estudos Egas Moniz, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - Ewan S. Nurse
- Seer Medical Pty Ltd., Melbourne, Victoria, Australia
- Department of Medicine, The University of Melbourne, Melbourne, Victoria, Australia
| | - Matthias Dümpelmann
- Epilepsy Center, Medical Center, Faculty of Medicine, University Medical Center, University of Freiburg, Freiburg, Germany
| | - Gregory A. Worrell
- Bioelectronics Neurophysiology and Engineering Lab, Mayo Clinic, Rochester, Minnesota, USA
| | - Andreas Schulze-Bonhage
- Epilepsy Center, Medical Center, Faculty of Medicine, University Medical Center, University of Freiburg, Freiburg, Germany
| | - Dean R. Freestone
- Seer Medical Pty Ltd., Melbourne, Victoria, Australia
- Department of Medicine, The University of Melbourne, Melbourne, Victoria, Australia
| | - Troels W. Kjaer
- Department of Neurology, Zealand University Hospital, Roskilde, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Benjamin H. Brinkmann
- Bioelectronics Neurophysiology and Engineering Lab, Mayo Clinic, Rochester, Minnesota, USA
| | - Mark P. Richardson
- Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- Centre for Epilepsy, King’s College Hospital NHS Foundation Trust, London, UK
- NIHR Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, UK
| |
Collapse
|
12
|
Djurhuus BD, Viana PF, Ahrens E, Nielsen SS, Srinivasan HL, Richardson MP, Homøe P, Hasegawa H, Zarei AA, Gauger PLK, Duun-Henriksen J. Minimally invasive surgery for placement of a subcutaneous EEG implant. Front Surg 2023; 10:1304343. [PMID: 38026479 PMCID: PMC10665563 DOI: 10.3389/fsurg.2023.1304343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Background A new class of subcutaneous electroencephalography has enabled ultra long-term monitoring of people with epilepsy. The objective of this paper is to describe surgeons' experiences in an early series of implantations as well as discomfort or complications experienced by the participants. Methods We included 38 implantation procedures from two trials on people with epilepsy and healthy adults. Questionnaires to assess surgeons' and participants' experience were analyzed as well as all recorded adverse events occurring up to 21 days post-surgery. Results With training, the implantation could be performed in approximately 15 min. Overall, the implantation procedure was considered easy to perform with only 2 episodes where the implant got fixated in the introducing needle and a new implant had to be used. The explantation procedure was considered effortless. In 2 cases the silicone sheath covering the lead was damaged during the explantation, but it was possible to remove the entire implant without leaving any foreign body under the skin. Especially in the trial on healthy participants, a proportion experienced adverse events in the form of headache or implant-pain up to 21 days post-operatively. In 6 cases, adverse events contributed to the decision to explant and discontinue the study: Four of these cases involved implant pain or headache; One case involved a post-operative local infection; and in one case superficial lead placement resulted in skin perforation a few weeks after implantation. Conclusion The implantation and explantation procedures are considered swift and easy to perform by both neurosurgeons and ENT surgeons. The implant is well tolerated by most participants. However, headache or pain around the implant can occur for up to 21 days post-operatively as anticipated with any such surgery. The expected benefits from the implant should always outweigh the potential disadvantages.
Collapse
Affiliation(s)
- Bjarki D. Djurhuus
- Department of Otorhinolaryngology and Maxillofacial Surgery, Zealand University Hospital, University of Copenhagen, Koge, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Pedro F. Viana
- School of Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
- Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - Esben Ahrens
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- T&W Engineering A/S, Lillerød, Denmark
| | | | | | - Mark P. Richardson
- School of Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Preben Homøe
- Department of Otorhinolaryngology and Maxillofacial Surgery, Zealand University Hospital, University of Copenhagen, Koge, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Harutomo Hasegawa
- Neurosurgery Department, King’s College Hospital NHS Foundation Trust, London, United Kingdom
| | | | | | | |
Collapse
|
13
|
Karakis I. Getting Under the Skin of Seizure Monitoring: A Subcutaneous EEG Tool to Keep a Tally Over the Long Haul. Epilepsy Curr 2023; 23:351-353. [PMID: 38269339 PMCID: PMC10805096 DOI: 10.1177/15357597231197093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024] Open
Abstract
Detecting Temporal Lobe Seizures in Ultra Long-Term Subcutaneous EEG Using Algorithm-Based Data Reduction Remvig LS, Duun-Henriksen J, Fürbass F, Hartmann M, Viana PF, Kappel Overby AM, Weisdorf S, Richardson MP, Beniczky S, Kjaer TW. Clin Neurophysiol . 2022;142:86-93. doi:10.1016/j.clinph.2022.07.504 . PMID: 35987094 Objective: Ultra long-term monitoring with subcutaneous EEG (sqEEG) offers objective outpatient recording of electrographic seizures as an alternative to self-reported epileptic seizure diaries. This methodology requires an algorithm-based automatic seizure detection to indicate periods of potential seizure activity to reduce the time spent on visual review. The objective of this study was to evaluate the performance of a sqEEG-based automatic seizure detection algorithm. Methods: A multicenter cohort of subjects using sqEEG were analyzed, including nine people with epilepsy (PWE) and 12 healthy subjects, recording a total of 965 days. The automatic seizure detections of a deep-neural-network algorithm were compared to annotations from three human experts. Results: Data reduction ratios were 99.6% in PWE and 99.9% in the control group. The cross-PWE sensitivity was 86% (median 80%, range 69-100% when PWE were evaluated individually), and the corresponding median false detection rate was 2.4 detections per 24 hours (range: 2.0-13.0). Conclusions: Our findings demonstrated that step one in a sqEEG-based semi-automatic seizure detection/review process can be performed with high sensitivity and clinically applicable specificity. Significance: Ultra long-term sqEEG bears the potential of improving objective seizure quantification.
