1
|
Boutry J, Rieu O, Guimard L, Meliani J, Nedelcu AM, Tissot S, Stepanskyy N, Ujvari B, Hamede R, Dujon AM, Tökölyi J, Thomas F. First evidence for the evolution of host manipulation by tumors during the long-term vertical transmission of tumor cells in Hydra oligactis. eLife 2025; 13:RP97271. [PMID: 40036153 PMCID: PMC11879105 DOI: 10.7554/elife.97271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025] Open
Abstract
While host phenotypic manipulation by parasites is a widespread phenomenon, whether tumors, which can be likened to parasite entities, can also manipulate their hosts is not known. Theory predicts that this should nevertheless be the case, especially when tumors (neoplasms) are transmissible. We explored this hypothesis in a cnidarian Hydra model system, in which spontaneous tumors can occur in the lab, and lineages in which such neoplastic cells are vertically transmitted (through host budding) have been maintained for over 15 years. Remarkably, the hydras with long-term transmissible tumors show an unexpected increase in the number of their tentacles, allowing for the possibility that these neoplastic cells can manipulate the host. By experimentally transplanting healthy as well as neoplastic tissues derived from both recent and long-term transmissible tumors, we found that only the long-term transmissible tumors were able to trigger the growth of additional tentacles. Also, supernumerary tentacles, by permitting higher foraging efficiency for the host, were associated with an increased budding rate, thereby favoring the vertical transmission of tumors. To our knowledge, this is the first evidence that, like true parasites, transmissible tumors can evolve strategies to manipulate the phenotype of their host.
Collapse
Affiliation(s)
- Justine Boutry
- CREEC/CANECEV (CREES), MIVEGEC, Unité Mixte de Recherches, IRD 224-CNRS 5290 Université de MontpellierMontpellierFrance
| | - Océane Rieu
- CREEC/CANECEV (CREES), MIVEGEC, Unité Mixte de Recherches, IRD 224-CNRS 5290 Université de MontpellierMontpellierFrance
| | - Lena Guimard
- CREEC/CANECEV (CREES), MIVEGEC, Unité Mixte de Recherches, IRD 224-CNRS 5290 Université de MontpellierMontpellierFrance
| | - Jordan Meliani
- CREEC/CANECEV (CREES), MIVEGEC, Unité Mixte de Recherches, IRD 224-CNRS 5290 Université de MontpellierMontpellierFrance
| | - Aurora M Nedelcu
- Department of Biology, University of New BrunswickFrederictonCanada
| | - Sophie Tissot
- CREEC/CANECEV (CREES), MIVEGEC, Unité Mixte de Recherches, IRD 224-CNRS 5290 Université de MontpellierMontpellierFrance
| | - Nikita Stepanskyy
- CREEC/CANECEV (CREES), MIVEGEC, Unité Mixte de Recherches, IRD 224-CNRS 5290 Université de MontpellierMontpellierFrance
| | - Beata Ujvari
- CREEC/CANECEV (CREES), MIVEGEC, Unité Mixte de Recherches, IRD 224-CNRS 5290 Université de MontpellierMontpellierFrance
- School of Life and Environmental Sciences, Deakin UniversityWaurn PondsAustralia
| | - Rodrigo Hamede
- School of Biological Sciences, University of TasmaniaHobartAustralia
| | - Antoine M Dujon
- CREEC/CANECEV (CREES), MIVEGEC, Unité Mixte de Recherches, IRD 224-CNRS 5290 Université de MontpellierMontpellierFrance
- School of Life and Environmental Sciences, Deakin UniversityWaurn PondsAustralia
| | - Jácint Tökölyi
- MTA-DE “Momentum” Ecology, Evolution and Developmental Biology Research Group, Department of Evolutionary Zoology, University of DebrecenDebrecenHungary
| | - Fréderic Thomas
- CREEC/CANECEV (CREES), MIVEGEC, Unité Mixte de Recherches, IRD 224-CNRS 5290 Université de MontpellierMontpellierFrance
| |
Collapse
|
2
|
Thomas F, Asselin K, MacDonald N, Brazier L, Meliani J, Ujvari B, Dujon AM. Oncogenic processes: a neglected parameter in the evolutionary ecology of animals. C R Biol 2024; 347:137-157. [PMID: 39508584 DOI: 10.5802/crbiol.159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/15/2024] [Accepted: 08/08/2024] [Indexed: 11/15/2024]
|
3
|
Thomas F, DeGregori J, Marusyk A, Dujon AM, Ujvari B, Capp JP, Gatenby R, Nedelcu AM. A new perspective on tumor progression: Evolution via selection for function. Evol Med Public Health 2024; 12:172-177. [PMID: 39364294 PMCID: PMC11448472 DOI: 10.1093/emph/eoae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/02/2024] [Indexed: 10/05/2024] Open
