1
|
Orford JT, Tan H, Martin JM, Wong BBM, Alton LA. Impacts of Exposure to Ultraviolet Radiation and an Agricultural Pollutant on Morphology and Behavior of Tadpoles (Limnodynastes tasmaniensis). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:1615-1626. [PMID: 38837484 DOI: 10.1002/etc.5895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/27/2024] [Accepted: 04/17/2024] [Indexed: 06/07/2024]
Abstract
Amphibians are the most threatened vertebrate class globally. Multiple factors have been implicated in their global decline, and it has been hypothesized that interactions between stressors may be a major cause. Increased ultraviolet (UV) radiation, as a result of ozone depletion, has been identified as one such stressor. Exposure to UV radiation has been shown to have detrimental effects on amphibians and can exacerbate the effects of other stressors, such as chemical pollutants. Chemical pollution has likewise been recognized as a major factor contributing to amphibian declines, particularly, endocrine-disrupting chemicals. In this regard, 17β-trenbolone is a potent anabolic steroid used in the agricultural industry to increase muscle mass in cattle and has been repeatedly detected in the environment where amphibians live and breed. At high concentrations, 17β-trenbolone has been shown to impact amphibian survival and gonadal development. In the present study, we investigated the effects of environmentally realistic UV radiation and 17β-trenbolone exposure, both in isolation and in combination, on the morphology and behavior of tadpoles (Limnodynastes tasmaniensis). We found that neither stressor in isolation affected tadpoles, nor did we find any interactive effects. The results from our 17β-trenbolone treatment are consistent with recent research suggesting that, at environmentally realistic concentrations, tadpoles may be less vulnerable to this pollutant compared to other vertebrate classes. The absence of UV radiation-induced effects found in the present study could be due to species-specific variation in susceptibility, as well as the dosage utilized. We suggest that future research should incorporate long-term studies with multiple stressors to accurately identify the threats to, and subsequent consequences for, amphibians under natural conditions. Environ Toxicol Chem 2024;43:1615-1626. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Jack T Orford
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Hung Tan
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Jake M Martin
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Bob B M Wong
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Lesley A Alton
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
- Centre for Geometric Biology, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
2
|
Carter G, Ward J. Independent and synergistic effects of microplastics and endocrine-disrupting chemicals on the reproductive social behavior of fathead minnows ( Pimephales promelas). Ecol Evol 2024; 14:e10846. [PMID: 38327688 PMCID: PMC10847624 DOI: 10.1002/ece3.10846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 12/11/2023] [Accepted: 12/18/2023] [Indexed: 02/09/2024] Open
Abstract
Microplastics (MPs) have become an environmental concern in recent years, with most research focused on the physiological effects of exposure. Comparatively little consideration has been given to the potential behavioral impacts of exposure, which may also have fitness consequences for individuals. Moreover, MPs can serve as vectors for endocrine-disrupting chemicals and other locally co-occurring contaminants known to impair behavioral responses. This project aimed to determine whether MPs alone or in association with a common environmental EDC (17-alpha ethinyl estradiol; EE2) alter reproductive behavior and decision-making in fish. Male and female fathead minnows (Pimephales promelas) were exposed to MPs associated with either a low (10 ng/L; MPEE2 10) or high (50 ng/L, MPEE2 50) concentration of EE2, or MPs without EE2 (MPvirgin) for 30 days via a dietary feeding protocol. Behavioral trials were conducted on Day 31 to determine the effects of exposure on male-female social interactions. The expression of male sexually selected traits, including courtship, was unaffected by exposure. However, non-exposed females in all treatment groups trended toward discrimination against exposed males, which reached statistical significance for the MPEE2 50 group. Female fish exposed to MPs, alone or in association with EE2, were equally likely to approach and associate with non-exposed and exposed males. The results from this study suggest that MPs may alter social behavior in fishes and that the behavioral impacts of exposure may be more strongly pronounced in females than males. Such individual-level changes in fitness have the potential to impact population size, with downstream effects on the broader aquatic community.
Collapse
Affiliation(s)
- Grace Carter
- Biology DepartmentBall State UniversityMuncieIndianaUSA
| | - Jessica Ward
- Biology DepartmentBall State UniversityMuncieIndianaUSA
| |
Collapse
|
3
|
Orford JT, Tan H, Tingley R, Alton LA, Wong BBM, Martin JM. Bigger and bolder: Widespread agricultural pollutant 17β-trenbolone increases growth and alters behaviour in tadpoles (Litoria ewingii). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 260:106577. [PMID: 37207487 DOI: 10.1016/j.aquatox.2023.106577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/11/2023] [Accepted: 05/14/2023] [Indexed: 05/21/2023]
Abstract
Endocrine-disrupting chemicals-compounds that directly interfere with the endocrine system of exposed animals-are insidious environmental pollutants that can disrupt hormone function, even at very low concentrations. The dramatic impacts that some endocrine-disrupting chemicals can have on the reproductive development of wildlife are well documented. However, the potential of endocrine-disrupting chemicals to disrupt animal behaviour has received far less attention, despite the important links between behavioural processes and population-level fitness. Accordingly, we investigated the impacts of 14 and 21-day exposure to two environmentally realistic levels of 17β-trenbolone (4.6 and 11.2 ng/L), a potent endocrine-disrupting steroid and agricultural pollutant, on growth and behaviour in tadpoles of an anuran amphibian, the southern brown tree frog (Litoria ewingii). We found that 17β-trenbolone altered morphology, baseline activity and responses to a predatory threat, but did not affect anxiety-like behaviours in a scototaxis assay. Specifically, we found that tadpoles exposed to our high-17β-trenbolone treatment were significantly longer and heavier at 14 and 21 days. We also found that tadpoles exposed to 17β-trenbolone showed higher levels of baseline activity, and significantly reduced their activity following a simulated predator strike. These results provide insights into the wider repercussions of agricultural pollutants on key developmental and behavioural traits in aquatic species, and demonstrate the importance of behavioural studies in the ecotoxicological field.
Collapse
Affiliation(s)
- Jack T Orford
- School of Biological Sciences, Monash University, Victoria, Melbourne, Australia.
| | - Hung Tan
- School of Biological Sciences, Monash University, Victoria, Melbourne, Australia
| | - Reid Tingley
- School of Biological Sciences, Monash University, Victoria, Melbourne, Australia; EnviroDNA, Victoria, Melbourne, Australia
| | - Lesley A Alton
- School of Biological Sciences, Monash University, Victoria, Melbourne, Australia; Centre for Geometric Biology, Monash University, Victoria, Melbourne, Australia
| | - Bob B M Wong
- School of Biological Sciences, Monash University, Victoria, Melbourne, Australia
| | - Jake M Martin
- School of Biological Sciences, Monash University, Victoria, Melbourne, Australia; Department of Wildlife, Fish, and Environmental Studies, Swedish Universityof Agricultural Sciences, Umeå, Sweden; Department of Zoology, Stockholm University, Stockholm, Sweden
| |
Collapse
|
4
|
Hutton SJ, Siddiqui S, Pedersen EI, Markgraf CY, Segarra A, Hladik ML, Connon RE, Brander SM. Comparative behavioral ecotoxicology of Inland Silverside larvae exposed to pyrethroids across a salinity gradient. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159398. [PMID: 36257430 DOI: 10.1016/j.scitotenv.2022.159398] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/05/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Pyrethroids, a class of commonly used insecticides, are frequently detected in aquatic environments, including estuaries. The influence that salinity has on organism physiology and the partitioning of hydrophobic chemicals, such as pyrethroids, has driven interest in how toxicity changes in saltwater compared to freshwater. Early life exposures in fish to pyrethroids cause toxicity at environmentally relevant concentrations, which can alter behavior. Behavior is a highly sensitive endpoint that influences overall organism fitness and can be used to detect toxicity of environmentally relevant concentrations of aquatic pollutants. Inland Silversides (Menidia beryllina), a commonly used euryhaline model fish species, were exposed from 5 days post fertilization (~1-day pre-hatch) for 96 h to six pyrethroids: bifenthrin, cyfluthrin, cyhalothrin, cypermethrin, esfenvalerate and permethrin. Exposures were conducted at three salinities relevant to brackish, estuarine habitat (0.5, 2, and 6 PSU) and across 3 concentrations, either 0.1, 1, 10, and/or 100 ng/L, plus a control. After exposure, Inland Silversides underwent a behavioral assay in which larval fish were subjected to a dark and light cycle stimuli to determine behavioral toxicity. Assessment of total distanced moved and thigmotaxis (wall hugging), used to measure hyper/hypoactivity and anxiety like behavior, respectively, demonstrate that even at the lowest concentration of 0.1 ng/L pyrethroids can induce behavioral changes at all salinities. We found that toxicity decreased as salinity increased for all pyrethroids except permethrin. Additionally, we found evidence to suggest that the relationship between log KOW and thigmotaxis is altered between the lower and highest salinities.
