1
|
Pak D, Kamiya T, Greischar MA. Proliferation in malaria parasites: How resource limitation can prevent evolution of greater virulence. Evolution 2024; 78:1287-1301. [PMID: 38581661 DOI: 10.1093/evolut/qpae057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/28/2024] [Accepted: 04/04/2024] [Indexed: 04/08/2024]
Abstract
For parasites, robust proliferation within hosts is crucial for establishing the infection and creating opportunities for onward transmission. While faster proliferation enhances transmission rates, it is often assumed to curtail transmission duration by killing the host (virulence), a trade-off constraining parasite evolution. Yet in many diseases, including malaria, the preponderance of infections with mild or absent symptoms suggests that host mortality is not a sufficient constraint, raising the question of what restrains evolution toward faster proliferation. In malaria infections, the maximum rate of proliferation is determined by the burst size, the number of daughter parasites produced per infected red blood cell. Larger burst sizes should expand the pool of infected red blood cells that can be used to produce the specialized transmission forms needed to infect mosquitoes. We use a within-host model parameterized for rodent malaria parasites (Plasmodium chabaudi) to project the transmission consequences of burst size, focusing on initial acute infection where resource limitation and risk of host mortality are greatest. We find that resource limitation restricts evolution toward higher burst sizes below the level predicted by host mortality alone. Our results suggest resource limitation could represent a more general constraint than virulence-transmission trade-offs, preventing evolution towards faster proliferation.
Collapse
Affiliation(s)
- Damie Pak
- Department of Ecology and Evolutionary Biology, Cornell University, 215 Tower Rd, Ithaca, NY 14853, United States
| | - Tsukushi Kamiya
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, Paris, France
- HRB Clinical Research Facility, University of Galway, Ireland
| | - Megan A Greischar
- Department of Ecology and Evolutionary Biology, Cornell University, 215 Tower Rd, Ithaca, NY 14853, United States
| |
Collapse
|
2
|
Kamiya T, Paton DG, Catteruccia F, Reece SE. Targeting malaria parasites inside mosquitoes: ecoevolutionary consequences. Trends Parasitol 2022; 38:1031-1040. [PMID: 36209032 PMCID: PMC9815470 DOI: 10.1016/j.pt.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/13/2022] [Accepted: 09/13/2022] [Indexed: 11/05/2022]
Abstract
Proof-of-concept studies demonstrate that antimalarial drugs designed for human treatment can also be applied to mosquitoes to interrupt malaria transmission. Deploying a new control tool is ideally undertaken within a stewardship programme that maximises a drug's lifespan by minimising the risk of resistance evolution and slowing its spread once emerged. We ask: what are the epidemiological and evolutionary consequences of targeting parasites within mosquitoes? Our synthesis argues that targeting parasites inside mosquitoes (i) can be modelled by readily expanding existing epidemiological frameworks; (ii) provides a functionally novel control method that has potential to be more robust to resistance evolution than targeting parasites in humans; and (iii) could extend the lifespan and clinical benefit of antimalarials used exclusively to treat humans.
Collapse
Affiliation(s)
- Tsukushi Kamiya
- Centre for Interdisciplinary Research in Biology, Collège de France, Paris, France; HRB Clinical Research Facility, National University of Ireland, Galway, Ireland; Institute of Ecology and Evolution, and Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.