Abstract
Tumorigenesis is commonly attributed to Darwinian processes involving natural selection among cells and groups of cells. However, progressing tumors are those that also achieve an appropriate group phenotypic composition (GPC). Yet, the selective processes acting on tumor GPCs are distinct from that associated with classical Darwinian evolution (i.e. natural selection based on differential reproductive success) as tumors are not genuine evolutionary individuals and do not exhibit heritable variation in fitness. This complex evolutionary scenario is analogous to the recently proposed concept of 'selection for function' invoked for the evolution of both living and non-living systems. Therefore, we argue that it is inaccurate to assert that Darwinian processes alone account for all the aspects characterizing tumorigenesis and cancer progression; rather, by producing the genetic and phenotypic diversity required for creating novel GPCs, these processes fuel the evolutionary success of tumors that is dependent on selection for function at the tumor level.
Collapse
Affiliation(s)
- Frédéric Thomas
- CREEC/CANECEV, MIVEGEC (CREES) Department, University of Montpellier, CNRS, IRD, Montpellier, France
| | - James DeGregori
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Andriy Marusyk
- Department of Cancer Physiology, H Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Antoine M Dujon
- CREEC/CANECEV, MIVEGEC (CREES) Department, University of Montpellier, CNRS, IRD, Montpellier, France
- School of Life and Environmental Sciences, Deakin University, Geelong, Centre for Integrative Ecology, Waurn Ponds, VIC 3216, Australia
| | - Beata Ujvari
- School of Life and Environmental Sciences, Deakin University, Geelong, Centre for Integrative Ecology, Waurn Ponds, VIC 3216, Australia
| | - Jean-Pascal Capp
- Toulouse Biotechnology Institute, University of Toulouse, INSA, CNRS, INRAE, Toulouse, France
| | - Robert Gatenby
- Department of Cancer Physiology, H Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Aurora M Nedelcu
- Department of Biology, University of New Brunswick, Fredericton, New Brunswick, Canada
| |
Collapse
|
4
|
Dujon AM, Ujvari B, Tissot S, Meliani J, Rieu O, Stepanskyy N, Hamede R, Tokolyi J, Nedelcu A, Thomas F. The complex effects of modern oncogenic environments on the fitness, evolution and conservation of wildlife species. Evol Appl 2024; 17:e13763. [PMID: 39100750 PMCID: PMC11294924 DOI: 10.1111/eva.13763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/16/2024] [Accepted: 07/18/2024] [Indexed: 08/06/2024] Open
Abstract
Growing evidence indicates that human activities are causing cancer rates to rise in both human and wildlife populations. This is due to the inability of ancestral anti-cancer defences to cope with modern environmental risks. The evolutionary mismatch between modern oncogenic risks and evolved cancer defences has far-reaching effects on various biological aspects at different timeframes, demanding a comprehensive study of the biology and evolutionary ecology of the affected species. Firstly, the increased activation of anti-cancer defences leads to excessive energy expenditure, affecting other biological functions and potentially causing health issues like autoimmune diseases. Secondly, tumorigenesis itself can impact important fitness-related parameters such as competitiveness, predator evasion, resistance to parasites, and dispersal capacity. Thirdly, rising cancer risks can influence the species' life-history traits, often favoring early reproduction to offset fitness costs associated with cancer. However, this strategy has its limits, and it may not ensure the sustainability of the species if cancer risks continue to rise. Lastly, some species may evolve additional anti-cancer defences, with uncertain consequences for their biology and future evolutionary path. In summary, we argue that the effects of increased exposure to cancer-causing substances on wildlife are complex, ranging from immediate responses to long-term evolutionary changes. Understanding these processes, especially in the context of conservation biology, is urgently needed.