Collapse
Affiliation(s)
- Sara J Hutton
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, United States of America.
| | - Samreen Siddiqui
- Department of Fisheries, Wildlife, and Conservation Sciences, Coastal Oregon Marine Experiment Station, Oregon State University, Newport, OR 97365, United States of America
| | - Emily I Pedersen
- Department of Fisheries, Wildlife, and Conservation Sciences, Coastal Oregon Marine Experiment Station, Oregon State University, Newport, OR 97365, United States of America
| | - Christopher Y Markgraf
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, United States of America
| | - Amelie Segarra
- Department of Anatomy, Physiology and Cell Biology, University of California, Davis, CA 95616, United States of America
| | - Michelle L Hladik
- U.S. Geological Survey, California Water Science Center, Sacramento, CA 95819, United States of America
| | - Richard E Connon
- Department of Anatomy, Physiology and Cell Biology, University of California, Davis, CA 95616, United States of America
| | - Susanne M Brander
- Department of Fisheries, Wildlife, and Conservation Sciences, Coastal Oregon Marine Experiment Station, Oregon State University, Newport, OR 97365, United States of America
| |
Collapse
|
5
|
Orford JT, Ozeki S, Brand JA, Henry J, Wlodkowic D, Alton LA, Martin JM, Wong BBM. Effects of the agricultural pollutant 17β-trenbolone on morphology and behaviour of tadpoles (Limnodynastes tasmaniensis). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 251:106289. [PMID: 36087492 DOI: 10.1016/j.aquatox.2022.106289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
Pollutants, such as endocrine disrupting chemicals (EDCs), are increasingly being detected in organisms and ecosystems globally. Agricultural activities, including the use of hormonal growth promotants (HGPs), are a major source of EDC contamination. One potent EDC that enters into the environment through the use of HGPs is 17β-trenbolone. Despite EDCs being repeatedly shown to affect reproduction and development, comparatively little is known regarding their effects on behaviour. Amphibians, one of the most imperilled vertebrate taxa globally, are at particular risk of exposure to such pollutants as they often live and breed near agricultural operations. Yet, no previous research on amphibians has explored the effects of 17β-trenbolone exposure on foraging or antipredator behaviour, both of which are key fitness-related behavioural traits. Accordingly, we investigated the impacts of 28-day exposure to two environmentally realistic concentrations of 17β-trenbolone (average measured concentrations: 10 and 66 ng/L) on the behaviour and growth of spotted marsh frog tadpoles (Limnodynastes tasmaniensis). Contrary to our predictions, there was no significant effect of 17β-trenbolone exposure on tadpole growth, antipredator response, anxiety-like behaviour, or foraging. We hypothesise that the differences in effects found between this study and those conducted on fish may be due to taxonomic differences and/or the life stage of the animals used, and suggest further research is needed to investigate the potential for delayed manifestation of the effects of 17β-trenbolone exposure.
Collapse
Affiliation(s)
- Jack T Orford
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia.
| | - Shiho Ozeki
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Jack A Brand
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Jason Henry
- The Neurotoxicology Laboratory, School of Science, RMIT University, Bundoora, VIC, 3083, Australia
| | - Donald Wlodkowic
- The Neurotoxicology Laboratory, School of Science, RMIT University, Bundoora, VIC, 3083, Australia
| | - Lesley A Alton
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Jake M Martin
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia; Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Bob B M Wong
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
6
|
Martin JM, Orford JT, Melo GC, Tan H, Mason RT, Ozeki S, Bertram MG, Wong BBM, Alton LA. Exposure to an androgenic agricultural pollutant does not alter metabolic rate, behaviour, or morphology of tadpoles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 299:118870. [PMID: 35065139 DOI: 10.1016/j.envpol.2022.118870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/21/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Globally, amphibian species are experiencing dramatic population declines, and many face the risk of imminent extinction. Endocrine-disrupting chemicals (EDCs) have been recognised as an underappreciated factor contributing to global amphibian declines. In this regard, the use of hormonal growth promotants in the livestock industry provides a direct pathway for EDCs to enter the environment-including the potent anabolic steroid 17β-trenbolone. Emerging evidence suggests that 17β-trenbolone can impact traits related to metabolism, somatic growth, and behaviour in non-target species. However, far less is known about possible effects of 17β-trenbolone on anuran species, particularly during early life stages. Accordingly, in the present study we investigated the effects of 28-day exposure to 17β-trenbolone (mean measured concentrations: 10 and 66 ng/L) on body size, body condition, metabolic rate, and anxiety-related behaviour of tadpoles (Limnodynastes tasmaniensis). Specifically, we measured rates of O2 consumption of individual tadpoles as a proxy for metabolic rate and quantified their swimming activity and their time spent in the upper half of the water column as indicators of anxiety-related behaviour. Counter to our predictions based on effects observed in other taxa, we detected no effect of 17β-trenbolone on body size, metabolic rate, or behaviour of tadpoles; although, we did detect a subtle, but statistically significant decrease in body condition at the highest 17β-trenbolone concentration. We hypothesise that 17β-trenbolone may induce taxa-specific effects on metabolic function, growth, and anxiety-related behaviour, with anurans being less sensitive to disruption than fish, and encourage further cross-taxa investigation to test this hypothesis.
Collapse
Affiliation(s)
- Jake M Martin
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia.
| | - Jack T Orford
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Gabriela C Melo
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Hung Tan
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Rachel T Mason
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Shiho Ozeki
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Michael G Bertram
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Bob B M Wong
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Lesley A Alton
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
7
|
Tan H, Bertram MG, Martin JM, Ecker TE, Hannington SL, Saaristo M, O'Bryan MK, Wong BBM. The endocrine disruptor 17β-trenbolone alters the relationship between pre- and post-copulatory sexual traits in male mosquitofish (Gambusia holbrooki). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 790:148028. [PMID: 34087738 DOI: 10.1016/j.scitotenv.2021.148028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/21/2021] [Accepted: 05/22/2021] [Indexed: 06/12/2023]
Abstract
It is now well-established that reproduction in wildlife can be disrupted by anthropogenic environmental changes, such as chemical pollution. However, very little is known about how these pollutants might affect the interplay between pre- and post-copulatory mechanisms of sexual selection. Here, we investigated the impacts of 21-day exposure of male eastern mosquitofish (Gambusia holbrooki) to a field-realistic level (average measured concentration: 11 ng/L) of the endocrine-disrupting chemical 17β-trenbolone (17β-TB) on pre- and post-copulatory reproductive traits. We examined male reproductive behaviour by testing the time spent near a female behind a partition, as well as the number of copulation attempts made, and the time spent chasing a female in a free-swimming context. Sperm traits were also assayed for all males. We found that exposure of male fish to 17β-TB altered the relationship between key pre- and post-copulatory reproductive traits. Furthermore, 17β-TB-exposed males had, on average, a higher percentage of motile sperm, and performed fewer copulation attempts than unexposed males. However, there was no overall effect of 17β-TB exposure on either the time males spent associating with or chasing females. Taken together, our findings demonstrate the potential for chemical pollutants to affect both pre- and post-copulatory sexual traits, and the interplay between these mechanisms of sexual selection in contaminated wildlife.