Collapse
Affiliation(s)
- Ioannis Karakis
- Department of Neurology, Emory University School of Medicine
| |
Collapse
|
14
|
Meritam Larsen P, Beniczky S. Non-electroencephalogram-based seizure detection devices: State of the art and future perspectives. Epilepsy Behav 2023; 148:109486. [PMID: 37857030 DOI: 10.1016/j.yebeh.2023.109486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/06/2023] [Accepted: 10/07/2023] [Indexed: 10/21/2023]
Abstract
INTRODUCTION AND PURPOSE The continuously expanding research and development of wearable devices for automated seizure detection in epilepsy uses mostly non-invasive technology. Real-time alarms, triggered by seizure detection devices, are needed for safety and prevention to decrease seizure-related morbidity and mortality, as well as objective quantification of seizure frequency and severity. Our review strives to provide a state-of-the-art on automated seizure detection using non-invasive wearable devices in an ambulatory (home) environment and to highlight the prospects for future research. METHODS A joint working group of the International League Against Epilepsy (ILAE) and the International Federation of Clinical Neurophysiology (IFCN) recently published a clinical practice guideline on automated seizure detection using wearable devices. We updated the systematic literature search for the period since the last search by the joint working group. We selected studies qualifying minimally as phase-2 clinical validation trials, in accordance with standards for testing and validation of seizure detection devices. RESULTS High-level evidence (phases 3 and 4) is available only for the detection of tonic-clonic seizures and major motor seizures when using wearable devices based on accelerometry, surface electromyography (EMG), or a multimodal device combining accelerometry and heart rate. The reported sensitivity of these devices is 79.4-96%, with a false alarm rate of 0.20-1.92 per 24 hours (0-0.03 per night). A single phase-3 study validated the detection of absence seizures using a single-channel wearable EEG device. Two phase-4 studies showed overall user satisfaction with wearable seizure detection devices, which helped decrease injuries related to tonic-clonic seizures. Overall satisfaction, perceived sensitivity, and improvement in quality-of-life were significantly higher for validated devices. CONCLUSIONS Among the vast number of studies published on seizure detection devices, most are strongly affected by potential bias, providing a too-optimistic perspective. By applying the standards for clinical validation studies, potential bias can be reduced, and the quality of a continuously growing number of studies in this field can be assessed and compared. The ILAE-IFCN clinical practice guideline on automated seizure detection using wearable devices recommends using clinically validated wearable devices for automated detection of tonic-clonic seizures when significant safety concerns exist. The studies published after the guideline was issued only provide incremental knowledge and would not change the current recommendations.
Collapse
Affiliation(s)
- Pirgit Meritam Larsen
- Department of Clinical Neurophysiology, Danish Epilepsy Centre, Visbys Allé 5, 4293 Dianalund, Denmark.
| | - Sándor Beniczky
- Department of Clinical Neurophysiology, Danish Epilepsy Centre, Visbys Allé 5, 4293 Dianalund, Denmark; Department of Clinical Neurophysiology, Aarhus University Hospital, and Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 165, 8200 Aarhus, Denmark.
