1
|
Váczy KZ, Otto M, Gomba-Tóth A, Geiger A, Golen R, Hegyi-Kaló J, Cels T, Geml J, Zsófi Z, Hegyi ÁI. Botrytis cinerea causes different plant responses in grape ( Vitis vinifera) berries during noble and grey rot: diverse metabolism versus simple defence. FRONTIERS IN PLANT SCIENCE 2024; 15:1433161. [PMID: 39166245 PMCID: PMC11333459 DOI: 10.3389/fpls.2024.1433161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/19/2024] [Indexed: 08/22/2024]
Abstract
The complexity of the interaction between the necrotrophic pathogen Botrytis cinerea and grape berries (Vitis vinifera spp.) can result in the formation of either the preferred noble rot (NR) or the loss-making grey rot (GR), depending on the prevailing climatic conditions. In this study, we focus on the functional gene set of V. vinifera by performing multidimensional scaling followed by differential expression and enrichment analyses. The aim of this study is to identify the differences in gene expression between grape berries in the phases of grey rot, noble rot, and developing rot (DR, in its early stages) phases. The grapevine transcriptome at the NR phase was found to exhibit significant differences from that at the DR and GR stages, which displayed strong similarities. Similarly, several plant defence-related pathways, including plant-pathogen interactions as hypersensitive plant responses were found to be enriched. The results of the analyses identified a potential plant stress response pathway (SGT1 activated hypersensitive response) that was found to be upregulated in the GR berry but downregulated in the NR berry. The study revealed a decrease in defence-related in V. vinifera genes during the NR stages, with a high degree of variability in functions, particularly in enriched pathways. This indicates that the plant is not actively defending itself against Botrytis cinerea, which is otherwise present on its surface with high biomass. This discrepancy underscores the notion that during the NR phase, the grapevine and the pathogenic fungi interact in a state of equilibrium. Conversely the initial stages of botrytis infection manifest as a virulent fungus-plant interaction, irrespective of whether the outcome is grey or noble rot.
Collapse
Affiliation(s)
- Kálmán Z. Váczy
- Food and Wine Research Institute, Eszterházy Károly Catholic University, Eger, Hungary
| | - Margot Otto
- Food and Wine Research Institute, Eszterházy Károly Catholic University, Eger, Hungary
- Centre for Epidemic Response and Innovation (CERI), Stellenbosch University, Stellenbosch, South Africa
| | - Adrienn Gomba-Tóth
- Food and Wine Research Institute, Eszterházy Károly Catholic University, Eger, Hungary
| | - Adrienn Geiger
- Food and Wine Research Institute, Eszterházy Károly Catholic University, Eger, Hungary
| | - Richárd Golen
- Food and Wine Research Institute, Eszterházy Károly Catholic University, Eger, Hungary
| | - Júlia Hegyi-Kaló
- Food and Wine Research Institute, Eszterházy Károly Catholic University, Eger, Hungary
| | - Thomas Cels
- Food and Wine Research Institute, Eszterházy Károly Catholic University, Eger, Hungary
| | - József Geml
- Food and Wine Research Institute, Eszterházy Károly Catholic University, Eger, Hungary
- HUN-REN-EKKE Lendület Environmental Microbiome Research Group, Eszterházy Károly Catholic University, Eger, Hungary
| | - Zsolt Zsófi
- Institute for Viticulture and Enology, Eszterházy Károly Catholic University, Eger, Hungary
| | - Ádám István Hegyi
- Food and Wine Research Institute, Eszterházy Károly Catholic University, Eger, Hungary
| |
Collapse
|
2
|
Singh R, Caseys C, Kliebenstein DJ. Genetic and molecular landscapes of the generalist phytopathogen Botrytis cinerea. MOLECULAR PLANT PATHOLOGY 2024; 25:e13404. [PMID: 38037862 PMCID: PMC10788480 DOI: 10.1111/mpp.13404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/13/2023] [Accepted: 10/24/2023] [Indexed: 12/02/2023]
Abstract
Botrytis cinerea Pers. Fr. (teleomorph: Botryotinia fuckeliana) is a necrotrophic fungal pathogen that attacks a wide range of plants. This updated pathogen profile explores the extensive genetic diversity of B. cinerea, highlights the progress in genome sequencing, and provides current knowledge of genetic and molecular mechanisms employed by the fungus to attack its hosts. In addition, we also discuss recent innovative strategies to combat B. cinerea. TAXONOMY Kingdom: Fungi, phylum: Ascomycota, subphylum: Pezizomycotina, class: Leotiomycetes, order: Helotiales, family: Sclerotiniaceae, genus: Botrytis, species: cinerea. HOST RANGE B. cinerea infects almost all of the plant groups (angiosperms, gymnosperms, pteridophytes, and bryophytes). To date, 1606 plant species have been identified as hosts of B. cinerea. GENETIC DIVERSITY This polyphagous necrotroph has extensive genetic diversity at all population levels shaped by climate, geography, and plant host variation. PATHOGENICITY Genetic architecture of virulence and host specificity is polygenic using multiple weapons to target hosts, including secretory proteins, complex signal transduction pathways, metabolites, and mobile small RNA. DISEASE CONTROL STRATEGIES Efforts to control B. cinerea, being a high-diversity generalist pathogen, are complicated. However, integrated disease management strategies that combine cultural practices, chemical and biological controls, and the use of appropriate crop varieties will lessen yield losses. Recently, studies conducted worldwide have explored the potential of small RNA as an efficient and environmentally friendly approach for combating grey mould. However, additional research is necessary, especially on risk assessment and regulatory frameworks, to fully harness the potential of this technology.