Collapse
Affiliation(s)
- Antoine M. Dujon
- School of Life and Environmental SciencesDeakin UniversityWaurn PondsVictoriaAustralia
- CREEC/CANECEV (CREES), MIVEGEC, Unité Mixte de Recherches, IRD 224–CNRS 5290–Université de MontpellierMontpellierFrance
| | - Beata Ujvari
- School of Life and Environmental SciencesDeakin UniversityWaurn PondsVictoriaAustralia
| | - Sophie Tissot
- CREEC/CANECEV (CREES), MIVEGEC, Unité Mixte de Recherches, IRD 224–CNRS 5290–Université de MontpellierMontpellierFrance
| | - Jordan Meliani
- CREEC/CANECEV (CREES), MIVEGEC, Unité Mixte de Recherches, IRD 224–CNRS 5290–Université de MontpellierMontpellierFrance
| | - Océane Rieu
- CREEC/CANECEV (CREES), MIVEGEC, Unité Mixte de Recherches, IRD 224–CNRS 5290–Université de MontpellierMontpellierFrance
| | - Nikita Stepanskyy
- CREEC/CANECEV (CREES), MIVEGEC, Unité Mixte de Recherches, IRD 224–CNRS 5290–Université de MontpellierMontpellierFrance
| | - Rodrigo Hamede
- School of Natural SciencesUniversity of TasmaniaHobartTasmaniaAustralia
| | - Jácint Tokolyi
- Department of Evolutionary Zoology, MTA‐DE “Momentum” Ecology, Evolution and Developmental Biology Research GroupUniversity of DebrecenDebrecenHungary
| | - Aurora Nedelcu
- Department of BiologyUniversity of new BrunswickFrederictonNew BrunswickCanada
| | - Frédéric Thomas
- School of Life and Environmental SciencesDeakin UniversityWaurn PondsVictoriaAustralia
| |
Collapse
|
5
|
Thomas F, Ujvari B, Dujon AM. [Evolution of cancer resistance in the animal kingdom]. Med Sci (Paris) 2024; 40:343-350. [PMID: 38651959 DOI: 10.1051/medsci/2024038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Abstract
Cancer is an inevitable collateral problem inherent in the evolution of multicellular organisms, which appeared at the end of the Precambrian. Faced to this constraint, a range of diverse anticancer defenses has evolved across the animal kingdom. Today, investigating how animal organisms, especially those of large size and long lifespan, manage cancer-related issues has both fundamental and applied outcomes, as it could inspire strategies for preventing or treating human cancers. In this article, we begin by presenting the conceptual framework for understanding evolutionary theories regarding the development of anti-cancer defenses. We then present a number of examples that have been extensively studied in recent years, including naked mole rats, elephants, whales, placozoa, xenarthras (such as sloths, armadillos and anteaters) and bats. The contributions of comparative genomics to understanding evolutionary convergences are also discussed. Finally, we emphasize that natural selection has also favored anti-cancer adaptations aimed at avoiding mutagenic environments, for example by maximizing immediate reproductive efforts in the event of cancer. Exploring these adaptive solutions holds promise for identifying novel approaches to improve human health.