| |
Collapse
|
15
|
Milne-Ives M, Duun-Henriksen J, Blaabjerg L, Mclean B, Shankar R, Meinert E. At home EEG monitoring technologies for people with epilepsy and intellectual disabilities: A scoping review. Seizure 2023; 110:11-20. [PMID: 37295277 DOI: 10.1016/j.seizure.2023.05.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/06/2023] [Accepted: 05/07/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND Conducting electroencephalography in people with intellectual disabilities (PwID) can be challenging, but the high proportion of PwID who experience seizures make it an essential part of their care. To reduce hospital-based monitoring, interventions are being developed to enable high-quality EEG data to be collected at home. This scoping review aims to summarise the current state of remote EEG monitoring research, potential benefits and limitations of the interventions, and inclusion of PwID in this research. METHODS The review was structured using the PRISMA extension for Scoping Reviews and the PICOS framework. Studies that evaluated a remote EEG monitoring intervention in adults with epilepsy were retrieved from the PubMed, MEDLINE, Embase, CINAHL, Web of Science, and ClinicalTrials.gov databases. A descriptive analysis provided an overview of the study and intervention characteristics, key results, strengths, and limitations. RESULTS 34,127 studies were retrieved and 23 were included. Five types of remote EEG monitoring were identified. Common benefits included producing useful results of comparable quality to inpatient monitoring and patient experience. A common limitation was the challenge of capturing all seizures with a small number of localised electrodes. No randomised controlled trials were included, few studies reported sensitivity and specificity, and only three considered PwID. CONCLUSIONS Overall, the studies demonstrated the feasibility of remote EEG interventions for out-of-hospital monitoring and their potential to improve data collection and quality of care for patients. Further research is needed on the effectiveness, benefits, and limitations of remote EEG monitoring compared to in-patient monitoring, especially for PwID.
Collapse
Affiliation(s)
- Madison Milne-Ives
- Centre for Health Technology, University of Plymouth, Plymouth, PL4 6DT, UK
| | | | | | - Brendan Mclean
- Royal Cornwall Hospitals NHS Trust, Treliske, Truro, Cornwall, TR1 3LJ, UK; Peninsula Medical School, Faculty of Health, University of Plymouth, Plymouth, PL4 8AA, UK; Cornwall Partnership NHS Foundation Trust, Carew House, Beacon Technology Park, Dunmere Rd, Bodmin, PL31 2QN, UK
| | - Rohit Shankar
- Peninsula Medical School, Faculty of Health, University of Plymouth, Plymouth, PL4 8AA, UK; Cornwall Partnership NHS Foundation Trust, Carew House, Beacon Technology Park, Dunmere Rd, Bodmin, PL31 2QN, UK
| | - Edward Meinert
- Centre for Health Technology, University of Plymouth, Plymouth, PL4 6DT, UK; Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK; Department of Primary Care and Public Health, School of Public Health, Imperial College London, London, W6 8RP, UK.
| |
Collapse
|
16
|
Viana PF, Duun-Henriksen J, Winston JS, Kjaer TW, Skaarup C, Richardson MP. Atlas of ambulatory subcutaneous electroencephalography. Epileptic Disord 2023; 25:584-585. [PMID: 37149497 DOI: 10.1002/epd2.20066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/25/2023] [Accepted: 04/29/2023] [Indexed: 05/08/2023]
Affiliation(s)
- Pedro F Viana
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Centre for Epilepsy, King's College Hospital NHS Foundation Trust, London, UK
- Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | | | - Joel S Winston
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Centre for Epilepsy, King's College Hospital NHS Foundation Trust, London, UK
| | | | | | - Mark P Richardson
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Centre for Epilepsy, King's College Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
17
|
Reynolds A, Vranic-Peters M, Lai A, Grayden DB, Cook MJ, Peterson A. Prognostic interictal electroencephalographic biomarkers and models to assess antiseizure medication efficacy for clinical practice: A scoping review. Epilepsia 2023; 64:1125-1174. [PMID: 36790369 DOI: 10.1111/epi.17548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 02/12/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023]
Abstract
Antiseizure medication (ASM) is the primary treatment for epilepsy. In clinical practice, methods to assess ASM efficacy (predict seizure freedom or seizure reduction), during any phase of the drug treatment lifecycle, are limited. This scoping review identifies and appraises prognostic electroencephalographic (EEG) biomarkers and prognostic models that use EEG features, which are associated with seizure outcomes following ASM initiation, dose adjustment, or withdrawal. We also aim to summarize the population and context in which these biomarkers and models were identified and described, to understand how they could be used in clinical practice. Between January 2021 and October 2022, four databases, references, and citations were systematically searched for ASM studies investigating changes to interictal EEG or prognostic models using EEG features and seizure outcomes. Study bias was appraised using modified Quality in Prognosis Studies criteria. Results were synthesized into a qualitative review. Of 875 studies identified, 93 were included. Biomarkers identified were classed as qualitative (visually identified by wave morphology) or quantitative. Qualitative biomarkers include identifying hypsarrhythmia, centrotemporal spikes, interictal epileptiform discharges (IED), classifying the EEG as normal/abnormal/epileptiform, and photoparoxysmal response. Quantitative biomarkers were statistics applied to IED, high-frequency activity, frequency band power, current source density estimates, pairwise statistical interdependence between EEG channels, and measures of complexity. Prognostic models using EEG features were Cox proportional hazards models and machine learning models. There is promise that some quantitative EEG biomarkers could be used to assess ASM efficacy, but further research is required. There is insufficient evidence to conclude any specific biomarker can be used for a particular population or context to prognosticate ASM efficacy. We identified a potential battery of prognostic EEG biomarkers, which could be combined with prognostic models to assess ASM efficacy. However, many confounders need to be addressed for translation into clinical practice.