Collapse
Affiliation(s)
- Hung Tan
- School of Biological Sciences, Monash University, Victoria, Australia
| | - Michael G Bertram
- School of Biological Sciences, Monash University, Victoria, Australia; Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden.
| | - Jake M Martin
- School of Biological Sciences, Monash University, Victoria, Australia
| | - Tiarne E Ecker
- School of Biological Sciences, Monash University, Victoria, Australia
| | | | - Minna Saaristo
- School of Biological Sciences, Monash University, Victoria, Australia; Department of Biosciences, Åbo Akademi University, Turku, Finland; EPA Victoria, Water Sciences, Victoria, Australia
| | - Moira K O'Bryan
- School of Biological Sciences, Monash University, Victoria, Australia
| | - Bob B M Wong
- School of Biological Sciences, Monash University, Victoria, Australia
| |
Collapse
|
8
|
Mi P, Gao Q, Feng ZY, Zhang JW, Zhao X, Chen DY, Feng XZ. Melatonin attenuates 17β-trenbolone induced insomnia-like phenotype and movement deficiency in zebrafish. CHEMOSPHERE 2020; 253:126762. [PMID: 32302915 DOI: 10.1016/j.chemosphere.2020.126762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/07/2020] [Accepted: 04/07/2020] [Indexed: 06/11/2023]
Abstract
17β-trenbolone (17β-TBOH) is one of the dominant metabolites of trenbolone acetate, which is widely applied in beef cattle operations around the globe. The effects of environmental concentrations of 17β-trenbolone on the early development of zebrafish embryos have received very little attention. Melatonin could regulate sleep-wake cycle and plays a protective role in various adverse conditions. Here, environmentally realistic concentrations of 17β-trenbolone (1 ng/L, 10 ng/L, 50 ng/L) has been exposure to zebrafish embryos at 2 h postfertilization (hpf). The results showed that 10 ng/L and 50 ng/L 17β-trenbolone disturbed the distribution of caudal primary motoneurons and downregulated expression of motoneuron development related genes along with locomotion decreasing. While melatonin could recover the detrimental effects caused by 17β-trenbolone. Interestingly, 17β-trenbolone exposure increased waking activity and decreased rest even in a low dose (1 ng/L). Moreover, it upregulated hypocretin/orexin (Hcrt) signaling which promotes wakefulness. Melatonin restored the insomnia-like alternation induced by 17β-trenbolone exposure. Collectively, we conclude that 17β-trenbolone disturbed motoneuron development and altered sleep/wake behavior, while melatonin could alleviate the deleterious influence on motoneuron development and recover the circadian rhythm.
Collapse
Affiliation(s)
- Ping Mi
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Qian Gao
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Department of Histology and Embryology, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Ze-Yang Feng
- Institute of Robotics and Automatic Information System, Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tianjin, 300350, China
| | - Jing-Wen Zhang
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Xin Zhao
- Institute of Robotics and Automatic Information System, Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tianjin, 300350, China.
| | - Dong-Yan Chen
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Department of Histology and Embryology, School of Medicine, Nankai University, Tianjin, 300071, China.
| | - Xi-Zeng Feng
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
9
|
Ward JL, Korn V, Auxier AN, Schoenfuss HL. Temperature and Estrogen Alter Predator-Prey Interactions between Fish Species. Integr Org Biol 2020; 2:obaa008. [PMID: 33791552 PMCID: PMC7671136 DOI: 10.1093/iob/obaa008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
A variety of environmental estrogens are commonly detected in human-impacted waterways. Although much is known about the effects of these environmental estrogens on the reproductive physiology and behavior of individuals within species, comparatively less is known about how these compounds alter the outcomes of interactions between species. Furthermore, few studies have considered how the effects of contaminants are modulated by natural variation in abiotic factors, such as temperature. To help fill this knowledge gap, we conducted a factorial experiment to examine the independent and combined effects of estrone (E1) and temperature on the outcome of predator-prey interactions between two common North American freshwater fishes, fathead minnows (Pimephales promelas) and bluegill sunfish (Lepomis macrochirus). Larval fathead minnows and adult sunfish were exposed to either a low (mean±standard deviation, 90.1 ± 18 ng/L; n = 16) or high (414 ± 147 ng/L; n = 15) concentration of E1 or to a solvent control for 30 days at one of four natural seasonal temperatures (15°C, 18°C, 21°C, and 24°C) before predation trials were performed. Exposure to E1 was associated with a significant increase in larval predation mortality that was independent of temperature. Across all temperature treatments, approximately 74% of control minnows survived; this survivorship significantly exceeded that of minnows exposed to either concentration of E1 (49% and 53% for minnows exposed to the low and high concentrations, respectively). However, exposure to E1 also impaired the prey-capture success of sunfish, partially mitigating predation pressure on exposed minnows. Overall prey-capture success by sunfish showed an inverted U-shaped distribution with temperature, with maximal prey consumption occurring at 21°C. This study illustrates the vulnerability of organismal interactions to estrogenic pollutants and highlights the need to include food web interactions in assessments of risk.
Collapse
Affiliation(s)
- J L Ward
- Department of Biology, Ball State University, 2111 W Riverside Ave, Muncie, IN 47306, USA
| | - V Korn
- Aquatic Toxicology Laboratory, Department of Biology, St. Cloud State University, 720 4th Avenue South, St Cloud, MN 56301, USA
| | - A N Auxier
- Department of Biology, Ball State University, 2111 W Riverside Ave, Muncie, IN 47306, USA
| | - H L Schoenfuss
- Aquatic Toxicology Laboratory, Department of Biology, St. Cloud State University, 720 4th Avenue South, St Cloud, MN 56301, USA
| |
Collapse
|
10
|
Bertram MG, Tomkins P, Saaristo M, Martin JM, Michelangeli M, Tomkins RB, Wong BBM. Disruption of male mating strategies in a chemically compromised environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 703:134991. [PMID: 31757546 DOI: 10.1016/j.scitotenv.2019.134991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/30/2019] [Accepted: 10/14/2019] [Indexed: 06/10/2023]
Abstract
A leading source of endocrine-disrupting chemicals (EDCs) in the environment is run-off of veterinary pharmaceuticals used in agriculture, including hormonal growth promotants (HGPs). Despite being banned in various countries, HGP use is still common in beef production around the world. The androgenic steroid 17β-trenbolone (17β-TB) is a HGP that commonly enters surface waters via livestock effluent run-off. Here, we used a flow-through system to expose wild-caught adult male guppies (Poecilia reticulata) to an environmentally realistic level of 17β-TB (average measured concentration = 2 ng/L) for 21 days. We then compared the response of exposed and unexposed males to sequentially presented large and small stimulus (unexposed) females. Due to a positive size-fecundity relationship, larger females are generally expected to be preferred by males. While we found no evidence that the size of a previously encountered female affected the amount of courtship or coercive 'sneak' mating behaviour performed by males during the second presentation, males from both exposure treatments conducted more frequent courting events towards larger females during both presentations, suggesting an absolute preference for greater female size. Further, across both presentations, 17β-TB exposure caused a shift in male mating strategy towards increased coercive sneaking behaviour, although male sequential investment into mating effort was not impacted at the tested dosage. In combination, our findings demonstrate that exposure to a field-realistic level of a widespread agricultural pollutant alters male mating strategies in fish, and contribute to a growing understanding of sub-lethal impacts of chemical contaminants on complex behaviours in wildlife.