Collapse
Affiliation(s)
- Ritu Singh
- Department of Plant ScienceUniversity of CaliforniaDavisCaliforniaUSA
| | - Celine Caseys
- Department of Plant ScienceUniversity of CaliforniaDavisCaliforniaUSA
| | | |
Collapse
|
3
|
Corbu VM, Gheorghe-Barbu I, Dumbravă AȘ, Vrâncianu CO, Șesan TE. Current Insights in Fungal Importance-A Comprehensive Review. Microorganisms 2023; 11:1384. [PMID: 37374886 DOI: 10.3390/microorganisms11061384] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 05/20/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Besides plants and animals, the Fungi kingdom describes several species characterized by various forms and applications. They can be found in all habitats and play an essential role in the excellent functioning of the ecosystem, for example, as decomposers of plant material for the cycling of carbon and nutrients or as symbionts of plants. Furthermore, fungi have been used in many sectors for centuries, from producing food, beverages, and medications. Recently, they have gained significant recognition for protecting the environment, agriculture, and several industrial applications. The current article intends to review the beneficial roles of fungi used for a vast range of applications, such as the production of several enzymes and pigments, applications regarding food and pharmaceutical industries, the environment, and research domains, as well as the negative impacts of fungi (secondary metabolites production, etiological agents of diseases in plants, animals, and humans, as well as deteriogenic agents).
Collapse
Affiliation(s)
- Viorica Maria Corbu
- Genetics Department, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania
- Research Institute of the University of Bucharest-ICUB, 91-95 Spl. Independentei, 050095 Bucharest, Romania
| | - Irina Gheorghe-Barbu
- Research Institute of the University of Bucharest-ICUB, 91-95 Spl. Independentei, 050095 Bucharest, Romania
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania
| | - Andreea Ștefania Dumbravă
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania
| | - Corneliu Ovidiu Vrâncianu
- Research Institute of the University of Bucharest-ICUB, 91-95 Spl. Independentei, 050095 Bucharest, Romania
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania
| | - Tatiana Eugenia Șesan
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania
- Academy of Agricultural Sciences and Forestry, 61 Bd. Mărăşti, District 1, 011464 Bucharest, Romania
| |
Collapse
|
4
|
Rogério F, Van Oosterhout C, Ciampi-Guillardi M, Correr FH, Hosaka GK, Cros-Arteil S, Rodrigues Alves Margarido G, Massola Júnior NS, Gladieux P. Means, motive and opportunity for biological invasions: Genetic introgression in a fungal pathogen. Mol Ecol 2023; 32:2428-2442. [PMID: 35076152 DOI: 10.1111/mec.16366] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/07/2022] [Accepted: 01/13/2022] [Indexed: 11/28/2022]
Abstract
Invasions by fungal plant pathogens pose a significant threat to the health of agricultural ecosystems. Despite limited standing genetic variation, many invasive fungal species can adapt and spread rapidly, resulting in significant losses to crop yields. Here, we report on the population genomics of Colletotrichum truncatum, a polyphagous pathogen that can infect more than 460 plant species, and an invasive pathogen of soybean in Brazil. We study the whole-genome sequences of 18 isolates representing 10 fields from two major regions of soybean production. We show that Brazilian C. truncatum is subdivided into three phylogenetically distinct lineages that exchange genetic variation through hybridization. Introgression affects 2%-30% of the nucleotides of genomes and varies widely between the lineages. We find that introgressed regions comprise secreted protein-encoding genes, suggesting possible co-evolutionary targets for selection in those regions. We highlight the inherent vulnerability of genetically uniform crops in the agro-ecological environment, particularly when faced with pathogens that can take full advantage of the opportunities offered by an increasingly globalized world. Finally, we discuss "the means, motive and opportunity" of fungal pathogens and how they can become invasive species of crops. We call for more population genomic studies because such analyses can help identify geographical areas and pathogens that pose a risk, thereby helping to inform control strategies to better protect crops in the future.
Collapse
Affiliation(s)
- Flávia Rogério
- Department of Plant Pathology and Nematology, University of São Paulo, Piracicaba, SP, Brazil
- Institute for Agribiotechnology Research (CIALE), University of Salamanca, Salamanca, Spain
| | | | - Maisa Ciampi-Guillardi
- Department of Plant Pathology and Nematology, University of São Paulo, Piracicaba, SP, Brazil
| | | | | | | | | | - Nelson S Massola Júnior
- Department of Plant Pathology and Nematology, University of São Paulo, Piracicaba, SP, Brazil
| | - Pierre Gladieux
- UMR PHIM, University of Montpellier, INRAE, CIRAD, Montpellier, France
| |
Collapse
|
5
|
Li H, Shen X, Wu W, Zhang W, Wang Y. Ras2 Is Responsible for the Environmental Responses, Melanin Metabolism, and Virulence of Botrytis cinerea. J Fungi (Basel) 2023; 9:jof9040432. [PMID: 37108887 PMCID: PMC10142356 DOI: 10.3390/jof9040432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/13/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Ras proteins are monomeric G proteins that are ubiquitous in fungal cells and play important roles in fungal growth, virulence, and environmental responses. Botrytis cinerea is a phytopathogenic fungus that infects various crops. However, under specific environmental conditions, the overripe grapes infected by B. cinerea can be used to brew valuable noble rot wine. As a Ras protein, the role of Bcras2 in the environmental responses of B. cinerea is poorly understood. In this study, we deleted the Bcras2 gene using homologous recombination and examined its functions. Downstream genes regulated by Bcras2 were explored using RNA sequencing transcriptomics. It was found that ΔBcras2 deletion mutants showed significantly reduced growth rate, increased sclerotia production, decreased resistance to oxidative stress, and enhanced resistance to cell wall stress. Additionally, Bcras2 deletion promoted the expression of melanin-related genes in sclerotia and decreased the expression of melanin-related genes in conidia. The above results indicate that Bcras2 positively regulates growth, oxidative stress resistance, and conidial melanin-related genes expression, and negatively regulates sclerotia production, cell wall stress resistance and sclerotial melanin-related genes expression. These results revealed previously unknown functions of Bcras2 in environmental responses and melanin metabolism in B. cinerea.