Collapse
Affiliation(s)
- Ashley Reynolds
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Melbourne, Melbourne, Victoria, Australia.,Department of Neurosciences, St. Vincent's Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | - Michaela Vranic-Peters
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Melbourne, Melbourne, Victoria, Australia.,Department of Neurosciences, St. Vincent's Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | - Alan Lai
- Department of Neurosciences, St. Vincent's Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | - David B Grayden
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Melbourne, Melbourne, Victoria, Australia.,Department of Neurosciences, St. Vincent's Hospital, University of Melbourne, Melbourne, Victoria, Australia.,Graeme Clark Institute, University of Melbourne, Melbourne, Victoria, Australia
| | - Mark J Cook
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Melbourne, Melbourne, Victoria, Australia.,Department of Neurosciences, St. Vincent's Hospital, University of Melbourne, Melbourne, Victoria, Australia.,Graeme Clark Institute, University of Melbourne, Melbourne, Victoria, Australia
| | - Andre Peterson
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Melbourne, Melbourne, Victoria, Australia.,Department of Neurosciences, St. Vincent's Hospital, University of Melbourne, Melbourne, Victoria, Australia.,Graeme Clark Institute, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
18
|
Löscher W, Worrell GA. Novel subscalp and intracranial devices to wirelessly record and analyze continuous EEG in unsedated, behaving dogs in their natural environments: A new paradigm in canine epilepsy research. Front Vet Sci 2022; 9:1014269. [PMID: 36337210 PMCID: PMC9631025 DOI: 10.3389/fvets.2022.1014269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/26/2022] [Indexed: 11/25/2022] Open
Abstract
Epilepsy is characterized by unprovoked, recurrent seizures and is a common neurologic disorder in dogs and humans. Roughly 1/3 of canines and humans with epilepsy prove to be drug-resistant and continue to have sporadic seizures despite taking daily anti-seizure medications. The optimization of pharmacologic therapy is often limited by inaccurate seizure diaries and medication side effects. Electroencephalography (EEG) has long been a cornerstone of diagnosis and classification in human epilepsy, but because of several technical challenges has played a smaller clinical role in canine epilepsy. The interictal (between seizures) and ictal (seizure) EEG recorded from the epileptic mammalian brain shows characteristic electrophysiologic biomarkers that are very useful for clinical management. A fundamental engineering gap for both humans and canines with epilepsy has been the challenge of obtaining continuous long-term EEG in the patients' natural environment. We are now on the cusp of a revolution where continuous long-term EEG from behaving canines and humans will be available to guide clinicians in the diagnosis and optimal treatment of their patients. Here we review some of the devices that have recently emerged for obtaining long-term EEG in ambulatory subjects living in their natural environments.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hanover, Germany
- Center for Systems Neuroscience, Hanover, Germany
- *Correspondence: Wolfgang Löscher
| | - Gregory A. Worrell
- Bioelectronics Neurophysiology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
19
|
Remvig LS, Duun-Henriksen J, Fürbass F, Hartmann M, Viana PF, Kappel Overby AM, Weisdorf S, Richardson MP, Beniczky S, Kjaer TW. Detecting temporal lobe seizures in ultra long-term subcutaneous EEG using algorithm-based data reduction. Clin Neurophysiol 2022; 142:86-93. [PMID: 35987094 DOI: 10.1016/j.clinph.2022.07.504] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/10/2022] [Accepted: 07/03/2022] [Indexed: 11/03/2022]
Abstract
OBJECTIVE Ultra long-term monitoring with subcutaneous EEG (sqEEG) offers objective outpatient recording of electrographic seizures as an alternative to self-reported epileptic seizure diaries. This methodology requires an algorithm-based automatic seizure detection to indicate periods of potential seizure activity to reduce the time spent on visual review. The objective of this study was to evaluate the performance of a sqEEG-based automatic seizure detection algorithm. METHODS A multicenter cohort of subjects using sqEEG were analyzed, including nine people with epilepsy (PWE) and 12 healthy subjects, recording a total of 965 days. The automatic seizure detections of a deep-neural-network algorithm were compared to annotations from three human experts. RESULTS Data reduction ratios were 99.6% in PWE and 99.9% in the control group. The cross-PWE sensitivity was 86% (median 80%, range 69-100% when PWE were evaluated individually), and the corresponding median false detection rate was 2.4 detections per 24 hours (range: 2.0-13.0). CONCLUSIONS Our findings demonstrated that step one in a sqEEG-based semi-automatic seizure detection/review process can be performed with high sensitivity and clinically applicable specificity. SIGNIFICANCE Ultra long-term sqEEG bears the potential of improving objective seizure quantification.