| | - Douglas G Paton
- Department of Immunology and Infectious Disease, Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Flaminia Catteruccia
- Department of Immunology and Infectious Disease, Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, USA; Howard Hughes Medical Institute, Boston, MA, USA
| | - Sarah E Reece
- Institute of Ecology and Evolution, and Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
3
|
Viana M, Faust CL, Haydon DT, Webster JP, Lamberton PHL. The effects of subcurative praziquantel treatment on life-history traits and trade-offs in drug-resistant Schistosoma mansoni. Evol Appl 2018; 11:488-500. [PMID: 29636801 PMCID: PMC5891057 DOI: 10.1111/eva.12558] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 08/24/2017] [Indexed: 02/03/2023] Open
Abstract
Natural selection acts on all organisms, including parasites, to maximize reproductive fitness. Drug resistance traits are often associated with life-history costs in the absence of treatment. Schistosomiasis control programmes rely on mass drug administration to reduce human morbidity and mortality. Although hotspots of reduced drug efficacy have been reported, resistance is not widespread. Using Bayesian state-space models (SSMs) fitted to data from an in vivo laboratory system, we tested the hypothesis that the spread of resistant Schistosoma mansoni may be limited by life-history costs not present in susceptible counterparts. S. mansoni parasites from a praziquantel-susceptible (S), a praziquantel-resistant (R) or a mixed line of originally resistant and susceptible parasites (RS) were exposed to a range of praziquantel doses. Parasite numbers at each life stage were quantified in their molluscan intermediate and murine definitive hosts across four generations, and SSMs were used to estimate key life-history parameters for each experimental group over time. Model outputs illustrated that parasite adult survival and fecundity in the murine host decreased across all lines, including R, with increasing drug pressure. Trade-offs between adult survival and fecundity were observed in all untreated lines, and these remained strong in S with praziquantel pressure. In contrast, trade-offs between adult survival and fecundity were lost under praziquantel pressure in R. As expected, parasite life-history traits within the molluscan host were complex, but trade-offs were demonstrated between parasite establishment and cercarial output. The observed trade-offs between generations within hosts, which were modified by praziquantel treatment in the R line, could limit the spread of R parasites under praziquantel pressure. Whilst such complex life-history costs may be difficult to detect using standard empirical methods, we demonstrate that SSMs provide robust estimates of life-history parameters, aiding our understanding of costs and trade-offs of resistant parasites within this system and beyond.
Collapse
Affiliation(s)
- Mafalda Viana
- Institute for Biodiversity, Animal Health and Comparative MedicineUniversity of GlasgowGlasgowUK
| | - Christina L. Faust
- Institute for Biodiversity, Animal Health and Comparative MedicineUniversity of GlasgowGlasgowUK
- Wellcome Centre for Molecular ParasitologyUniversity of GlasgowGlasgowUK
| | - Daniel T. Haydon
- Institute for Biodiversity, Animal Health and Comparative MedicineUniversity of GlasgowGlasgowUK
| | - Joanne P. Webster
- London Centre for Neglected Tropical Disease ResearchDepartment of Infectious Disease EpidemiologySchool of Public HealthImperial College LondonLondonUK
- Centre for Endemic, Emerging and Exotic DiseasesThe Royal Veterinary CollegeUniversity of LondonLondonUK
| | - Poppy H. L. Lamberton
- Institute for Biodiversity, Animal Health and Comparative MedicineUniversity of GlasgowGlasgowUK
- London Centre for Neglected Tropical Disease ResearchDepartment of Infectious Disease EpidemiologySchool of Public HealthImperial College LondonLondonUK
- Wellcome Centre for Molecular ParasitologyUniversity of GlasgowGlasgowUK
| |
Collapse
|
4
|
Genetically Determined Response to Artemisinin Treatment in Western Kenyan Plasmodium falciparum Parasites. PLoS One 2016; 11:e0162524. [PMID: 27611315 PMCID: PMC5017781 DOI: 10.1371/journal.pone.0162524] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 08/24/2016] [Indexed: 12/16/2022] Open
Abstract
Genetically determined artemisinin resistance in Plasmodium falciparum has been described in Southeast Asia. The relevance of recently described Kelch 13-propeller mutations for artemisinin resistance in Sub-Saharan Africa parasites is still unknown. Southeast Asia parasites have low genetic diversity compared to Sub-Saharan Africa, where parasites are highly genetically diverse. This study attempted to elucidate whether genetics provides a basis for discovering molecular markers in response to artemisinin drug treatment in P. falciparum in Kenya. The genetic diversity of parasites collected pre- and post- introduction of artemisinin combination therapy (ACT) in western Kenya was determined. A panel of 12 microsatellites and 91 single nucleotide polymorphisms (SNPs) distributed across the P. falciparum genome were genotyped. Parasite clearance rates were obtained for the post-ACT parasites. The 12 microsatellites were highly polymorphic with post-ACT parasites being significantly more diverse compared to pre-ACT (p < 0.0001). The median clearance half-life was 2.55 hours for the post-ACT parasites. Based on SNP analysis, 15 of 90 post-ACT parasites were single-clone infections. Analysis revealed 3 SNPs that might have some causal association with parasite clearance rates. Further, genetic analysis using Bayesian tree revealed parasites with similar clearance phenotypes were more closely genetically related. With further studies, SNPs described here and genetically determined response to artemisinin treatment might be useful in tracking artemisinin resistance in Kenya.