Collapse
Affiliation(s)
- Hua Li
- School of Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Xuemei Shen
- School of Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Wenjia Wu
- School of Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Wanyu Zhang
- School of Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Yousheng Wang
- School of Light Industry, Beijing Technology and Business University, Beijing 100048, China
- Rizhao Huawei Institute of Comprehensive Health Industries, Shandong Keepfit Biotech. Co., Ltd., Rizhao 276800, China
- Correspondence: ; Tel.: +86-1068984905
| |
Collapse
|
6
|
Mataffo A, Scognamiglio P, Molinaro C, Corrado G, Basile B. Early Canopy Management Practices Differentially Modulate Fruit Set, Fruit Yield, and Berry Composition at Harvest Depending on the Grapevine Cultivar. PLANTS (BASEL, SWITZERLAND) 2023; 12:733. [PMID: 36840079 PMCID: PMC9959345 DOI: 10.3390/plants12040733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
The size and number of the berries and the rachis length are the main elements that define bunch compactness in grapevine (Vitis vinifera L.). This trait is of scientific and commercial interest because it strongly influences phytosanitary status and quality of the fruits. In this work, we investigated the effect of different canopy management strategies based on apical shoot and/or leaf removal applied at the early stage (pre-bloom) in altering the key determinants of bunch compactness. Specifically, we compared apical defoliation (removal of the first half of the shoot leaves from the top), basal defoliation (removal of the second half), and shoot trimming (removal of the apical half of the shoot) to untreated controls. The work was carried out in two red varieties ('Aglianico' and 'Casavecchia') that have contrasting bunch compactness (compact and loose, respectively). We measured relevant morphological traits, photosynthetic rates, fertility, fruit set, bunch architecture, and fruit main compositional parameters. This study demonstrates that the position of the removed shoot leaves along with the shoot trimming differentially modified fruit set, the number of berries per bunch, and berry fresh weight and composition at harvest. Nonetheless, the influence on bunch compactness was limited mainly because of photosynthetic and morphological factors strongly associated with the cultivar.
Collapse
|
7
|
Zhu Y, Lin X, Wen L, He D. Synthesis and Biological Evaluation of Dipeptide-Based Stilbene Derivatives Bearing a Biheterocyclic Moiety as Potential Fungicides. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248755. [PMID: 36557888 PMCID: PMC9784524 DOI: 10.3390/molecules27248755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
The escalating demand for crop production, environmental protection, and food safety warrants the development of new fungicides with greater efficiency, environmental friendliness, and innocuous metabolites to fight against destructive phytopathogens. Herein, we report on the synthesis and antifungal activity of dipeptide-based stilbene derivatives bearing a thiophene-substituted 1,3,4-oxadiazole fragment for the first time. In vitro bioassay indicated that the target compounds had remarkable antifungal potency superior to previously reported counterparts without a dipeptidyl group, of which compound 3c exhibited the highest activity against Botrytis cinerea with EC50 values of 106.1 μg/mL. Moreover, the in vivo protective effect of compound 3c (59.1%) against tomato gray mold was more potent than that of carboxin (42.0%). Preliminary investigations on the mode of action showed that compound 3c induced marked hyphal malformations and increased the membrane permeability of B. cinerea as well as inhibiting mycelial respiration. These promising results suggest that this novel type of molecular framework has great potential to be further developed as alternative fungicides.
Collapse
Affiliation(s)
- Yongchuang Zhu
- School of Chemical Engineering and Technology, Guangdong Industry Polytechnic, Guangzhou 510300, China
| | - Xingdong Lin
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Lan Wen
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Daohang He
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
- Correspondence: ; Tel.: +86-20-8711-0234
| |
Collapse
|
8
|
Hegyi ÁI, Otto M, Geml J, Hegyi-Kaló J, Kun J, Gyenesei A, Pierneef R, Váczy KZ. Metatranscriptomic Analyses Reveal the Functional Role of Botrytis cinerea in Biochemical and Textural Changes during Noble Rot of Grapevines. J Fungi (Basel) 2022; 8:jof8040378. [PMID: 35448609 PMCID: PMC9030449 DOI: 10.3390/jof8040378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 02/04/2023] Open
Abstract
Botrytis cinerea, can lead to the formation of noble rot (NR) of grape berries under certain environmental conditions, resulting in favored metabolic and physical changes necessary for producing highly regarded botrytized wines. The functional genes involved in the textural and biochemical processes are still poorly characterized. We generated and analyzed metatranscriptomic data from healthy (H) berries and from berries representing the four stages of NR from the Tokaj wine region in Hungary over three months. A weighted gene co-expression network analysis (WGCNA) was conducted to link B. cinerea functional genes to grape berry physical parameters berry hardness (BH), berry skin break force (F_sk), berry skin elasticity (E_sk), and the skin break energy (W_sk). Clustered modules showed that genes involved in carbohydrate and protein metabolism were significantly enriched in NR, highlighting their importance in the grape berry structural integrity. Carbohydrate active enzymes were particularly up-regulated at the onset of NR (during the transition from phase I to II) suggesting that the major structural changes occur early in the NR process. In addition, we identified genes expressed throughout the NR process belonging to enriched pathways that allow B. cinerea to dominate and proliferate during this state, including sulphate metabolizing genes and genes involved in the synthesis of antimicrobials.
Collapse
Affiliation(s)
- Ádám István Hegyi
- Food and Wine Research Institute, Eszterházy Károly Catholic University, H-3300 Eger, Hungary; (Á.I.H.); (J.G.); (J.H.-K.)
| | - Margot Otto
- ELKH-EKKE Lendület Environmental Microbiome Research Group, Eszterházy Károly Catholic University, H-3300 Eger, Hungary;
| | - József Geml
- Food and Wine Research Institute, Eszterházy Károly Catholic University, H-3300 Eger, Hungary; (Á.I.H.); (J.G.); (J.H.-K.)
- ELKH-EKKE Lendület Environmental Microbiome Research Group, Eszterházy Károly Catholic University, H-3300 Eger, Hungary;
| | - Júlia Hegyi-Kaló
- Food and Wine Research Institute, Eszterházy Károly Catholic University, H-3300 Eger, Hungary; (Á.I.H.); (J.G.); (J.H.-K.)
| | - József Kun
- Genomics and Bioinformatics Core Facility, University of Pécs, H-7601 Pécs, Hungary; (J.K.); (A.G.)