Collapse
Affiliation(s)
- Line S Remvig
- UNEEG Medical A/S, Borupvang 2, DK-3450 Allerød, Denmark.
| | | | - Franz Fürbass
- Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Giefinggasse 4, 1210 Vienna, Austria
| | - Manfred Hartmann
- Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Giefinggasse 4, 1210 Vienna, Austria
| | - Pedro F Viana
- Department of Basic & Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King's College London, Denmark Hill, London, UK; Faculty of Medicine, University of Lisbon, Av. Prof. Egas Moniz MB, 1649-028 Lisboa, Portugal
| | | | - Sigge Weisdorf
- Center of Neurophysiology, Department Neurology, Zealand University Hospital, Sygehusvej 10, DK-4000 Roskilde, Denmark
| | - Mark P Richardson
- Department of Basic & Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King's College London, Denmark Hill, London, UK
| | - Sándor Beniczky
- The Danish Epilepsy Centre, Filadelfia, Kolonivej 1, 4293 Dianalund, Denmark; Aarhus University and Aarhus University Hospital, Palle Juul-Jensens Blvd 99, DK-8200 Aarhus, Denmark
| | - Troels W Kjaer
- Center of Neurophysiology, Department Neurology, Zealand University Hospital, Sygehusvej 10, DK-4000 Roskilde, Denmark; Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3b, DK.2200 Copenhagen, Denmark
| |
Collapse
|
20
|
Haneef Z, Yang K, Sheth SA, Aloor FZ, Aazhang B, Krishnan V, Karakas C. Sub-scalp electroencephalography: A next-generation technique to study human neurophysiology. Clin Neurophysiol 2022; 141:77-87. [PMID: 35907381 DOI: 10.1016/j.clinph.2022.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/20/2022] [Accepted: 07/03/2022] [Indexed: 11/29/2022]
Abstract
Sub-scalp electroencephalography (ssEEG) is emerging as a promising technology in ultra-long-term electroencephalography (EEG) recordings. Given the diversity of devices available in this nascent field, uncertainty persists about its utility in epilepsy evaluation. This review critically dissects the many proposed utilities of ssEEG devices including (1) seizure quantification, (2) seizure characterization, (3) seizure lateralization, (4) seizure localization, (5) seizure alarms, (6) seizure forecasting, (7) biomarker discovery, (8) sleep medicine, and (9) responsive stimulation. The different ssEEG devices in development have individual design philosophies with unique strengths and limitations. There are devices offering primarily unilateral recordings (24/7 EEGTM SubQ, NeuroviewTM, Soenia® UltimateEEG™), bilateral recordings (Minder™, Epios™), and even those with responsive stimulation capability (EASEE®). We synthesize the current knowledge of these ssEEG systems. We review the (1) ssEEG devices, (2) use case scenarios, (3) challenges and (4) suggest a roadmap for ideal ssEEG designs.
Collapse
Affiliation(s)
- Zulfi Haneef
- Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Kaiyuan Yang
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA.