Collapse
Affiliation(s)
- Frédéric Thomas
- Centre de recherches écologiques et évolutives sur le cancer (CREEC/CANECEV, CREES), MIVEGEC, IRD 224, CNRS UMR5290, Université de Montpellier, Montpellier, France
| | - Beata Ujvari
- Geelong, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria, Australie
| | - Antoine M Dujon
- Centre de recherches écologiques et évolutives sur le cancer (CREEC/CANECEV, CREES), MIVEGEC, IRD 224, CNRS UMR5290, Université de Montpellier, Montpellier, France - Geelong, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria, Australie
| |
Collapse
|
6
|
Capp J, Thomas F, Marusyk A, M. Dujon A, Tissot S, Gatenby R, Roche B, Ujvari B, DeGregori J, Brown JS, Nedelcu AM. The paradox of cooperation among selfish cancer cells. Evol Appl 2023; 16:1239-1256. [PMID: 37492150 PMCID: PMC10363833 DOI: 10.1111/eva.13571] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 05/19/2023] [Accepted: 06/06/2023] [Indexed: 07/27/2023] Open
Abstract
It is traditionally assumed that during cancer development, tumor cells abort their initially cooperative behavior (i.e., cheat) in favor of evolutionary strategies designed solely to enhance their own fitness (i.e., a "selfish" life style) at the expense of that of the multicellular organism. However, the growth and progress of solid tumors can also involve cooperation among these presumed selfish cells (which, by definition, should be noncooperative) and with stromal cells. The ultimate and proximate reasons behind this paradox are not fully understood. Here, in the light of current theories on the evolution of cooperation, we discuss the possible evolutionary mechanisms that could explain the apparent cooperative behaviors among selfish malignant cells. In addition to the most classical explanations for cooperation in cancer and in general (by-product mutualism, kin selection, direct reciprocity, indirect reciprocity, network reciprocity, group selection), we propose the idea that "greenbeard" effects are relevant to explaining some cooperative behaviors in cancer. Also, we discuss the possibility that malignant cooperative cells express or co-opt cooperative traits normally expressed by healthy cells. We provide examples where considerations of these processes could help understand tumorigenesis and metastasis and argue that this framework provides novel insights into cancer biology and potential strategies for cancer prevention and treatment.
Collapse
Affiliation(s)
- Jean‐Pascal Capp
- Toulouse Biotechnology InstituteUniversity of Toulouse, INSA, CNRS, INRAEToulouseFrance
| | - Frédéric Thomas
- CREEC, MIVEGECUniversity of Montpellier, CNRS, IRDMontpellierFrance
| | - Andriy Marusyk
- Department of Cancer PhysiologyH Lee Moffitt Cancer Center and Research InstituteTampaFloridaUSA
| | - Antoine M. Dujon
- Centre for Integrative Ecology, School of Life and Environmental SciencesDeakin UniversityGeelongVictoriaAustralia
| | - Sophie Tissot
- Department of Biochemistry and Molecular GeneticsUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Robert Gatenby
- Department of Cancer PhysiologyH Lee Moffitt Cancer Center and Research InstituteTampaFloridaUSA
| | - Benjamin Roche
- Department of Biochemistry and Molecular GeneticsUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Beata Ujvari
- Centre for Integrative Ecology, School of Life and Environmental SciencesDeakin UniversityGeelongVictoriaAustralia
| | - James DeGregori
- Department of Biochemistry and Molecular GeneticsUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Joel S. Brown
- Department of Cancer PhysiologyH Lee Moffitt Cancer Center and Research InstituteTampaFloridaUSA
| | - Aurora M. Nedelcu
- Department of BiologyUniversity of New BrunswickFrederictonNew BrunswickCanada
| |
Collapse
|
7
|
Capp JP, Thomas F. From developmental to atavistic bet-hedging: How cancer cells pervert the exploitation of random single-cell phenotypic fluctuations. Bioessays 2022; 44:e2200048. [PMID: 35839471 DOI: 10.1002/bies.202200048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/05/2022] [Accepted: 07/05/2022] [Indexed: 11/08/2022]
Abstract
Stochastic gene expression plays a leading developmental role through its contribution to cell differentiation. It is also proposed to promote phenotypic diversification in malignant cells. However, it remains unclear if these two forms of cellular bet-hedging are identical or rather display distinct features. Here we argue that bet-hedging phenomena in cancer cells are more similar to those occurring in unicellular organisms than to those of normal metazoan cells. We further propose that the atavistic bet-hedging strategies in cancer originate from a hijacking of the normal developmental bet-hedging of metazoans. Finally, we discuss the constraints that may shape the atavistic bet-hedging strategies of cancer cells.