- Department of Pharmacology and Parmacotherapy, University of Pécs Medical School, H-7624 Pécs, Hungary
| | - Attila Gyenesei
- Genomics and Bioinformatics Core Facility, University of Pécs, H-7601 Pécs, Hungary; (J.K.); (A.G.)
| | - Rian Pierneef
- Biotechnology Platform, Agricultural Research Council-Onderstepoort Veterinary Research, Pretoria 0110, South Africa;
| | - Kálmán Zoltán Váczy
- Food and Wine Research Institute, Eszterházy Károly Catholic University, H-3300 Eger, Hungary; (Á.I.H.); (J.G.); (J.H.-K.)
- Correspondence:
| |
Collapse
|
9
|
Breen J, Mur LAJ, Sivakumaran A, Akinyemi A, Wilkinson MJ, Rodriguez Lopez CM. Botrytis cinerea Loss and Restoration of Virulence during In Vitro Culture Follows Flux in Global DNA Methylation. Int J Mol Sci 2022; 23:ijms23063034. [PMID: 35328468 PMCID: PMC8948621 DOI: 10.3390/ijms23063034] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/21/2022] [Accepted: 03/03/2022] [Indexed: 12/23/2022] Open
Abstract
Pathogenic fungi can lose virulence after protracted periods of culture, but little is known of the underlying mechanisms. Here, we present the first analysis of DNA methylation flux at a single-base resolution for the plant pathogen B. cinerea and identify differentially methylated genes/genomic regions associated with virulence erosion during in vitro culture. Cultures were maintained for eight months, with subcultures and virulence testing every month. Methylation-sensitive amplified polymorphisms were performed at monthly intervals to characterise global changes to the pathogen’s genome during culture and also on DNA from mycelium inoculated onto Arabidopsis thaliana after eight months in culture. Characterisation of culture-induced epialleles was assessed by whole-genome re-sequencing and whole-genome bisulfite sequencing. Virulence declined with time in culture and recovered after inoculation on A. thaliana. Variation detected by methylation-sensitive amplified polymorphisms followed virulence changes during culture. Whole-genome (bisulfite) sequencing showed marked changes in global and local methylation during culture but no significant genetic changes. We imply that virulence is a non-essential plastic character that is at least partly modified by the changing levels of DNA methylation during culture. We hypothesise that changing DNA methylation during culture may be responsible for the high virulence/low virulence transition in B. cinerea and speculate that this may offer fresh opportunities to control pathogen virulence.
Collapse
Affiliation(s)
- James Breen
- Indigenous Genomics, Telethon Kids Institute, Adelaide, SA 5000, Australia;
| | - Luis Alejandro Jose Mur
- Institute of Biological, Environmental and Rural Sciences, Edward Llywd Building, Penglais Campus, Aberystwyth SY23 3FG, UK; (L.A.J.M.); (A.S.); (A.A.); (M.J.W.)
| | - Anushen Sivakumaran
- Institute of Biological, Environmental and Rural Sciences, Edward Llywd Building, Penglais Campus, Aberystwyth SY23 3FG, UK; (L.A.J.M.); (A.S.); (A.A.); (M.J.W.)
| | - Aderemi Akinyemi
- Institute of Biological, Environmental and Rural Sciences, Edward Llywd Building, Penglais Campus, Aberystwyth SY23 3FG, UK; (L.A.J.M.); (A.S.); (A.A.); (M.J.W.)
| | - Michael James Wilkinson
- Institute of Biological, Environmental and Rural Sciences, Edward Llywd Building, Penglais Campus, Aberystwyth SY23 3FG, UK; (L.A.J.M.); (A.S.); (A.A.); (M.J.W.)
| | - Carlos Marcelino Rodriguez Lopez
- Environmental Epigenetics and Genetics Group, School of Agriculture, Food and Wine, Waite Research Precinct, University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia
- Correspondence:
| |
Collapse
|
10
|
Li H, James A, Shen X, Wang Y. Roles of microbiota in the formation of botrytized grapes and wines. CYTA - JOURNAL OF FOOD 2021. [DOI: 10.1080/19476337.2021.1958925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Hua Li
- Beijing Advanced Innovation Center For Food Nutrition And Human Health, Beijing Technology & Business University (BTBU), Beijing, P.R. China
| | - Armachius James
- Beijing Advanced Innovation Center For Food Nutrition And Human Health, Beijing Technology & Business University (BTBU), Beijing, P.R. China
| | - Xuemei Shen
- Beijing Advanced Innovation Center For Food Nutrition And Human Health, Beijing Technology & Business University (BTBU), Beijing, P.R. China
| | - Yousheng Wang
- Beijing Advanced Innovation Center For Food Nutrition And Human Health, Beijing Technology & Business University (BTBU), Beijing, P.R. China
| |
Collapse
|
11
|
Trunk Surgery as a Tool to Reduce Foliar Symptoms in Diseases of the Esca Complex and Its Influence on Vine Wood Microbiota. J Fungi (Basel) 2021; 7:jof7070521. [PMID: 34210025 PMCID: PMC8303226 DOI: 10.3390/jof7070521] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 11/16/2022] Open
Abstract
In the last few years, trunk surgery has gained increasing attention as a method to reduce foliar symptoms typical of some of the Esca complex diseases. The technique relies on the mechanical removal of decayed wood by a chainsaw. A study on a 14-year-old Cabernet Sauvignon vineyard was carried out to validate the efficacy of trunk surgery and explore possible explanations behind it. Three levels of treatment were applied to three of the most characteristic symptoms associated with some diseases of the Esca complex, such as leaf stripe symptoms (LS), wilted shoots (WS) and apoplexy (APP). The most promising results were obtained by complete trunk surgery, where the larger decay removal allowed lower symptom re-expression. According to the wood types analyzed (decay, medium and sound wood), different changes in microbiota were observed. Alpha-diversity generally decreased for bacteria and increased for fungi. More specifically, main changes were observed for Fomitiporia mediterranea abundance that decreased considerably after trunk surgery. A possible explanation for LS symptom reduction after trunk surgery could be the microbiota shifting caused by the technique itself affecting a microbic-shared biochemical pathway involved in symptom expression.