Collapse
Affiliation(s)
- Michael G Bertram
- School of Biological Sciences, Monash University, Victoria, Australia; Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden.
| | - Patrick Tomkins
- School of Biological Sciences, Monash University, Victoria, Australia
| | - Minna Saaristo
- School of Biological Sciences, Monash University, Victoria, Australia; Department of Biosciences, Åbo Akademi University, Turku, Finland
| | - Jake M Martin
- School of Biological Sciences, Monash University, Victoria, Australia
| | - Marcus Michelangeli
- School of Biological Sciences, Monash University, Victoria, Australia; Department of Environmental Science and Policy, University of California, Davis, USA
| | - Raymond B Tomkins
- Centre for AgriBioscience, Department of Environment, Land, Water and Planning (DELWP), Victoria, Australia
| | - Bob B M Wong
- School of Biological Sciences, Monash University, Victoria, Australia
| |
Collapse
|
11
|
Bertram MG, Martin JM, Saaristo M, Ecker TE, Michelangeli M, Deal NDS, Lim SL, O'Bryan MK, Wong BBM. Context-specific behavioural changes induced by exposure to an androgenic endocrine disruptor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 664:177-187. [PMID: 30743111 DOI: 10.1016/j.scitotenv.2019.01.382] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/28/2019] [Accepted: 01/28/2019] [Indexed: 06/09/2023]
Abstract
Pharmaceutical contaminants are being detected with increased frequency in organisms and ecosystems worldwide. This represents a major environmental concern given that various pharmaceuticals act on drug targets that are evolutionarily conserved across diverse taxa, are often persistent in the environment, and can bioconcentrate in organisms and bioaccumulate in food chains. Despite this, relatively little is known about the potential for pharmaceutical contaminants to affect animal behaviour, especially across multiple fitness-related contexts. Here, we investigated impacts of 21-day exposure of wild-caught male eastern mosquitofish (Gambusia holbrooki) to a field-realistic level of the veterinary pharmaceutical 17β-trenbolone-a growth-promoting steroid used extensively in beef production worldwide and a potent androgenic endocrine disruptor repeatedly detected in surface waters affected by livestock effluent run-off. First, we examined male boldness, activity, and exploratory behaviour in a novel environment (maze arena) and found no significant effect of 17β-trenbolone exposure. Second, the same males were tested in a reproductive assay for their tendency to associate with a stimulus (unexposed) female behind a partition. Exposed males exhibited reduced association behaviour, taking longer to first associate with, and spending less time within close proximity to, a female. Third, all males were assayed for sperm function (computer-assisted sperm analysis, sperm viability) or quantity (total sperm count) and, although no significant main effects of 17β-trenbolone were seen on sperm traits, exposure altered the relationship between male morphology and sperm function. Lastly, morphological traits were assessed and exposed males were found to have, on average, increased mass relative to length. In combination, these results demonstrate that exposure to a field-realistic level of 17β-trenbolone can produce subtle but important trait alterations in male fish-including context-specific behavioural changes, disruption of key sperm function trade-offs, and altered morphology-with potential impacts on exposed wildlife.
Collapse
Affiliation(s)
- Michael G Bertram
- School of Biological Sciences, Monash University, Victoria, Australia.
| | - Jake M Martin
- School of Biological Sciences, Monash University, Victoria, Australia
| | - Minna Saaristo
- School of Biological Sciences, Monash University, Victoria, Australia; Department of Biosciences, Åbo Akademi University, Turku, Finland
| | - Tiarne E Ecker
- School of Biological Sciences, Monash University, Victoria, Australia
| | - Marcus Michelangeli
- School of Biological Sciences, Monash University, Victoria, Australia; Department of Environmental Science and Policy, University of California, Davis, USA
| | - Nicholas D S Deal
- School of Biological Sciences, Monash University, Victoria, Australia
| | - Shu Ly Lim
- The Development and Stem Cells Program of Monash Biomedicine Discovery Institute and the Department of Anatomy and Developmental Biology, Monash University, Victoria, Australia
| | - Moira K O'Bryan
- School of Biological Sciences, Monash University, Victoria, Australia; The Development and Stem Cells Program of Monash Biomedicine Discovery Institute and the Department of Anatomy and Developmental Biology, Monash University, Victoria, Australia
| | - Bob B M Wong
- School of Biological Sciences, Monash University, Victoria, Australia
| |
Collapse
|
12
|
Ligocki IY, Munson A, Farrar V, Viernes R, Sih A, Connon RE, Calisi RM. Environmentally relevant concentrations of bifenthrin affect the expression of estrogen and glucocorticoid receptors in brains of female western mosquitofish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 209:121-131. [PMID: 30769158 DOI: 10.1016/j.aquatox.2018.12.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/30/2018] [Accepted: 12/02/2018] [Indexed: 06/09/2023]
Abstract
In recent decades, pyrethroid pesticides have been deemed a safer alternative to previously used pesticides. While some evidence supports this assumption in mammals and birds, exposure to certain pyrethroids can affect concentrations of hormones vital to reproduction in fish. Thus, we hypothesized that pyrethroid exposure impacts fish reproductive behavior and the expression of genes associated with reproduction. We tested our hypothesis by examining effects of the widely used pyrethroid pesticide, bifenthrin, on the reproductive behaviors of the broadly distributed livebearing western mosquitofish, Gambusia affinis. We exposed sexually mature female fish to one of five environmentally relevant concentrations of bifenthrin and conducted behavioral assays to assess reproductive, social, and space use behaviors before and after exposure. We did not detect changes in behaviors measured in response to bifenthrin. However, exposure was associated with increased expression of an estrogen receptor gene (ER-α) and glucocorticoid receptor (GR) in brain tissue at bifenthrin concentrations at concentrations of 5.90 and 24.82 ng/L, and 5.90 and 12.21 ng/L, respectively. Our study supports the perspective that the use of multiple endpoints through integrative approaches is essential for understanding the cumulative impact of pollutants. Integrating physiological, morphological, and behavioral investigations of nonlethal concentrations of pollutants like bifenthrin may heighten our potential to predict their impact on individuals, populations, and communities.
Collapse
Affiliation(s)
- Isaac Y Ligocki
- Dept. of Evolution, Ecology, and Org. Biology, The Ohio State University, 43210, United States; Department of Neurobiology, Physiology, and Behavior, University of California, Davis, United States.
| | - Amelia Munson
- Department of Environmental Science and Policy, University of California, Davis, United States
| | - Victoria Farrar
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, United States
| | - Rechelle Viernes
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, United States
| | - Andrew Sih
- Department of Environmental Science and Policy, University of California, Davis, United States
| | - Richard E Connon
- Department of Anatomy, Physiology, and Cell Biology, University of California, Davis, United States
| | - Rebecca M Calisi
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, United States
| |
Collapse
|
13
|
Lagesson A, Saaristo M, Brodin T, Fick J, Klaminder J, Martin JM, Wong BBM. Fish on steroids: Temperature-dependent effects of 17β-trenbolone on predator escape, boldness, and exploratory behaviors. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 245:243-252. [PMID: 30423539 DOI: 10.1016/j.envpol.2018.10.116] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/09/2018] [Accepted: 10/28/2018] [Indexed: 06/09/2023]
Abstract
Hormonal growth promoters (HGPs), widely used in beef cattle production globally, make their way into the environment as agricultural effluent-with potential impacts on aquatic ecosystems. One HPG of particular concern is 17β-trenbolone, which is persistent in freshwater habitats and can affect the development, morphology and reproductive behaviors of aquatic organisms. Despite this, few studies have investigated impacts of 17β-trenbolone on non-reproductive behaviors linked to growth and survival, like boldness and predator avoidance. None consider the interaction between 17β-trenbolone and other environmental stressors, such as temperature, although environmental challenges confronting animals in the wild seldom, if ever, occur in isolation. Accordingly, this study aimed to test the interactive effects of trenbolone and temperature on organismal behavior. To do this, eastern mosquitofish (Gambusia holbrooki) were subjected to an environmentally-relevant concentration of 17β-trenbolone (average measured concentration 3.0 ± 0.2 ng/L) or freshwater (i.e. control) for 21 days under one of two temperatures (20 and 30 °C), after which the predator escape, boldness and exploration behavior of fish were tested. Predator escape behavior was assayed by subjecting fish to a simulated predator strike, while boldness and exploration were assessed in a separate maze experiment. We found that trenbolone exposure increased boldness behavior. Interestingly, some behavioral effects of trenbolone depended on temperature, sex, or both. Specifically, significant effects of trenbolone on male predator escape behavior were only noted at 30 °C, with males becoming less reactive to the simulated threat. Further, in the maze experiment, trenbolone-exposed fish explored the maze faster than control fish, but only at 20 °C. We conclude that field detected concentrations of 17β-trenbolone can impact ecologically important behaviors of fish, and such effects can be temperature dependent. Such findings underscore the importance of considering the potentially interactive effects of other environmental stressors when investigating behavioral effects of environmental contaminants.