Collapse
Affiliation(s)
- Jean-Pascal Capp
- Toulouse Biotechnology Institute, INSA / University of Toulouse, CNRS, INRAE, Toulouse, France
| | - Frédéric Thomas
- CREEC, UMR IRD 224-CNRS 5290-University of Montpellier, Montpellier, France
| |
Collapse
|
8
|
Boutry J, Mistral J, Berlioz L, Klimovich A, Tökölyi J, Fontenille L, Ujvari B, Dujon AM, Giraudeau M, Thomas F. Tumors (re)shape biotic interactions within ecosystems: Experimental evidence from the freshwater cnidarian Hydra. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 803:149923. [PMID: 34487898 DOI: 10.1016/j.scitotenv.2021.149923] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/22/2021] [Accepted: 08/22/2021] [Indexed: 05/25/2023]
Abstract
While it is often assumed that oncogenic processes in metazoans can influence species interactions, empirical evidence is lacking. Here, we use the cnidarian Hydra oligactis to experimentally explore the consequences of tumor associated phenotypic alterations for its predation ability, relationship with commensal ciliates and vulnerability to predators. Unexpectedly, hydra's predation ability was higher in tumorous polyps compared to non-tumorous ones. Commensal ciliates colonized preferentially tumorous hydras than non-tumorous ones, and had a higher replication rate on the former. Finally, in a choice experiment, tumorous hydras were preferentially eaten by a fish predator. This study, for the first time, provides evidence that neoplastic growth has the potential, through effect(s) on host phenotype, to alter biotic interactions within ecosystems and should thus be taken into account by ecologists.
Collapse
Affiliation(s)
- Justine Boutry
- CREEC/CANECEV (CREES), MIVEGEC, Unité Mixte de Recherches, IRD 224-CNRS 5290-Université de Montpellier, Montpellier, France.
| | - Juliette Mistral
- CREEC/CANECEV (CREES), MIVEGEC, Unité Mixte de Recherches, IRD 224-CNRS 5290-Université de Montpellier, Montpellier, France
| | - Laurent Berlioz
- CREEC/CANECEV (CREES), MIVEGEC, Unité Mixte de Recherches, IRD 224-CNRS 5290-Université de Montpellier, Montpellier, France
| | | | - Jácint Tökölyi
- MTA-DE Behavioural Ecology Research Group, Department of Evolutionary Zoology, University of Debrecen, 4032 Debrecen, Hungary
| | - Laura Fontenille
- AZELEAD, 377 Rue du Professeur Blayac, 34080 Montpellier, France
| | - Beata Ujvari
- CREEC/CANECEV (CREES), MIVEGEC, Unité Mixte de Recherches, IRD 224-CNRS 5290-Université de Montpellier, Montpellier, France; Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria, Australia
| | - Antoine M Dujon
- CREEC/CANECEV (CREES), MIVEGEC, Unité Mixte de Recherches, IRD 224-CNRS 5290-Université de Montpellier, Montpellier, France; Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria, Australia
| | - Mathieu Giraudeau
- CREEC/CANECEV (CREES), MIVEGEC, Unité Mixte de Recherches, IRD 224-CNRS 5290-Université de Montpellier, Montpellier, France; LIENSs, UMR 7266 CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, 17000 La Rochelle, France
| | - Frédéric Thomas
- CREEC/CANECEV (CREES), MIVEGEC, Unité Mixte de Recherches, IRD 224-CNRS 5290-Université de Montpellier, Montpellier, France
| |
Collapse
|
9
|
Is There One Key Step in the Metastatic Cascade? Cancers (Basel) 2021; 13:cancers13153693. [PMID: 34359593 PMCID: PMC8345184 DOI: 10.3390/cancers13153693] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/17/2021] [Accepted: 07/19/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary To successfully metastasize, cancer cells must complete a sequence of obligatory steps called the metastatic cascade. To model the metastatic cascade, we used the framework of the Drake equation, initially created to describe the emergence of intelligent life in the Milky way, using a similar logic of a sequence of obligatory steps. Then within this framework, we used simulations on breast cancer to investigate the contribution