Collapse
|
12
|
Wang X, Schlatter DC, Glawe DA, Edwards CG, Weller DM, Paulitz TC, Abatzoglou JT, Okubara PA. Native yeast and non-yeast fungal communities of Cabernet Sauvignon berries from two Washington State vineyards, and persistence in spontaneous fermentation. Int J Food Microbiol 2021; 350:109225. [PMID: 34023678 DOI: 10.1016/j.ijfoodmicro.2021.109225] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 04/07/2021] [Accepted: 04/30/2021] [Indexed: 10/21/2022]
Abstract
To address a knowledge gap about the grape berry mycobiome from Washington State vineyards, next-generation sequencing of the internal transcribed spacer region (ITS1) was used to identify native yeast and fungal species on berries of cultivar 'Cabernet Sauvignon' from two vineyards at veraison and harvest in 2015 and 2016. Four hundred fifty-six different yeast amplicon sequence variants (ASV), representing 184 distinct taxa, and 2467 non-yeast fungal ASV (791 distinct taxa) were identified in this study. A set of 50 recurrent yeast taxa, including Phaeococcomyces, Vishniacozyma and Metschnikowia, were found at both locations and sampling years. These yeast species were monitored from the vineyard into laboratory-scale spontaneous fermentations. Taxa assignable to Metschnikowia and Saccharomyces persisted during fermentation, whereas Curvibasidium, which also has possible impact on biocontrol and wine quality, did not. Sulfite generally reduced yeast diversity and richness, but its effect on the abundance of specific yeasts during fermentation was negligible. Among the 106 recurring non-yeast fungal taxa, Alternaria, Cladosporium and Ulocladium were especially abundant in the vineyard. Vineyard location was the primary factor that accounted for the variation among both communities, followed by year and berry developmental stage. The Washington mycobiomes were compared to those from other parts of the world. Sixteen recurrent yeast species appeared to be unique to Washington State vineyards. This subset also contained a higher proportion of species associated with cold and extreme environments, relative to other localities. Certain yeast and non-yeast fungal species known to suppress diseases or modify wine sensory properties were present in Washington vineyards, and likely have consequences to vineyard health and wine quality.
Collapse
Affiliation(s)
- Xuefei Wang
- College of Enology, Northwest A&F University, Shaanxi 712100, China; Department of Plant Pathology, Washington State University, Pullman, WA, USA
| | - Daniel C Schlatter
- USDA-Agricultural Research Service, Wheat Health, Genetics and Quality Research Unit, Pullman 99163-6430, WA, USA.
| | - Dean A Glawe
- Department of Plant Pathology, Washington State University, Pullman, WA, USA
| | - Charles G Edwards
- School of Food Science, Washington State University, Pullman, WA 99163-6376, USA.
| | - David M Weller
- USDA-Agricultural Research Service, Wheat Health, Genetics and Quality Research Unit, Pullman 99163-6430, WA, USA.
| | - Timothy C Paulitz
- USDA-Agricultural Research Service, Wheat Health, Genetics and Quality Research Unit, Pullman 99163-6430, WA, USA.
| | - John T Abatzoglou
- Management of Complex Systems, University of California, Merced, Merced, CA 95343, USA.
| | - Patricia A Okubara
- USDA-Agricultural Research Service, Wheat Health, Genetics and Quality Research Unit, Pullman 99163-6430, WA, USA.
| |
Collapse
|
13
|
Hegyi-Kaló J, Hegyi ÁI, Geml J, Zsófi Z, Pálfi X, Váczy KZ. Physico-Chemical Characteristics and Culturable Microbial Communities of Grape Berries Change Strongly during Noble Rot Development. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1809. [PMID: 33371257 PMCID: PMC7766896 DOI: 10.3390/plants9121809] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 11/23/2022]
Abstract
Botrytis cinerea is a well-known pathogen of grapevine. However, under certain microclimatic conditions, Botrytis infection results in noble rot, an essential process in the production of the world-known Tokaji aszú wines in Hungary. We investigated the physico-chemical characteristics and culturable microorganisms associated with grape berries through several noble rot phases in the two main cultivars grown in Tokaj: Vitisvinifera cv. "Furmint" and "Hárslevelű". We measured physical and analytical parameters routinely tested in viticulture and analyzed the ITS rDNA sequence data of fungi isolated from the sampled berries. We observed significant differences in the physico-chemical parameters among the noble rot phases as well as sampling dates. The greatest variation in berry texture and microbial structure was observed in the initial phases, with variables converging as the noble rot progressed. By finding a bijection between the examined chemical properties and the factorial parameters (e.g., noble rot phase, collection time, cultivar), an appropriate sweet winemaking material can be designed. Fungal community differed significantly among cultivars, with higher number of species observed in Hárslevelű. Our results reveal that there is more to noble rot than only Botrytiscinerea and other microorganisms may play important roles in the aszú process.
Collapse
Affiliation(s)
- Júlia Hegyi-Kaló
- Food and Wine Research Institute, Eszterházy Károly University, 6 Leányka Street, H-3300 Eger, Hungary; (J.H.-K.); (Á.I.H.); (Z.Z.); (X.P.)
- Department of Microbiology and Biotechnology, SZIU, 14-16 Somlói Street, H-1118 Budapest, Hungary
| | - Ádám István Hegyi
- Food and Wine Research Institute, Eszterházy Károly University, 6 Leányka Street, H-3300 Eger, Hungary; (J.H.-K.); (Á.I.H.); (Z.Z.); (X.P.)
| | - József Geml
- MTA-EKE Lendület Environmental Microbiome Research Group, Eszterházy Károly University, 6 Leányka Street, H-3300 Eger, Hungary;
| | - Zsolt Zsófi
- Food and Wine Research Institute, Eszterházy Károly University, 6 Leányka Street, H-3300 Eger, Hungary; (J.H.-K.); (Á.I.H.); (Z.Z.); (X.P.)
| | - Xénia Pálfi
- Food and Wine Research Institute, Eszterházy Károly University, 6 Leányka Street, H-3300 Eger, Hungary; (J.H.-K.); (Á.I.H.); (Z.Z.); (X.P.)