Collapse
|
5
|
Ramiro RS, Pollitt LC, Mideo N, Reece SE. Facilitation through altered resource availability in a mixed-species rodent malaria infection. Ecol Lett 2016; 19:1041-50. [PMID: 27364562 PMCID: PMC5025717 DOI: 10.1111/ele.12639] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 03/03/2016] [Accepted: 05/13/2016] [Indexed: 12/17/2022]
Abstract
A major challenge in disease ecology is to understand how co-infecting parasite species interact. We manipulate in vivo resources and immunity to explain interactions between two rodent malaria parasites, Plasmodium chabaudi and P. yoelii. These species have analogous resource-use strategies to the human parasites Plasmodium falciparum and P. vivax: P. chabaudi and P. falciparum infect red blood cells (RBC) of all ages (RBC generalist); P. yoelii and P. vivax preferentially infect young RBCs (RBC specialist). We find that: (1) recent infection with the RBC generalist facilitates the RBC specialist (P. yoelii density is enhanced ~10 fold). This occurs because the RBC generalist increases availability of the RBC specialist's preferred resource; (2) co-infections with the RBC generalist and RBC specialist are highly virulent; (3) and the presence of an RBC generalist in a host population can increase the prevalence of an RBC specialist. Thus, we show that resources shape how parasite species interact and have epidemiological consequences.
Collapse
Affiliation(s)
- Ricardo S Ramiro
- Institutes of Evolutionary Biology, and Immunology and Infection Research, University of Edinburgh, Edinburgh, EH9 3JFL, UK
| | - Laura C Pollitt
- Institutes of Evolutionary Biology, and Immunology and Infection Research, University of Edinburgh, Edinburgh, EH9 3JFL, UK.,Centre for Immunity, Infection & Evolution, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, Edinburgh, EH9 3JFL, UK
| | - Nicole Mideo
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
| | - Sarah E Reece
- Institutes of Evolutionary Biology, and Immunology and Infection Research, University of Edinburgh, Edinburgh, EH9 3JFL, UK.,Centre for Immunity, Infection & Evolution, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, Edinburgh, EH9 3JFL, UK
| |
Collapse
|
6
|
Greischar MA, Mideo N, Read AF, Bjørnstad ON. Predicting optimal transmission investment in malaria parasites. Evolution 2016; 70:1542-58. [DOI: 10.1111/evo.12969] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 05/07/2016] [Indexed: 01/07/2023]
Affiliation(s)
- Megan A. Greischar
- Center For Infectious Disease Dynamics, Departments of Entomology and Biology, The Pennsylvania State University; University Park; Pennsylvania 16802
- Department of Ecology and Evolutionary Biology; University of Toronto; Toronto ON M5S 3B2 Canada
| | - Nicole Mideo
- Department of Ecology and Evolutionary Biology; University of Toronto; Toronto ON M5S 3B2 Canada
| | - Andrew F. Read
- Center For Infectious Disease Dynamics, Departments of Entomology and Biology, The Pennsylvania State University; University Park; Pennsylvania 16802
- Fogarty International Center; National Institutes of Health; Bethesda Maryland 20892
| | - Ottar N. Bjørnstad
- Center For Infectious Disease Dynamics, Departments of Entomology and Biology, The Pennsylvania State University; University Park; Pennsylvania 16802
- Fogarty International Center; National Institutes of Health; Bethesda Maryland 20892
| |
Collapse
|
7
|
Restif O, Graham AL. Within-host dynamics of infection: from ecological insights to evolutionary predictions. Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2014.0304. [PMID: 26150670 PMCID: PMC4528502 DOI: 10.1098/rstb.2014.0304] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Affiliation(s)
- Olivier Restif
- Disease Dynamics Unit, Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Andrea L Graham
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
8
|
Mideo N, Bailey JA, Hathaway NJ, Ngasala B, Saunders DL, Lon C, Kharabora O, Jamnik A, Balasubramanian S, Björkman A, Mårtensson A, Meshnick SR, Read AF, Juliano JJ. A deep sequencing tool for partitioning clearance rates following antimalarial treatment in polyclonal infections. EVOLUTION MEDICINE AND PUBLIC HEALTH 2016; 2016:21-36. [PMID: 26817485 PMCID: PMC4753362 DOI: 10.1093/emph/eov036] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 12/21/2015] [Indexed: 11/14/2022]
Abstract