Collapse
Affiliation(s)
- A Lagesson
- Department of Ecology and Environmental Science, Umeå University, 90187 Umeå, Sweden.
| | - M Saaristo
- School of Biological Sciences, Monash University, Victoria 3800, Australia; Department of Biosciences, Åbo Academy University, 20500 Turku, Finland
| | - T Brodin
- Department of Ecology and Environmental Science, Umeå University, 90187 Umeå, Sweden; Department of Wildlife, Fish, and Environmental Studies, SLU, Umeå, Sweden
| | - J Fick
- Department of Chemistry, Umeå University, 90187 Umeå, Sweden
| | - J Klaminder
- Department of Ecology and Environmental Science, Umeå University, 90187 Umeå, Sweden
| | - J M Martin
- School of Biological Sciences, Monash University, Victoria 3800, Australia
| | - B B M Wong
- School of Biological Sciences, Monash University, Victoria 3800, Australia
| |
Collapse
|
14
|
Porseryd T, Larsson J, Kellner M, Bollner T, Dinnétz P, Porsch Hällström I. Altered non-reproductive behavior and feminization caused by developmental exposure to 17α-ethinylestradiol persist to adulthood in three-spined stickleback (Gasterosteus aculeatus). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 207:142-152. [PMID: 30572174 DOI: 10.1016/j.aquatox.2018.11.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 10/24/2018] [Accepted: 11/27/2018] [Indexed: 06/09/2023]
Abstract
The synthetic estrogen 17α-ethinylestradiol (EE2), ubiquitous in the aquatic environment and commonly detected in sewage effluents, interferes with the endocrine system in multiple ways. Exposure during sensitive windows of development causes persistent effects on fertility, reproductive and non-reproductive behavior in mammals and fish. In the present study, three-spined stickleback (Gasterosteus aculeatus) were exposed to nominal 0 and 20 ng/L EE2 from fertilization to 7 weeks post-hatch. After 8 months of remediation in clean water three non-reproductive behaviors, not previously analyzed in developmentally EE2-exposed progeny of wild-caught fish, were evaluated. Chemical analysis revealed that the nominal 0 and 20 ng/L exposure contained 5 and 30 ng/L EE2, respectively. Therefore, the use of control fish from previous experiments was necessary for comparisons. Fish exposed during development showed significant concentration-dependent reduction in anxiety-like behavior in the scototaxis (light/dark preference) test by means of shorter latency to first entrance to the white compartment, more visits in white, and longer total time in white compared to unexposed fish. In the novel tank test, developmental exposure significantly increased the number of transitions to the upper half of the aquaria. Exposure to EE2 during development did not alter shoal cohesion in the shoaling test compared with unexposed fish but fish exposed to 30 ng/L EE2 had significantly longer latency to leave the shoal and fewer transitions away from the shoal compared to fish exposed to 5 ng/L EE2. Skewed sex ratio with more females, sex reversal in genetic males as well as intersex in males was observed after exposure to 30, but not 5 ng/L EE2. In conclusion, EE2 exposure during development in three-spined stickleback resulted in persistent effects on anxiety-like behaviors. These long-term effects from developmental exposure are likely to be of higher relevance for natural populations than are short-term effects from adult exposure.
Collapse
Affiliation(s)
- Tove Porseryd
- School of Natural Sciences, Technology and Environmental Studies, Södertörn University, Huddinge, Sweden.
| | - Josefine Larsson
- School of Natural Sciences, Technology and Environmental Studies, Södertörn University, Huddinge, Sweden
| | - Martin Kellner
- School of Natural Sciences, Technology and Environmental Studies, Södertörn University, Huddinge, Sweden
| | - Tomas Bollner
- School of Natural Sciences, Technology and Environmental Studies, Södertörn University, Huddinge, Sweden
| | - Patrik Dinnétz
- School of Natural Sciences, Technology and Environmental Studies, Södertörn University, Huddinge, Sweden
| | - Inger Porsch Hällström
- School of Natural Sciences, Technology and Environmental Studies, Södertörn University, Huddinge, Sweden
| |
Collapse
|
15
|
Bertram MG, Saaristo M, Martin JM, Ecker TE, Michelangeli M, Johnstone CP, Wong BBM. Field-realistic exposure to the androgenic endocrine disruptor 17β-trenbolone alters ecologically important behaviours in female fish across multiple contexts. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 243:900-911. [PMID: 30245452 DOI: 10.1016/j.envpol.2018.09.044] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 09/06/2018] [Accepted: 09/07/2018] [Indexed: 06/08/2023]
Abstract
The capacity of pharmaceutical pollution to alter behaviour in wildlife is of increasing environmental concern. A major pathway of these pollutants into the environment is the treatment of livestock with hormonal growth promotants (HGPs), which are highly potent veterinary pharmaceuticals that enter aquatic ecosystems via effluent runoff. Hormonal growth promotants are designed to exert biological effects at low doses, can act on physiological pathways that are evolutionarily conserved across taxa, and have been detected in ecosystems worldwide. However, despite being shown to alter key fitness-related processes (e.g., development, reproduction) in various non-target species, relatively little is known about the potential for HGPs to alter ecologically important behaviours, especially across multiple contexts. Here, we investigated the effects of exposure to a field-realistic level of the androgenic HGP metabolite 17β-trenbolone-an endocrine-disrupting chemical that has repeatedly been detected in freshwater systems-on a suite of ecologically important behaviours in wild-caught female eastern mosquitofish (Gambusia holbrooki). First, we found that 17β-trenbolone-exposed fish were more active and exploratory in a novel environment (i.e., maze arena), while boldness (i.e., refuge use) was not significantly affected. Second, when tested for sociability, exposed fish spent less time in close proximity to a shoal of stimulus (i.e., unexposed) conspecific females and were, again, found to be more active. Third, when assayed for foraging behaviour, exposed fish were faster to reach a foraging zone containing prey items (chironomid larvae), quicker to commence feeding, spent more time foraging, and consumed a greater number of prey items, although the effect of exposure on certain foraging behaviours was dependent on fish size. Taken together, these findings highlight the potential for exposure to sub-lethal levels of veterinary pharmaceuticals to alter sensitive behavioural processes in wildlife across multiple contexts, with potential ecological and evolutionary implications for exposed populations.