| | - Kálmán Zoltán Váczy
- Food and Wine Research Institute, Eszterházy Károly University, 6 Leányka Street, H-3300 Eger, Hungary; (J.H.-K.); (Á.I.H.); (Z.Z.); (X.P.)
| |
Collapse
|
14
|
Kallitsounakis G, Catarino S. An overview on botrytized wines. CIÊNCIA E TÉCNICA VITIVINÍCOLA 2020. [DOI: 10.1051/ctv/20203502076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Noble rot wine is a specific type of sweet wine that derives from the infection of grape berries by a fungus called Botrytis cinerea. These wines are produced in specific wine regions around the world, with Sauternes region of France and Tokay region of Hungary being the most famous ones. The purpose of the current article is to provide a systematic review on the different stages of botrytized wines production, including a detailed analysis of the technical aspects involved. Specifically, it describes the process and development of berry infection by B. cinerea, and special emphasis is given to the main stages and operations of winemaking, conservation, aging and stabilization. A complex combination of a number of parameters (e.g., very specific environmental conditions) explains the rarity of noble rot occurrence and highlights the uniqueness of botrytized wines.
Collapse
|
15
|
Ployon S, Attina A, Vialaret J, Walker AS, Hirtz C, Saucier C. Laccases 2 & 3 as biomarkers of Botrytis cinerea infection in sweet white wines. Food Chem 2020; 315:126233. [PMID: 32018078 DOI: 10.1016/j.foodchem.2020.126233] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/18/2019] [Accepted: 01/15/2020] [Indexed: 12/18/2022]
Abstract
Botrytized sweet wines are made with berries infected by the fungus Botrytis cinerea. The aim of this study was to identify biomarkers of B. cinerea infection in sweet wines with a focus on laccases which are exocellular oxidase enzymes produced by this fungus during fruit contamination. Total proteins from six commercial sweet wines, including three naturally botrytized wines and three non-botrytized wines were analysed by LC-QTOF-MS. Five laccases, namely laccase-1-BcLCC1, laccase-2-BcLCC2, laccase-3-BcLCC7, laccase-8-BcLCC8 and laccase-12-BcLCC12, were identified in both types of wine. Then, a targeted proteomic approach by LC-MRM was used to semi-quantify laccase-2-BcLCC2 and laccase-3-BcLCC7, in the six samples. LC-MRM targeted analysis of the two enzymes allowed the discrimination of botrytized versus non-botrytized sweet white wines.
Collapse
Affiliation(s)
- S Ployon
- SPO, Univ Montpellier, UMR INRAE Supagro Université de Montpellier, Faculté de pharmacie, 15 Avenue Charles Flahault, CC 800 BP 14491, 34093 Montpellier Cedex 5, France
| | - A Attina
- IRMB, Univ Montpellier, INSERM, CHU Montpellier, CNRS, Montpellier, France
| | - J Vialaret
- IRMB, Univ Montpellier, INSERM, CHU Montpellier, CNRS, Montpellier, France
| | - A S Walker
- Université Paris-Saclay, INRAE, AgroParisTech, UMR BIOGER, 78850, Thiverval-Grignon, France
| | - C Hirtz
- IRMB, Univ Montpellier, INSERM, CHU Montpellier, CNRS, Montpellier, France
| | - C Saucier
- SPO, Univ Montpellier, UMR INRAE Supagro Université de Montpellier, Faculté de pharmacie, 15 Avenue Charles Flahault, CC 800 BP 14491, 34093 Montpellier Cedex 5, France.
| |
Collapse
|
16
|
DeLong JA, Saito S, Xiao CL, Naegele RP. Population Genetics and Fungicide Resistance of Botrytis cinerea on Vitis and Prunus spp . in California. PHYTOPATHOLOGY 2020; 110:694-702. [PMID: 32017671 DOI: 10.1094/phyto-09-19-0362-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Botrytis cinerea, the causal agent of gray mold, has high genetic diversity and a broad host range. In Vitis sp. and Prunus spp., B. cinerea causes pre- and postharvest diseases, and fungicides are routinely applied to prevent yield loss. In total, 535 isolates of B. cinerea collected from Vitis sp. and Prunus spp. in 2012, 2016, and 2017 were genotyped using 18 microsatellite markers and the transposable elements (TEs) Boty and Flipper. Only nine of the polymorphic markers and the two TEs were considered informative and retained for the final analyses. Of the 532 isolates, 297 were tested for resistance to seven fungicides representing six Fungicide Resistance Action Committee classes. After clone correction, 295 multilocus genotype groups were retained across the 3 years in 326 individuals, and four genetic subpopulations were detected. High levels of clonality were observed across the dataset. Significant pairwise differentiation was detected among years, locations, and TE composition. However, most of the diversity observed was within a subpopulation and not among subpopulations. No genetic differentiation was detected among resistant and sensitive isolates for individual fungicide classes. When resistance to the total number of fungicides was compared, regardless of the fungicide class, significant differentiation was detected among isolates that are resistant to two fungicide classes and those resistant to three or four fungicide groups. Fungicide resistance frequencies were stable for most chemistries evaluated with the exception of fluopyram, which increased from 2012 to 2016/2017.