of each step to the metastatic cascade. We show that the half-life of circulating tumor cells is one of the most important parameters in the cascade, suggesting that therapies reducing the survival of those cells in the vascular system could significantly reduce the risk of metastasis. Abstract The majority of cancer-related deaths are the result of metastases (i.e., dissemination and establishment of tumor cells at distant sites from the origin), which develop through a multi-step process classically termed the metastatic cascade. The respective contributions of each step to the metastatic process are well described but are also currently not completely understood. Is there, for example, a critical phase that disproportionately affects the probability of the development of metastases in individual patients? Here, we address this question using a modified Drake equation, initially formulated by the astrophysicist Frank Drake to estimate the probability of the emergence of intelligent civilizations in the Milky Way. Using simulations based on realistic parameter values obtained from the literature for breast cancer, we examine, under the linear progression hypothesis, the contribution of each component of the metastatic cascade. Simulations demonstrate that the most critical parameter governing the formation of clinical metastases is the survival duration of circulating tumor cells (CTCs).
Collapse
|
10
|
Does Cancer Biology Rely on Parrondo's Principles? Cancers (Basel) 2021; 13:cancers13092197. [PMID: 34063648 PMCID: PMC8125342 DOI: 10.3390/cancers13092197] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/29/2021] [Accepted: 04/29/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Parrondo’s paradox, whereby losing strategies or deleterious effects can combine to provide a winning outcome, has been increasingly applied by biologists to explain complex adaptations in many living systems. Here, we suggest that considering this paradox in oncology, particularly in relation to the phenotypic diversity of malignant cells, could also be a promising approach to understand several puzzling aspects of cancer biology. For example, the high genetic and epigenetic instability of cancer cells, their metastatic behavior and their capacity to enter dormancy could be explained by Parrondo’s theory. We also discuss the relevance of Parrondo’s paradox in a therapeutical framework using different examples. This work provides a compelling argument that the traditional separation between medicine and other disciplines remains a fundamental limitation that needs to be overcome if complex processes, such as oncogenesis, are to be completely understood. Abstract Many aspects of cancer biology remain puzzling, including the proliferative and survival success of malignant cells in spite of their high genetic and epigenetic instability as well as their ability to express migrating phenotypes and/or enter dormancy despite possible fitness loss. Understanding the potential adaptive value of these phenotypic traits is confounded by the fact that, when considered separately, they seem to be rather detrimental at the cell level, at least in the short term. Here, we argue that cancer’s biology and success could frequently be governed by processes underlying Parrondo’s paradox, whereby combinations of intrinsically losing strategies may result in winning outcomes. Oncogenic selection would favor Parrondo’s dynamics because, given the environmental adversity in which malignant cells emerge and evolve, alternating between various less optimal strategies would represent the sole viable option to counteract the changing and deleterious environments cells are exposed to during tumorigenesis. We suggest that malignant processes could be viewed through this lens, and we discuss how Parrondo’s principles are also important when designing therapies against cancer.