Collapse
Affiliation(s)
- Michael G Bertram
- School of Biological Sciences, Monash University, Victoria, Australia.
| | - Minna Saaristo
- School of Biological Sciences, Monash University, Victoria, Australia; Department of Biosciences, Åbo Akademi University, Turku, Finland
| | - Jake M Martin
- School of Biological Sciences, Monash University, Victoria, Australia
| | - Tiarne E Ecker
- School of Biological Sciences, Monash University, Victoria, Australia
| | | | | | - Bob B M Wong
- School of Biological Sciences, Monash University, Victoria, Australia
| |
Collapse
|
16
|
Zheng M, Wang J, Zhang Z, Ma S, Ru S. Development of homologous enzyme-linked immunosorbent assays to quantify two forms of vitellogenin in guppy (Poecilia reticulata). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:25036-25044. [PMID: 29934832 DOI: 10.1007/s11356-018-2558-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 06/13/2018] [Indexed: 06/08/2023]
Abstract
Guppy (Poecilia reticulata) is a promising model organism in toxicological studies, and vitellogenin (Vtg) is a commonly used biomarker for environmental estrogens. Although an ELISA for guppy Vtg has been developed previously, we found that guppy had two forms of Vtgs. In this study, two Vtgs were characterized and enzyme-linked immunosorbent assays (ELISAs) for each Vtg were developed. Two Vtgs purified from 17β-estradiol (E2)-exposed guppy were characterized as phospholipoglycoproteins with molecular weights of ~ 520 and ~ 480 kDa, respectively. In SDS-PAGE, one purified Vtg appeared as three major bands of ~ 210, ~ 126, and ~ 102 kDa, and the other revealed a clear band of ~ 68 kDa. Matrix-assisted laser desorption/ionization-time of flight/time of flight mass spectrometry analysis showed that they were VtgAb and VtgC. Using purified Vtgs and their corresponding antibodies, two sandwich ELISAs with working ranges of 7.8~1000 and 15.6~500 ng/mL were developed. Precision tests showed that intra- and inter-assay coefficients of variations of both ELISAs were below 10%. Parallelism between Vtg standard curves and serial dilutions of whole body homogenate from E2-exposed guppy confirmed that two ELISAs could quantify guppy Vtgs. Furthermore, two ELISAs were used to measure Vtg inductions in liver, caudal fin and whole body of male guppy exposed to 17a-ethinylestradiol to validate their use for detecting estrogenic effects of exogenous chemicals. These homologous Vtg ELISAs will promote the use of guppy as a model organism to study estrogenic chemicals.
Collapse
Affiliation(s)
- Mingyi Zheng
- Marine Life Science College, Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong Province, China
| | - Jun Wang
- Marine Life Science College, Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong Province, China.
| | - Zhenzhong Zhang
- Marine Life Science College, Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong Province, China
| | - Shuwei Ma
- Marine Life Science College, Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong Province, China
| | - Shaoguo Ru
- Marine Life Science College, Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong Province, China.
| |
Collapse
|
17
|
Ankley GT, Coady KK, Gross M, Holbech H, Levine SL, Maack G, Williams M. A critical review of the environmental occurrence and potential effects in aquatic vertebrates of the potent androgen receptor agonist 17β-trenbolone. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2018; 37:2064-2078. [PMID: 29701261 PMCID: PMC6129983 DOI: 10.1002/etc.4163] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/14/2018] [Accepted: 04/25/2018] [Indexed: 05/25/2023]
Abstract
Trenbolone acetate is widely used in some parts of the world for its desirable anabolic effects on livestock. Several metabolites of the acetate, including 17β-trenbolone, have been detected at low nanograms per liter concentrations in surface waters associated with animal feedlots. The 17β-trenbolone isomer can affect androgen receptor signaling pathways in various vertebrate species at comparatively low concentrations/doses. The present article provides a comprehensive review and synthesis of the existing literature concerning exposure to and biological effects of 17β-trenbolone, with an emphasis on potential risks to aquatic animals. In vitro studies indicate that, although 17β-trenbolone can activate several nuclear hormone receptors, its highest affinity is for the androgen receptor in all vertebrate taxa examined, including fish. Exposure of fish to nanograms per liter water concentrations of 17β-trenbolone can cause changes in endocrine function in the short term, and adverse apical effects in longer exposures during development and reproduction. Impacts on endocrine function typically are indicative of inappropriate androgen receptor signaling, such as changes in sex steroid metabolism, impacts on gonadal stage, and masculinization of females. Exposure of fish to 17β-trenbolone during sexual differentiation in early development can greatly skew sex ratios, whereas adult exposures can adversely impact fertility and fecundity. To fully assess ecosystem-level risks, additional research is warranted to address uncertainties as to the degree/breadth of environmental exposures and potential population-level effects of 17β-trenbolone in sensitive species. Environ Toxicol Chem 2018;37:2064-2078. Published 2018 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.
Collapse
Affiliation(s)
- Gerald T. Ankley
- US Environmental Protection Agency, Office or Research and Development, Duluth, MN, USA
| | - Katherine K. Coady
- The Dow Chemical Company, Toxicology and Environmental Research and Consulting, Midland, MI, USA
| | | | - Henrik Holbech
- Department of Biology, University of Southern Denmark, Odense M, Denmark
| | | | - Gerd Maack
- German Environment Agency (UBA), Dessau-Roβlau, Germany
| | | |
Collapse
|
18
|
Differences in neural activity, but not behavior, across social contexts in guppies, Poecilia reticulata. Behav Ecol Sociobiol 2018. [DOI: 10.1007/s00265-018-2548-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
19
|
Tomkins P, Saaristo M, Bertram MG, Michelangeli M, Tomkins RB, Wong BBM. An endocrine-disrupting agricultural contaminant impacts sequential female mate choice in fish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 237:103-110. [PMID: 29477864 DOI: 10.1016/j.envpol.2018.02.046] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 02/15/2018] [Accepted: 02/15/2018] [Indexed: 06/08/2023]
Abstract
The environmental impact of endocrine-disrupting chemicals (EDCs)-compounds that interfere with endocrine system function at minute concentrations-is now well established. In recent years, concern has been mounting over a group of endocrine disruptors known as hormonal growth promotants (HGPs), which are natural and synthetic chemicals used to promote growth in livestock by targeting the endocrine system. One of the most potent compounds to enter the environment as a result of HGP use is 17β-trenbolone, which has repeatedly been detected in aquatic habitats. Although recent research has revealed that 17β-trenbolone can interfere with mechanisms of sexual selection, its potential to impact sequential female mate choice remains unknown, as is true for all EDCs. To address this, we exposed female guppies (Poecilia reticulata) to 17β-trenbolone at an environmentally relevant level (average measured concentration: 2 ng/L) for 21 days using a flow-through system. We then compared the response of unexposed and exposed females to sequentially presented stimulus (i.e., unexposed) males that varied in their relative body area of orange pigmentation, as female guppies have a known preference for orange colouration in males. We found that, regardless of male orange pigmentation, both unexposed and exposed females associated with males indiscriminately during their first male encounter. However, during the second male presentation, unexposed females significantly reduced the amount of time they spent associating with low-orange males if they had previously encountered a high-orange male. Conversely, 17β-trenbolone-exposed females associated with males indiscriminately (i.e., regardless of orange colouration) during both their first and second male encounter, and, overall, associated with males significantly less than did unexposed females during both presentations. This is the first study to demonstrate altered sequential female mate choice resulting from exposure to an endocrine disruptor, highlighting the need for a greater understanding of how EDCs may impact complex mechanisms of sexual selection.
Collapse
Affiliation(s)
- Patrick Tomkins
- School of Biological Sciences, Monash University, Victoria, Australia.