Collapse
Affiliation(s)
- Jeffery A DeLong
- Crop Diseases, Pest and Genetic Research Unit, San Joaquin Valley Agricultural Sciences Center, U.S. Department of Agriculture Agricultural Research Service, Parlier, CA 93648
| | - Seiya Saito
- Commodity Protection and Quality Research Unit, San Joaquin Valley Agricultural Sciences Center, U.S. Department of Agriculture Agricultural Research Service, Parlier, CA 93648
| | - Chang-Lin Xiao
- Commodity Protection and Quality Research Unit, San Joaquin Valley Agricultural Sciences Center, U.S. Department of Agriculture Agricultural Research Service, Parlier, CA 93648
| | - Rachel P Naegele
- Crop Diseases, Pest and Genetic Research Unit, San Joaquin Valley Agricultural Sciences Center, U.S. Department of Agriculture Agricultural Research Service, Parlier, CA 93648
| |
Collapse
|
17
|
Jayawardena RS, Purahong W, Zhang W, Wubet T, Li X, Liu M, Zhao W, Hyde KD, Liu J, Yan J. Biodiversity of fungi on Vitis vinifera L. revealed by traditional and high-resolution culture-independent approaches. FUNGAL DIVERS 2018. [DOI: 10.1007/s13225-018-0398-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
18
|
Negri S, Lovato A, Boscaini F, Salvetti E, Torriani S, Commisso M, Danzi R, Ugliano M, Polverari A, Tornielli GB, Guzzo F. The Induction of Noble Rot ( Botrytis cinerea) Infection during Postharvest Withering Changes the Metabolome of Grapevine Berries ( Vitis vinifera L., cv. Garganega). FRONTIERS IN PLANT SCIENCE 2017; 8:1002. [PMID: 28680428 PMCID: PMC5478704 DOI: 10.3389/fpls.2017.01002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 05/26/2017] [Indexed: 05/27/2023]
Abstract
The natural or induced development of noble rot caused by the fungus Botrytis cinerea during the late stages of grapevine (Vitis vinifera L.) berry ripening is used in some traditional viticulture areas to produce high-quality wines such as Sauternes and Tokaji. In this research, we wanted to verify if by changing the environmental conditions during post-harvest withering we could induce the noble rot development on harvested berries in order to positively change the wine produced from withered Garganega berries. Therefore, we exposed the berries to postharvest withering under normal or artificially humid conditions, the latter to induce noble rot. The presence of noble rot symptoms was associated with the development of B. cinerea in the berries maintained under humid conditions. The composition of infected and non-infected berries was investigated by untargeted metabolomics using liquid chromatography/mass spectrometry. We also explored the effects of the two withering methods on the abundance of volatile organic compounds in wine by yeast-inoculated micro-fermentation followed by targeted gas chromatography/mass spectrometry. These experiments revealed significant metabolic differences between berries withered under normal and humid conditions, indicating that noble rot affects berry metabolism and composition. As well as well-known botrytization markers, we detected two novel lipids that have not been observed before in berries infected with noble rot. Unraveling the specific metabolic profile of berries infected with noble rot may help to determine the compounds responsible for the organoleptic quality traits of botrytized Garganega wines.
Collapse
Affiliation(s)
- Stefano Negri
- Biotechnology Department, University of VeronaVerona, Italy
| | - Arianna Lovato
- Biotechnology Department, University of VeronaVerona, Italy
| | | | - Elisa Salvetti
- Biotechnology Department, University of VeronaVerona, Italy
| | | | - Mauro Commisso
- Biotechnology Department, University of VeronaVerona, Italy
| | | | | | | | | | - Flavia Guzzo
- Biotechnology Department, University of VeronaVerona, Italy
| |
Collapse
|
19
|
Abstract
ABSTRACT
In this article, we review some of the best-studied fungi used as food sources, in particular, the cheese fungi, the truffles, and the fungi used for drink fermentation such as beer, wine, and sake. We discuss their history of consumption by humans and the genomic mechanisms of adaptation during artificial selection.
Collapse
|
20
|
Rizvi S, Raman A. Botrytis cinerea(Helotiales Sclerotiniaceae)-induced changes inVitis vinifera(Vitales Vitaceae) leaves influence the oviposition behaviour and life history ofEpiphyas postvittana(Lepidoptera Tortricidae). ETHOL ECOL EVOL 2017. [DOI: 10.1080/03949370.2017.1285817] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Syed Rizvi
- Graham Centre for Agricultural Innovation, Primary Industries, NSW and Charles Sturt University, Orange, NSW, Australia
- School of Agricultural and Wine Sciences, Charles Sturt University, Orange, NSW, Australia
| | - Anantanarayanan Raman
- Graham Centre for Agricultural Innovation, Primary Industries, NSW and Charles Sturt University, Orange, NSW, Australia
- School of Agricultural and Wine Sciences, Charles Sturt University, Orange, NSW, Australia
| |
Collapse
|
21
|
Salvetti E, Campanaro S, Campedelli I, Fracchetti F, Gobbi A, Tornielli GB, Torriani S, Felis GE. Whole-Metagenome-Sequencing-Based Community Profiles of Vitis vinifera L. cv. Corvina Berries Withered in Two Post-harvest Conditions. Front Microbiol 2016; 7:937. [PMID: 27445999 PMCID: PMC4917526 DOI: 10.3389/fmicb.2016.00937] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 05/31/2016] [Indexed: 12/20/2022] Open
Abstract
Vitis vinifera L. cv. Corvina grape forms the basis for the production of unique wines, such as Amarone, whose distinctive sensory features are strongly linked to the post-harvest grape withering process. Indeed, this process increases sugar concentration and changes must characteristics. While microorganisms involved in must fermentation have been widely investigated, few data are available on the microbiota of withered grapes. Thus, in this paper, a whole metagenome sequencing (WMS) approach was used to analyse the microbial consortium associated with Corvina berries at the end of the withering process performed in two different conditions ("traditional withering," TW or "accelerated withering," AW), and to unveil whether changes of drying parameters could have an impact on microbial diversity. Samples of healthy undamaged berries were collected and washed, to recover microorganisms from the surface and avoid contamination with grapevine genetic material. Isolated DNA was sequenced and the data obtained were analyzed with several bioinformatics methods. The eukaryotic community was mainly composed by members of the phylum Ascomycota, including Eurotiomycetes, Sordariomycetes, and Dothideomycetes. Moreover, the distribution of the genera Aspergillus and Penicillium (class Eurotiomycetes) varied between the withered berry samples. Instead, Botryotinia, Saccharomyces, and other wine technologically useful microorganisms were relatively scarce in both samples. For prokaryotes, 25 phyla were identified, nine of which were common to both conditions. Environmental bacteria belonging to the class Gammaproteobacteria were dominant and, in particular, the TW sample was characterized by members of the family Pseudomonadaceae, while members of the family Enterobacteriaceae dominated the AW sample, in addition to Sphyngobacteria and Clostridia. Finally, the binning procedure discovered 15 putative genomes which dominated the microbial community of the two samples, and included representatives of genera Erwinia, Pantoea, Pseudomonas, Clostridium, Paenibacillus, and of orders Lactobacillales and Actinomycetales. These results provide insights into the microbial consortium of Corvina withered berries and reveal relevant variations attributable to post-harvest withering conditions, underling how WMS could open novel perspectives in the knowledge and management of the withering process of Corvina, with an impact on the winemaking of important Italian wines.