| | - Sameer A Sheth
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Fuad Z Aloor
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Behnaam Aazhang
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA
| | - Vaishnav Krishnan
- Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA
| | - Cemal Karakas
- Division of Pediatric Neurology, Department of Neurology, University of Louisville, Louisville, KY 40202, USA; Norton Children's Neuroscience Institute, Louisville, KY 40241, USA
| |
Collapse
|
21
|
Benovitski Y, Lai A, Saunders A, McGowan C, Burns O, Nayagam D, Millard R, Harrison M, Rathbone GD, Williams RA, May CN, Murphy M, D'Souza W, Cook MJ, Williams C. Preclinical safety study of a fully implantable, sub-scalp ring electrode array for long-term EEG recordings. J Neural Eng 2022; 19:036027. [PMID: 35609552 DOI: 10.1088/1741-2552/ac72c1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Long-term electroencephalogram (EEG) recordings can aid diagnosis and management of various neurological conditions such as epilepsy. In this study we characterize the safety and stability of a clinical grade ring electrode arrays by analyzing EEG recordings, fluoroscopy, and computed tomography (CT) imaging with long-term implantation and histopathological tissue response. APPROACH Seven animals were chronically implanted with EEG recording array consisting of four electrode contacts. Recordings were made bilaterally using a bipolar longitudinal montage. The array was connected to a fully implantable micro-processor controlled electronic device with two low-noise differential amplifiers and a transmitter-receiver coil. An external wearable was used to power, communicate with the implant via an inductive coil, and store the data. The sub-scalp electrode arrays were made using medical grade silicone and platinum. The electrode arrays were tunneled in the subgaleal cleavage plane between the periosteum and the overlying dermis. These were implanted for 3-7 months before euthanasia and histopathological assessment. EEG and impedance were recorded throughout the study. MAIN RESULTS Impedance measurements remained low throughout the study for 11 of 12 channels over the recording period ranged from 3 to 5 months. There was also a steady amplitude of slow-wave EEG and chewing artifact (noise). The post-mortem CT and histopathology showed the electrodes remained in the subgaleal plane in 6 of 7 sheep. There was minimal inflammation with a thin fibrotic capsule that ranged from 4 to 101μm. There was a variable fibrosis in the subgaleal plane extending from 210 to 3617μm (S3-S7) due to surgical cleavage. One sheep had an inflammatory reaction due to electrode extrusion. The passive electrode array extraction force was around 1N. SIGNIFICANCE Results show sub-scalp electrode placement was safe and stable for long term implantation. This is advantageous for diagnosis and management of neurological conditions where long-term, EEG monitoring is required.
Collapse
Affiliation(s)
- Yuri Benovitski
- Bionics Institute, 384-388 Albert Street, East Melbourne, Victoria, 3002, AUSTRALIA
| | - Alan Lai
- The University of Melbourne Faculty of Medicine Dentistry and Health Sciences, St Vincent's Hospital, Fitzroy, Victoria, 3065, AUSTRALIA
| | - Alexia Saunders
- Bionics Institute, 384-388 Albert Street, East Melbourne, Victoria, 3002, AUSTRALIA
| | - Ceara McGowan
- Bionics Institute, 384-388 Albert Street, East Melbourne, Victoria, 3002, AUSTRALIA
| | - Owen Burns
- Bionics Institute, 384-388 Albert Street, East Melbourne, Victoria, 3002, AUSTRALIA
| | - David Nayagam
- Bionics Institute, 384-388 Albert Street, East Melbourne, Victoria, 3002, AUSTRALIA
| | - Rodney Millard
- Bionics Institute, 384-388 Albert Street, East Melbourne, Victoria, 3002, AUSTRALIA
| | - Mark Harrison
- Bionics Institute, 384-388 Albert Street, East Melbourne, Victoria, 3002, AUSTRALIA
| | - Graeme D Rathbone
- Bionics Institute, 384-388 Albert Street, East Melbourne, Victoria, 3002, AUSTRALIA
| | - Richard A Williams
- The University of Melbourne Department of Clinical Pathology, St Vincent's Hospital, Fitzroy, Victoria, 3065, AUSTRALIA
| | - Clive N May
- Florey Institute of Neuroscience and Mental Health, 30 Royal Parade, Parkville, Victoria, 3052, AUSTRALIA
| | - Michael Murphy
- The University of Melbourne Surgery at St Vincent's Hospital, St. Vincent's Hospital, Fitzroy, Victoria, 3065, AUSTRALIA
| | - Wendyl D'Souza
- The University of Melbourne Faculty of Medicine Dentistry and Health Sciences, St Vincent's Hospital, Fitzroy, Victoria, 3065, AUSTRALIA
| | - Mark J Cook
- The University of Melbourne Faculty of Medicine Dentistry and Health Sciences, St Vincent's Hospital, Fitzroy, Victoria, 3065, AUSTRALIA
| | - Chris Williams
- Bionics Institute, 384-388 Albert Street, East Melbourne, Victoria, 3002, AUSTRALIA
| |
Collapse
|
22
|
Schulze-Bonhage A. A realistic and patient-specific perspective on EEG-based seizure detection. Clin Neurophysiol 2022; 138:191-192. [DOI: 10.1016/j.clinph.2022.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/04/2022] [Indexed: 11/03/2022]
|
23
|
Kjaer TW, Remvig LS, Helge AW, Duun-Henriksen J. The Individual Ictal Fingerprint: Combining Movement Measures With Ultra Long-Term Subcutaneous EEG in People With Epilepsy. Front Neurol 2022; 12:718329. [PMID: 35002910 PMCID: PMC8733463 DOI: 10.3389/fneur.2021.718329] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Epileptic seizures are caused by abnormal brain wave hypersynchronization leading to a range of signs and symptoms. Tools for detecting seizures in everyday life typically focus on cardiac rhythm, electrodermal activity, or movement (EMG, accelerometry); however, these modalities are not very effective for non-motor seizures. Ultra long-term subcutaneous EEG-devices can detect the electrographic changes that do not depend on clinical changes. Nonetheless, this also means that it is not possible to assess whether a seizure is clinical or subclinical based on an EEG signal alone. Therefore, we combine EEG and movement-related modalities in this work. We focus on whether it is possible to define an individual “multimodal ictal fingerprint” which can be exploited in different