Collapse
|
11
|
Ibrahim-Hashim A, Luddy K, Abrahams D, Enriquez-Navas P, Damgaci S, Yao J, Chen T, Bui MM, Gillies RJ, O'Farrelly C, Richards CL, Brown JS, Gatenby RA. Artificial selection for host resistance to tumour growth and subsequent cancer cell adaptations: an evolutionary arms race. Br J Cancer 2021; 124:455-465. [PMID: 33024265 PMCID: PMC7852689 DOI: 10.1038/s41416-020-01110-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 09/07/2020] [Accepted: 09/16/2020] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Cancer progression is governed by evolutionary dynamics in both the tumour population and its host. Since cancers die with the host, each new population of cancer cells must reinvent strategies to overcome the host's heritable defences. In contrast, host species evolve defence strategies over generations if tumour development limits procreation. METHODS We investigate this "evolutionary arms race" through intentional breeding of immunodeficient SCID and immunocompetent Black/6 mice to evolve increased tumour suppression. Over 10 generations, we injected Lewis lung mouse carcinoma cells [LL/2-Luc-M38] and selectively bred the two individuals with the slowest tumour growth at day 11. Their male progeny were hosts in the subsequent round. RESULTS The evolved SCID mice suppressed tumour growth through biomechanical restriction from increased mesenchymal proliferation, and the evolved Black/6 mice suppressed tumour growth by increasing immune-mediated killing of cancer cells. However, transcriptomic changes of multicellular tissue organisation and function genes allowed LL/2-Luc-M38 cells to adapt through increased matrix remodelling in SCID mice, and reduced angiogenesis, increased energy utilisation and accelerated proliferation in Black/6 mice. CONCLUSION Host species can rapidly evolve both immunologic and non-immunologic tumour defences. However, cancer cell plasticity allows effective phenotypic and population-based counter strategies.
Collapse
Affiliation(s)
- Arig Ibrahim-Hashim
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center, Tampa, FL, USA
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA
| | - Kimberly Luddy
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center, Tampa, FL, USA
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Dominique Abrahams
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center, Tampa, FL, USA
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Pedro Enriquez-Navas
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center, Tampa, FL, USA
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Sultan Damgaci
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Jiqiang Yao
- Department of Biostatistics & Bioinformatics, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Tingan Chen
- Analytic Microscopy Core, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Marilyn M Bui
- Analytic Microscopy Core, H. Lee Moffitt Cancer Center, Tampa, FL, USA
- Department of Pathology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Robert J Gillies
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center, Tampa, FL, USA
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
- Department of Radiology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Cliona O'Farrelly
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | | | - Joel S Brown
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center, Tampa, FL, USA
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
- Department of Biological Sciences, University of Illinois, at Chicago, Chicago, IL, USA
| | - Robert A Gatenby
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center, Tampa, FL, USA.
- Department of Radiology, H. Lee Moffitt Cancer Center, Tampa, FL, USA.
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, USA.
| |
Collapse
|
12
|
Cortés-Hernández LE, Eslami-S Z, Dujon AM, Giraudeau M, Ujvari B, Thomas F, Alix-Panabières C. Do malignant cells sleep at night? Genome Biol 2020; 21:276. [PMID: 33183336 PMCID: PMC7659113 DOI: 10.1186/s13059-020-02179-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 10/13/2020] [Indexed: 12/19/2022] Open
Abstract
Biological rhythms regulate the biology of most, if not all living creatures, from whole organisms to their constitutive cells, their microbiota, and also parasites. Here, we present the hypothesis that internal and external ecological variations induced by biological cycles also influence or are exploited by cancer cells, especially by circulating tumor cells, the key players in the metastatic cascade. We then discuss the possible clinical implications of the effect of biological cycles on cancer progression, and how they could be exploited to improve and standardize methods used in the liquid biopsy field.
Collapse
Affiliation(s)
| | - Zahra Eslami-S
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, Montpellier, France
| | - Antoine M Dujon
- CREEC (CREES), Unité Mixte de Recherches, IRD 224-CNRS 5290-Université de Montpellier, Montpellier, France
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria, Australia
| | - Mathieu Giraudeau
- CREEC (CREES), Unité Mixte de Recherches, IRD 224-CNRS 5290-Université de Montpellier, Montpellier, France
| | - Beata Ujvari
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria, Australia
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Frédéric Thomas
- CREEC (CREES), Unité Mixte de Recherches, IRD 224-CNRS 5290-Université de Montpellier, Montpellier, France
| | - Catherine Alix-Panabières
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, Montpellier, France.
- CREEC (CREES), Unité Mixte de Recherches, IRD 224-CNRS 5290-Université de Montpellier, Montpellier, France.