| | - Minna Saaristo
- School of Biological Sciences, Monash University, Victoria, Australia; Department of Biosciences, Åbo Akademi University, Turku, Finland
| | - Michael G Bertram
- School of Biological Sciences, Monash University, Victoria, Australia
| | | | - Raymond B Tomkins
- Centre for AgriBioscience, Department of Environment and Primary Industries (DEPI), Victoria, Australia
| | - Bob B M Wong
- School of Biological Sciences, Monash University, Victoria, Australia
| |
Collapse
|
20
|
Porseryd T, Kellner M, Reyhanian Caspillo N, Volkova K, Elabbas L, Ullah S, Olsén H, Dinnétz P, Porsch Hällström I. Combinatory effects of low concentrations of 17α-etinylestradiol and citalopram on non-reproductive behavior in adult zebrafish (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 193:9-17. [PMID: 29017090 DOI: 10.1016/j.aquatox.2017.10.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/18/2017] [Accepted: 10/02/2017] [Indexed: 06/07/2023]
Abstract
Sewage effluents contain pharmaceuticals, personal care products and industrial chemicals, exposing aquatic organisms to complex mixtures. The consequences of exposure to combinations of different classes of drugs in fish are largely unknown. In this study, we exposed adult zebrafish (Danio rerio) males and females for two weeks to low, environmentally relevant concentrations of the endocrine disrupting chemical 17α-etinylestradiol (EE2) and the selective serotonin re-uptake inhibitor (SSRI) citalopram, alone and in combination, and analyzed behaviors of importance for population fitness, scototaxis (light/dark preference), the novel tank test and shoal cohesion. Control water contained 0.4ng/L EE2 and the measured exposure concentrations were 0.9ng/L EE2 (nominal 0.1) and 1ng/L EE2 (nominal 0.5). The measured concentrations of citalopram were 0.1 (nominal 0.1) and 0.4μg/L (nominal 0.5). Both EE2 exposures increased anxiety in males in the scototaxis test, with significantly longer latency periods before entering and fewer visits to the white zone of the tank. The combined exposures (0.9ng/L EE2+0.1μg/L citalopram and 1ng/L EE2+0.4μg/L citalopram) resulted in abolishment of effects of EE2, with shorter latency period and more transitions to white than for fish exposed to EE2 alone. In the novel tank test, the results surprisingly indicated lower anxiety after both EE2 and citalopram exposure. Significantly more transitions to the upper half of the tank observed in males exposed to 0.1μg/L citalopram alone compared to control males. Males exposed to EE2 (0.9ng/L) had shorter latency period to the upper half. Combination exposure resulted in a longer latency and fewer transitions to the upper half compared to both control, EE2- and citalopram-exposed males. Males exposed to the combination spent significantly less time in the upper half than males EE2 or citalopram-exposed males. Females exposed to 1ng/L EE2 had fewer transitions to the upper half than the control group and females exposed to 0.4μg/L citalopram. In the shoaling test, males exposed to 0.1μg/L citalopram+0.9ng/L EE2 showed more transitions away from peers than males exposed to 0.1μg/L citalopram alone. In conclusion, low concentrations of EE2, closely above the predicted no effect concentration (NOEC) of 0.1ng/L, created anxiety-like behavior in zebrafish males. Citalopram showed marginal effects at these low concentrations but in the combination exposure the behavioral effects of EE2 were abolished. This is an initial effort to understand the effects of cocktails of anthropogenic substances contaminating aquatic environments.
Collapse
Affiliation(s)
- Tove Porseryd
- School of Natural Sciences, Technology and Environmental Studies, Södertörn University, SE-141 89 Huddinge, Sweden.
| | - Martin Kellner
- School of Natural Sciences, Technology and Environmental Studies, Södertörn University, SE-141 89 Huddinge, Sweden
| | - Nasim Reyhanian Caspillo
- School of Natural Sciences, Technology and Environmental Studies, Södertörn University, SE-141 89 Huddinge, Sweden; Örebro Life Science Center, School of Science and Technology, Örebro University, SE-701 82, Örebro, Sweden
| | - Kristina Volkova
- School of Natural Sciences, Technology and Environmental Studies, Södertörn University, SE-141 89 Huddinge, Sweden; Örebro Life Science Center, School of Science and Technology, Örebro University, SE-701 82, Örebro, Sweden
| | - Lubna Elabbas
- School of Natural Sciences, Technology and Environmental Studies, Södertörn University, SE-141 89 Huddinge, Sweden
| | - Shahid Ullah
- School of Natural Sciences, Technology and Environmental Studies, Södertörn University, SE-141 89 Huddinge, Sweden; Department of Clinical Pharmacology, Karolinska University Hospital Laboratory, Huddinge, SE-141 86 Stockholm, Sweden
| | - Håkan Olsén
- School of Natural Sciences, Technology and Environmental Studies, Södertörn University, SE-141 89 Huddinge, Sweden
| | - Patrik Dinnétz
- School of Natural Sciences, Technology and Environmental Studies, Södertörn University, SE-141 89 Huddinge, Sweden
| | - Inger Porsch Hällström
- School of Natural Sciences, Technology and Environmental Studies, Södertörn University, SE-141 89 Huddinge, Sweden
| |
Collapse
|
21
|
Holt WV. Exploitation of Non-mammalian Model Organisms in Epigenetic Research. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1014:155-173. [DOI: 10.1007/978-3-319-62414-3_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
22
|
DeCourten BM, Brander SM. Combined effects of increased temperature and endocrine disrupting pollutants on sex determination, survival, and development across generations. Sci Rep 2017. [PMID: 28839182 DOI: 10.1038/s41598‐017‐09631‐1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023] Open
Abstract
Understanding the combined effects of anthropogenic impacts such as climate change and pollution on aquatic ecosystems is critical. However, little is known about how predicted temperature increases may affect the activity of endocrine disrupting compounds (EDCs), particularly in species with plasticity in sex determination. We investigated the effects of a concomitant increase in temperature and exposure to estrogenic EDCs on reproduction and development in an estuarine model organism (Menidia beryllina) across multiple generations. Parents (P) were exposed to environmental levels of the estrogenic insecticide bifenthrin or ethinylestradiol (EE2) at 22 °C and 28 °C for 14 days prior to the initiation of spawning trials. Embryos in the F1 generation were exposed to EDCs until 21 days post hatch (dph), reared to adulthood in clean water at elevated temperatures, and spawned. F1 sex ratios were significantly influenced by elevated temperature and EDCs, potentially altering adaptive development. We also observed fewer viable offspring and increased developmental deformities in the F1 and F2 generations, with a greater impact on F2 juveniles. These findings enhance our understanding of responses to EDCs in the context of climate change and may demonstrate heritable effects. Our study represents the first multigenerational assessment of elevated temperatures in combination with environmentally relevant concentrations of commonly detected endocrine disruptors in a model vertebrate species.
Collapse
Affiliation(s)
- Bethany M DeCourten
- Department of Biology and Marine Biology, University of North Carolina Wilmington, 601 S. College Road, Wilmington, NC, 28403, USA.
| | - Susanne M Brander
- Department of Biology and Marine Biology, University of North Carolina Wilmington, 601 S. College Road, Wilmington, NC, 28403, USA
- Department of Environmental and Molecular Toxicology, Oregon State University, 1007 Agricultural and Life Sciences Building, Corvallis, OR, 97331, USA
| |
Collapse
|
23
|
Combined effects of increased temperature and endocrine disrupting pollutants on sex determination, survival, and development across generations. Sci Rep 2017; 7:9310. [PMID: 28839182 PMCID: PMC5571109 DOI: 10.1038/s41598-017-09631-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 07/27/2017] [Indexed: 01/14/2023] Open
Abstract
Understanding the combined effects of anthropogenic impacts such as climate change and pollution on aquatic ecosystems is critical. However, little is known about how predicted temperature increases may affect the activity of endocrine disrupting compounds (EDCs), particularly in species with plasticity in sex determination. We investigated the effects of a concomitant increase in temperature and exposure to estrogenic EDCs on reproduction and development in an estuarine model organism (Menidia beryllina) across multiple generations. Parents (P) were exposed to environmental levels of the estrogenic insecticide bifenthrin or ethinylestradiol (EE2) at 22 °C and 28 °C for 14 days prior to the initiation of spawning trials. Embryos in the F1 generation were exposed to EDCs until 21 days post hatch (dph), reared to adulthood in clean water at elevated temperatures, and spawned. F1 sex ratios were significantly influenced by elevated temperature and EDCs, potentially altering adaptive development. We also observed fewer viable offspring and increased developmental deformities in the F1 and F2 generations, with a greater impact on F2 juveniles. These findings enhance our understanding of responses to EDCs in the context of climate change and may demonstrate heritable effects. Our study represents the first multigenerational assessment of elevated temperatures in combination with environmentally relevant concentrations of commonly detected endocrine disruptors in a model vertebrate species.