Collapse
Affiliation(s)
- Elisa Salvetti
- Department of Biotechnology, University of VeronaVerona, Italy
| | | | | | | | - Alex Gobbi
- Department of Biotechnology, University of VeronaVerona, Italy
| | | | - Sandra Torriani
- Department of Biotechnology, University of VeronaVerona, Italy
| | | |
Collapse
|
22
|
Rizvi SZM, Raman A, Wheatley WM, Cook G. Oviposition preference and larval performance of Epiphyas postvittana (Lepidoptera: Tortricidae) on Botrytis cinerea (Helotiales: Sclerotiniaceae) infected berries of Vitis vinifera (Vitales: Vitaceae). INSECT SCIENCE 2016; 23:313-325. [PMID: 25420720 DOI: 10.1111/1744-7917.12191] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/17/2014] [Indexed: 06/04/2023]
Abstract
In this paper we tested the behavior of gravid Epiphyas postvittana in selecting the most-appropriate site for oviposition thus benefitting offspring performance. Our hypothesis was built on Jaenike's preference-performance hypothesis (also referred to as the "mother-knows-the-best" hypothesis). To test this, we used the interacting Epiphyas postvittana, its host Vitis vinifera, and the pathogenic microbe Botrytis cinerea system. Populations of E. postvittana and B. cinerea often exist concurrently on V. vinifera in Australasia and their interaction and mutual influence are currently being explored, although the suggestion presently is that the relationship between E. postvittana and B. cinerea is mutualistic. We tested the effect of volatiles from B. cinerea-infected berries and uninfected (control) berries of V. vinifera on the oviposition behavior of E. postvittana. We also characterized the effects of B. cinerea infection on the berries of V. vinifera on the growth and development of E. postvittana. Contrary to the preference-performance hypothesis, oviposition choices made by gravid E. postvittana did not result in the best offspring survival, development, and performance. The preference for oviposition by E. postvittana was strongly influenced by the olfactory and tactile cues. She laid fewer eggs on B. cinerea-infected berries compared to uninfected berries of V. vinifera. The larvae of E. postvittana showed no preference to uninfected berries of V. vinifera. The larvae fed on B. cinerea-infected berries of V. vinifera showing greater survival rate, shorter time to pupation, greater pupal mass, and on becoming adults they laid more numbers of eggs than the larvae that were enabled to feed on uninfected berries. The larvae of E. postvittana transport the conidia of B. cinerea and transmit grey-mould disease to uninfected berries of V. vinifera.
Collapse
Affiliation(s)
- Syed Z M Rizvi
- School of Agricultural & Wine Sciences, Charles Sturt University, Orange, NSW 2800, Australia
- Graham Centre for Agricultural Innovation, Charles Sturt University, Orange, NSW 2800, Australia
| | - Anantanarayanan Raman
- School of Agricultural & Wine Sciences, Charles Sturt University, Orange, NSW 2800, Australia
- Graham Centre for Agricultural Innovation, Charles Sturt University, Orange, NSW 2800, Australia
| | - Warwick M Wheatley
- School of Agricultural & Wine Sciences, Charles Sturt University, Orange, NSW 2800, Australia
| | - Geoffrey Cook
- School of Agricultural & Wine Sciences, Charles Sturt University, Orange, NSW 2800, Australia
| |
Collapse
|
23
|
Atwell S, Corwin JA, Soltis NE, Subedy A, Denby KJ, Kliebenstein DJ. Whole genome resequencing of Botrytis cinerea isolates identifies high levels of standing diversity. Front Microbiol 2015; 6:996. [PMID: 26441923 PMCID: PMC4585241 DOI: 10.3389/fmicb.2015.00996] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 09/07/2015] [Indexed: 01/15/2023] Open
Abstract
How standing genetic variation within a pathogen contributes to diversity in host/pathogen interactions is poorly understood, partly because most studied pathogens are host-specific, clonally reproducing organisms which complicates genetic analysis. In contrast, Botrytis cinerea is a sexually reproducing, true haploid ascomycete that can infect a wide range of diverse plant hosts. While previous work had shown significant genomic variation between two isolates, we proceeded to assess the level and frequency of standing variation in a population of B. cinerea. To begin measuring standing genetic variation in B. cinerea, we re-sequenced the genomes of 13 different isolates and aligned them to the previously sequenced T4 reference genome. In addition one of these isolates was resequenced from four independently repeated cultures. A high level of genetic diversity was found within the 13 isolates. Within this variation, we could identify clusters of genes with major effect polymorphisms, i.e., polymorphisms that lead to a predicted functional knockout, that surrounded genes involved in controlling vegetative incompatibility. The genotype at these loci was able to partially predict the interaction of these isolates in vegetative fusion assays showing that these loci control vegetative incompatibility. This suggests that the vegetative incompatibility loci within B. cinerea are associated with regions of increased genetic diversity. The genome re-sequencing of four clones from the one isolate (Grape) that had been independently propagated over 10 years showed no detectable spontaneous mutation. This suggests that B. cinerea does not display an elevated spontaneous mutation rate. Future work will allow us to test if, and how, this diversity may be contributing to the pathogen's broad host range.
Collapse
Affiliation(s)
- Susanna Atwell
- Department of Plant Sciences, University of California, DavisDavis, CA, USA
| | - Jason A. Corwin
- Department of Plant Sciences, University of California, DavisDavis, CA, USA
| | - Nicole E. Soltis
- Department of Plant Sciences, University of California, DavisDavis, CA, USA
| | - Anushryia Subedy
- Department of Plant Sciences, University of California, DavisDavis, CA, USA
| | - Katherine J. Denby
- School of Life Sciences and Warwick Systems Biology Centre, University of WarwickCoventry, UK
| | | |
Collapse
|