BACKGROUND AND OBJECTIVES Current tools struggle to detect drug-resistant malaria parasites when infections contain multiple parasite clones, which is the norm in high transmission settings in Africa. Our aim was to develop and apply an approach for detecting resistance that overcomes the challenges of polyclonal infections without requiring a genetic marker for resistance. METHODOLOGY Clinical samples from patients treated with artemisinin combination therapy were collected from Tanzania and Cambodia. By deeply sequencing a hypervariable locus, we quantified the relative abundance of parasite subpopulations (defined by haplotypes of that locus) within infections and revealed evolutionary dynamics during treatment. Slow clearance is a phenotypic, clinical marker of artemisinin resistance; we analyzed variation in clearance rates within infections by fitting parasite clearance curves to subpopulation data. RESULTS In Tanzania, we found substantial variation in clearance rates within individual patients. Some parasite subpopulations cleared as slowly as resistant parasites observed in Cambodia. We evaluated possible explanations for these data, including resistance to drugs. Assuming slow clearance was a stable phenotype of subpopulations, simulations predicted that modest increases in their frequency could substantially increase time to cure. CONCLUSIONS AND IMPLICATIONS By characterizing parasite subpopulations within patients, our method can detect rare, slow clearing parasites in vivo whose phenotypic effects would otherwise be masked. Since our approach can be applied to polyclonal infections even when the genetics underlying resistance are unknown, it could aid in monitoring the emergence of artemisinin resistance. Our application to Tanzanian samples uncovers rare subpopulations with worrying phenotypes for closer examination.
Collapse
Affiliation(s)
- Nicole Mideo
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada;
| | - Jeffrey A Bailey
- Division of Transfusion Medicine, Department of Medicine, University of Massachusetts, Worcester, MA, USA; Program in Bioinformatics and Integrative Biology, University of Massachusetts, Worcester, MA, USA
| | - Nicholas J Hathaway
- Program in Bioinformatics and Integrative Biology, University of Massachusetts, Worcester, MA, USA
| | - Billy Ngasala
- Department of Parasitology, Muhimbili University of Health and Allied Sciences, Dar Es Salaam, Tanzania
| | - David L Saunders
- Division of Immunology and Medicine, USAMC Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Chanthap Lon
- US Army Medical Component, Armed Forces Research Institute of Medical Sciences, Phnom Penh, Cambodia
| | - Oksana Kharabora
- Division of Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Andrew Jamnik
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Sujata Balasubramanian
- Division of Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Anders Björkman
- Malaria Research, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Andreas Mårtensson
- Malaria Research, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden; Centre for Clinical Research Sörmland, Uppsala University, Sweden; Department of Women's and Children's Health, International Maternal and Child Health (IMCH), Uppsala University, Sweden
| | - Steven R Meshnick
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Andrew F Read
- Center for Infectious Disease Dynamics, Department of Biology and Entomology, the Pennsylvania State University, University Park, PA, USA and
| | - Jonathan J Juliano
- Division of Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, NC, USA; Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
9
|
Perron GG, Inglis RF, Pennings PS, Cobey S. Fighting microbial drug resistance: a primer on the role of evolutionary biology in public health. Evol Appl 2015; 8:211-22. [PMID: 25861380 PMCID: PMC4380916 DOI: 10.1111/eva.12254] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 02/18/2015] [Indexed: 01/03/2023] Open
Abstract
Although microbes have been evolving resistance to antimicrobials for millennia, the spread of resistance in pathogen populations calls for the development of new drugs and treatment strategies. We propose that successful, long-term resistance management requires a better understanding of how resistance evolves in the first place. This is an opportunity for evolutionary biologists to engage in public health, a collaboration that has substantial precedent. Resistance evolution has been an important tool for developing and testing evolutionary theory, especially theory related to the genetic basis of new traits and constraints on adaptation. The present era is no exception. The articles in this issue highlight the breadth of current research on resistance evolution and also its challenges. In this introduction, we review the conceptual advances that have been achieved from studying resistance evolution and describe a path forward.
Collapse
Affiliation(s)
- Gabriel G Perron
- Department of Biology, Bard College Annandale-on-Hudson, NY, USA
| | - R Fredrik Inglis
- Department of Biology, Washington University in St. Louis St. Louis, MO, USA
| | - Pleuni S Pennings
- Department of Biology, San Francisco State University San Francisco, CA, USA
| | - Sarah Cobey
- Department of Ecology and Evolution, University of Chicago Chicago, IL, USA
| |
Collapse
|