Collapse
|
24
|
Vitellogenin induction in caudal fin of guppy (Poecilia reticulata) as a less invasive and sensitive biomarker for environmental estrogens. Sci Rep 2017; 7:7647. [PMID: 28794440 PMCID: PMC5550507 DOI: 10.1038/s41598-017-06670-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 06/15/2017] [Indexed: 01/03/2023] Open
Abstract
Guppy (Poecilia reticulata) is an ideal model for studying environmental estrogens, and its large caudal fin has a high capacity to regenerate. This study analyzed the feasibility of caudal fin for detecting vitellogenin (Vtg), the most commonly used biomarker of environmental estrogens. Firstly, a sandwich ELISA for guppy Vtg was developed using purified lipovitellin and its antibody and it had a working range of 7.8-1000 ng/mL and detection limit of 3.1 ng/mL. The ELISA was used to detect tissue distribution of Vtg. In male guppy exposed to 50 and 100 ng/L 17β-estradiol (E2), Vtg concentration in caudal fin was higher than that in whole fish, brain, eyes, gonad, and skin, and was close to that in the liver. Furthermore, male guppies were exposed to environmental concentrations of 17a-ethinylestradiol (EE2) and bisphenol S (BPS) to validate the utility of caudal fin Vtg for detecting estrogenic activities. The lowest observed effect concentration of EE2 and BPS were lower than 2 ng/L and 1 μg/L, which were below or equal to the values reported for other species, demonstrating that caudal fin Vtg was highly sensitive to estrogenic chemicals. Therefore, caudal fins of guppies are suggested as alternative samples for Vtg biomarker detection.
Collapse
|
25
|
Porseryd T, Volkova K, Reyhanian Caspillo N, Källman T, Dinnetz P, Porsh Hällström I. Persistent Effects of Developmental Exposure to 17α-Ethinylestradiol on the Zebrafish ( Danio rerio) Brain Transcriptome and Behavior. Front Behav Neurosci 2017; 11:69. [PMID: 28473760 PMCID: PMC5397488 DOI: 10.3389/fnbeh.2017.00069] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 04/03/2017] [Indexed: 11/18/2022] Open
Abstract
The synthetic estrogen 17α-ethinylestradiol (EE2) is an endocrine disrupting compound of concern due to its persistence and widespread presence in the aquatic environment. Effects of developmental exposure to low concentrations of EE2 in fish on reproduction and behavior not only persisted to adulthood, but have also been observed to be transmitted to several generations of unexposed progeny. To investigate the possible biological mechanisms of the persistent anxiogenic phenotype, we exposed zebrafish embryos for 80 days post fertilization to 0, 3, and 10 ng/L EE2 (measured concentrations 2.14 and 7.34 ng/L). After discontinued exposure, the animals were allowed to recover for 120 days in clean water. Adult males and females were later tested for changes in stress response and shoal cohesion, and whole-brain gene expression was analyzed with RNA sequencing. The results show increased anxiety in the novel tank and scototaxis tests, and increased shoal cohesion in fish exposed during development to EE2. RNA sequencing revealed 34 coding genes differentially expressed in male brains and 62 in female brains as a result of EE2 exposure. Several differences were observed between males and females in differential gene expression, with only one gene, sv2b, coding for a synaptic vesicle protein, that was affected by EE2 in both sexes. Functional analyses showed that in female brains, EE2 had significant effects on pathways connected to the circadian rhythm, cytoskeleton and motor proteins and synaptic proteins. A large number of non-coding sequences including 19 novel miRNAs were also differentially expressed in the female brain. The largest treatment effect in male brains was observed in pathways related to cholesterol biosynthesis and synaptic proteins. Circadian rhythm and cholesterol biosynthesis, previously implicated in anxiety behavior, might represent possible candidate pathways connecting the transcriptome changes to the alterations to behavior. Further the observed alteration in expression of genes involved in synaptogenesis and synaptic function may be important for the developmental modulations resulting in an anxiety phenotype. This study represents an initial survey of the fish brain transcriptome by RNA sequencing after long-term recovery from developmental exposure to an estrogenic compound.
Collapse
Affiliation(s)
- Tove Porseryd
- School of Natural Sciences, Technology and Environmental Studies, Södertörn UniversityHuddinge, Sweden
| | - Kristina Volkova
- School of Natural Sciences, Technology and Environmental Studies, Södertörn UniversityHuddinge, Sweden.,Örebro Life Science Center, School of Science and Technology, Örebro UniversityÖrebro, Sweden
| | - Nasim Reyhanian Caspillo
- School of Natural Sciences, Technology and Environmental Studies, Södertörn UniversityHuddinge, Sweden.,Örebro Life Science Center, School of Science and Technology, Örebro UniversityÖrebro, Sweden
| | - Thomas Källman
- National Bioinformatics Infrastructure Sweden, Uppsala UniversityUppsala, Sweden.,Science for Life Laboratory and Department of Medical Biochemistry and Microbiology, Uppsala UniversityUppsala, Sweden
| | - Patrik Dinnetz
- School of Natural Sciences, Technology and Environmental Studies, Södertörn UniversityHuddinge, Sweden
| | - Inger Porsh Hällström
- School of Natural Sciences, Technology and Environmental Studies, Södertörn UniversityHuddinge, Sweden
| |
Collapse
|
26
|
Volkova K, Reyhanian Caspillo N, Porseryd T, Hallgren S, Dinnetz P, Olsén H, Porsch Hällström I. Transgenerational effects of 17α-ethinyl estradiol on anxiety behavior in the guppy, Poecilia reticulata. Gen Comp Endocrinol 2015; 223:66-72. [PMID: 26431611 DOI: 10.1016/j.ygcen.2015.09.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 09/25/2015] [Accepted: 09/26/2015] [Indexed: 02/07/2023]
Abstract
Environmental contaminants can cause alterations that can be transgenerationally transmitted to subsequent generations. Estrogens are among those contaminants shown to induce heritable changes that persist over generations in mammals. Results in other vertebrates are few. We have analyzed the effects on anxiety of 17α-ethinyl estradiol (EE2) in the F1 and F2 generations in guppies, Poecilia reticulata, obtained from F0 fish maternally exposed to 0 or 20ng/L EE2 until birth. F0 males and females were bred with fish of the same treatment but different families producing F1 offspring. Behavior in the novel tank test at 6months revealed that males with EE2-exposed parents had significantly longer latency to the upper half of the tank than control males, while no EE2 effects were observed in females. Also in F2, obtained from F1 as above, males in the EE2 group had longer latency time compared to control males, with no differences due to EE2-exposure of F0 observed in females. In the scototaxis (light/dark preference) test, latency to first transition to black compartment and total transitions to black were significantly altered in females due to EE2 exposure of F0 while the total time in black was higher in males with EE2-exposed F0 compared with controls. The increased anxiety in the F2 generation demonstrates a transgenerational anxiety phenotype and shows that non-reproductive behavior can be transgenerationally modified by estrogens in fish.
Collapse
Affiliation(s)
- Kristina Volkova
- School of Natural Sciences, Technology and Environmental Studies, Södertörn University, SE-141 86 Huddinge, Sweden; Örebro Life Science Centre, School of Science and Technology, Örebro University, SE-170 82 Örebro, Sweden
| | - Nasim Reyhanian Caspillo
- School of Natural Sciences, Technology and Environmental Studies, Södertörn University, SE-141 86 Huddinge, Sweden; Örebro Life Science Centre, School of Science and Technology, Örebro University, SE-170 82 Örebro, Sweden
| | - Tove Porseryd
- School of Natural Sciences, Technology and Environmental Studies, Södertörn University, SE-141 86 Huddinge, Sweden
| | - Stefan Hallgren
- School of Natural Sciences, Technology and Environmental Studies, Södertörn University, SE-141 86 Huddinge, Sweden; Department of Organism Biology, Uppsala University, SE-75 236 Uppsala, Sweden
| | - Patrik Dinnetz
- School of Natural Sciences, Technology and Environmental Studies, Södertörn University, SE-141 86 Huddinge, Sweden
| | - Håkan Olsén
- School of Natural Sciences, Technology and Environmental Studies, Södertörn University, SE-141 86 Huddinge, Sweden
| | - Inger Porsch Hällström
- School of Natural Sciences, Technology and Environmental Studies, Södertörn University, SE-141 86 Huddinge, Sweden.
| |
Collapse
|