epilepsy management purposes. Methods: This study used ultra long-term data from an outpatient monitoring trial of persons with temporal lobe epilepsy obtained with a subcutaneous EEG recording system. Subcutaneous EEG, an EMG estimate and chest-mounted accelerometry were extracted from four persons showing more than 10 well-defined electrographic seizures each. Numerous features were computed from all three modalities. Based on these, the Gini impurity measure of a Random Forest classifier was used to select the most discriminative features for the ictal fingerprint. A total of 74 electrographic seizures were analyzed. Results: The optimal individual ictal fingerprints included features extracted from all three tested modalities: an acceleration component; the power of the estimated EMG activity; and the relative power in the delta (0.5–4 Hz), low theta (4–6 Hz), and high theta (6–8 Hz) bands of the subcutaneous EEG. Multimodal ictal fingerprints were established for all persons, clustering seizures within persons, while separating seizures across persons. Conclusion: The existence of multimodal ictal fingerprints illustrates the benefits of combining multiple modalities such as EEG, EMG, and accelerometry in future epilepsy management. Multimodal ictal fingerprints could be used by doctors to get a better understanding of the individual seizure semiology of people with epilepsy. Furthermore, the multimodal ictal fingerprint gives a better understanding of how seizures manifest simultaneously in different modalities. A knowledge that could be used to improve seizure acknowledgment when reviewing EEG without video.
Collapse
Affiliation(s)
- Troels W Kjaer
- Center of Neurophysiology, Department of Neurology, Zealand University Hospital, Roskilde, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Line S Remvig
- Epilepsy Science, UNEEG medical A/S, Alleroed, Denmark
| | | | | |
Collapse
|
24
|
Hubbard I, Beniczky S, Ryvlin P. The Challenging Path to Developing a Mobile Health Device for Epilepsy: The Current Landscape and Where We Go From Here. Front Neurol 2021; 12:740743. [PMID: 34659099 PMCID: PMC8517120 DOI: 10.3389/fneur.2021.740743] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/03/2021] [Indexed: 11/13/2022] Open
Abstract
Seizure detection, and more recently seizure forecasting, represent important avenues of clinical development in epilepsy, promoted by progress in wearable devices and mobile health (mHealth), which might help optimizing seizure control and prevention of seizure-related mortality and morbidity in persons with epilepsy. Yet, very long-term continuous monitoring of seizure-sensitive biosignals in the ambulatory setting presents a number of challenges. We herein provide an overview of these challenges and current technological landscape of mHealth devices for seizure detection. Specifically, we display, which types of sensor modalities and analytical methods are available, and give insight into current clinical practice guidelines, main outcomes of clinical validation studies, and discuss how to evaluate device performance at point-of-care facilities. We then address pitfalls which may arise in patient compliance and the need to design solutions adapted to user experience.
Collapse
Affiliation(s)
- Ilona Hubbard
- Department of Clinical Neurosciences, Vaud University Hospital, Lausanne, Switzerland
| | - Sandor Beniczky
- Department of Clinical Neurophysiology, Danish Epilepsy Center, Dianalund, Denmark.,Department of Clinical Neurophysiology, Aarhus University Hospital, Aarhus, Denmark
| | - Philippe Ryvlin
- Department of Clinical Neurosciences, Vaud University Hospital, Lausanne, Switzerland
| |
Collapse
|
25
|
Stirling RE, Maturana MI, Karoly PJ, Nurse ES, McCutcheon K, Grayden DB, Ringo SG, Heasman JM, Hoare RJ, Lai A, D'Souza W, Seneviratne U, Seiderer L, McLean KJ, Bulluss KJ, Murphy M, Brinkmann BH, Richardson MP, Freestone DR, Cook MJ. Seizure Forecasting Using a Novel Sub-Scalp Ultra-Long Term EEG Monitoring System. Front Neurol 2021; 12:713794. [PMID: 34497578 PMCID: PMC8419461 DOI: 10.3389/fneur.2021.713794] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/27/2021] [Indexed: 11/13/2022] Open
Abstract
Accurate identification of seizure activity, both clinical and subclinical, has important implications in the management of epilepsy. Accurate recognition of seizure activity is essential for diagnostic, management and forecasting purposes, but patient-reported seizures have been shown to be unreliable. Earlier work has revealed accurate capture of electrographic seizures and forecasting is possible with an implantable intracranial device, but less invasive electroencephalography (EEG) recording systems would be optimal. Here, we present preliminary results of seizure detection and forecasting with a minimally invasive sub-scalp device that continuously records EEG. Five participants with refractory epilepsy who experience at least two clinically identifiable seizures monthly have been implanted with sub-scalp devices (Minder®), providing two channels of data from both hemispheres of the brain. Data is continuously captured via a behind-the-ear system, which also powers the device, and transferred wirelessly to a mobile phone, from where it is accessible remotely via cloud storage. EEG recordings from the sub-scalp device were compared to data recorded from a conventional system during a 1-week ambulatory video-EEG monitoring session. Suspect epileptiform activity (EA) was detected using machine learning algorithms and reviewed by trained neurophysiologists. Seizure forecasting was demonstrated retrospectively by utilizing cycles in EA and previous seizure times. The procedures and devices were well-tolerated and no significant complications have been reported. Seizures were accurately identified on the sub-scalp system, as visually confirmed by periods of concurrent conventional scalp EEG recordings. The data acquired also allowed seizure forecasting to be successfully undertaken. The area under the receiver operating characteristic curve (AUC score) achieved (0.88), which is comparable to the best score in recent, state-of-the-art forecasting work using intracranial EEG.
Collapse
Affiliation(s)
- Rachel E. Stirling
- Seer Medical Pty Ltd, Melbourne, VIC, Australia
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, VIC, Australia
| | - Matias I. Maturana
- Seer Medical Pty Ltd, Melbourne, VIC, Australia
- Department of Medicine at St. Vincent's Hospital Melbourne, The University of Melbourne, Fitzroy, VIC, Australia
| | - Philippa J. Karoly
- Seer Medical Pty Ltd, Melbourne, VIC, Australia
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, VIC, Australia
| | - Ewan S. Nurse
- Seer Medical Pty Ltd, Melbourne, VIC, Australia
- Department of Medicine at St. Vincent's Hospital Melbourne, The University of Melbourne, Fitzroy, VIC, Australia
| | | | - David B. Grayden
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, VIC, Australia
- Department of Medicine at St. Vincent's Hospital Melbourne, The University of Melbourne, Fitzroy, VIC, Australia
| | | | - John M. Heasman
- Epi-Minder Pty. Ltd., Melbourne, VIC, Australia
- Cochlear Limited, Sydney, NSW, Australia
| | | | - Alan Lai
- Department of Medicine at St. Vincent's Hospital Melbourne, The University of Melbourne, Fitzroy, VIC, Australia
- Department of Neuroscience, St. Vincent's Hospital Melbourne, Fitzroy, VIC, Australia
| | - Wendyl D'Souza
- Department of Medicine at St. Vincent's Hospital Melbourne, The University of Melbourne, Fitzroy, VIC, Australia
- Department of Neuroscience, St. Vincent's Hospital Melbourne, Fitzroy, VIC, Australia
| | - Udaya Seneviratne
- Department of Medicine at St. Vincent's Hospital Melbourne, The University of Melbourne, Fitzroy, VIC, Australia
- Department of Neuroscience, Monash Medical Centre, Melbourne, VIC, Australia
- Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, Melbourne, VIC, Australia
| | - Linda Seiderer
- Department of Neuroscience, St. Vincent's Hospital Melbourne, Fitzroy, VIC, Australia
| | - Karen J. McLean
- Epi-Minder Pty. Ltd., Melbourne, VIC, Australia
- Department of Neuroscience, St. Vincent's Hospital Melbourne, Fitzroy, VIC, Australia
| | - Kristian J. Bulluss
- Department of Medicine at St. Vincent's Hospital Melbourne, The University of Melbourne, Fitzroy, VIC, Australia
- Department of Neuroscience, St. Vincent's Hospital Melbourne, Fitzroy, VIC, Australia
| | - Michael Murphy
- Department of Medicine at St. Vincent's Hospital Melbourne, The University of Melbourne, Fitzroy, VIC, Australia
- Department of Neuroscience, St. Vincent's Hospital Melbourne, Fitzroy, VIC, Australia
| | - Benjamin H. Brinkmann
- Bioelectronics Neurophysiology and Engineering Lab, Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | - Mark P. Richardson
- School of Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | | | - Mark J. Cook
- Seer Medical Pty Ltd, Melbourne, VIC, Australia
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, VIC, Australia
- Department of Medicine at St. Vincent's Hospital Melbourne, The University of Melbourne, Fitzroy, VIC, Australia
- Epi-Minder Pty. Ltd., Melbourne, VIC, Australia
| |
Collapse
|