- Institut Universitaire de Recherche Clinique (IURC), 641, avenue du Doyen Gaston Giraud, 34093, Montpellier Cedex 5, France.
| |
Collapse
|
13
|
Wass AV, Butler G, Taylor TB, Dash PR, Johnson LJ. Cancer cell lines show high heritability for motility but not generation time. ROYAL SOCIETY OPEN SCIENCE 2020; 7:191645. [PMID: 32431868 PMCID: PMC7211847 DOI: 10.1098/rsos.191645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 03/06/2020] [Indexed: 06/11/2023]
Abstract
Tumour evolution depends on heritable differences between cells in traits affecting cell survival or replication. It is well established that cancer cells are genetically and phenotypically heterogeneous; however, the extent to which this phenotypic variation is heritable is far less well explored. Here, we estimate the broad-sense heritability (H 2) of two cell traits related to cancer hallmarks--cell motility and generation time--within populations of four cancer cell lines in vitro and find that motility is strongly heritable. This heritability is stable across multiple cell generations, with heritability values at the high end of those measured for a range of traits in natural populations of animals or plants. These findings confirm a central assumption of cancer evolution, provide a first quantification of the evolvability of key traits in cancer cells and indicate that there is ample raw material for experimental evolution in cancer cell lines. Generation time, a trait directly affecting cell fitness, shows substantially lower values of heritability than cell speed, consistent with its having been under directional selection removing heritable variation.
Collapse
Affiliation(s)
- Anastasia V. Wass
- School of Biological Sciences, University of Reading, Whiteknights, Reading, Berkshire RG6 6AH, UK
| | - George Butler
- School of Biological Sciences, University of Reading, Whiteknights, Reading, Berkshire RG6 6AH, UK
| | - Tiffany B. Taylor
- School of Biological Sciences, University of Reading, Whiteknights, Reading, Berkshire RG6 6AH, UK
- The Milner Centre for Evolution and Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, Somerset BA2 7AY, UK
| | - Philip R. Dash
- School of Biological Sciences, University of Reading, Whiteknights, Reading, Berkshire RG6 6AH, UK
| | - Louise J. Johnson
- School of Biological Sciences, University of Reading, Whiteknights, Reading, Berkshire RG6 6AH, UK
| |
Collapse
|
14
|
Tissot T, Massol F, Ujvari B, Alix-Panabieres C, Loeuille N, Thomas F. Metastasis and the evolution of dispersal. Proc Biol Sci 2019; 286:20192186. [PMID: 31771479 DOI: 10.1098/rspb.2019.2186] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Despite significant progress in oncology, metastasis remains the leading cause of mortality of cancer patients. Understanding the foundations of this phenomenon could help contain or even prevent it. As suggested by many ecologists and cancer biologists, metastasis could be considered through the lens of biological dispersal: the movement of cancer cells from their birth site (the primary tumour) to other habitats where they resume proliferation (metastatic sites). However, whether this model can consistently be applied to the emergence and dynamics of metastasis remains unclear. Here, we provide a broad review of various aspects of the evolution of dispersal in ecosystems. We investigate whether similar ecological and evolutionary principles can be applied to metastasis, and how these processes may shape the spatio-temporal dynamics of disseminating cancer cells. We further discuss complementary hypotheses and propose experimental approaches to test the relevance of the evolutionary ecology of dispersal in studying metastasis.
Collapse
Affiliation(s)
- Tazzio Tissot
- Institute of Ecology and Environmental Sciences, Sorbonne University/CNRS/INRA/IRD/UPEC/Paris-Diderot University, Paris, France.,Eco-Anthropology, MNHN/CNRS/Paris-Diderot University, Paris, France
| | - François Massol
- Univ. Lille, CNRS, UMR 8198-Evo-Eco-Paleo, F-59000 Lille, France.,Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 8204-CIIL-Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Beata Ujvari
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria, Australia
| | - Catherine Alix-Panabieres
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, Montpellier, France
| | - Nicolas Loeuille
- Institute of Ecology and Environmental Sciences, Sorbonne University/CNRS/INRA/IRD/UPEC/Paris-Diderot University, Paris, France
| | - Frédéric Thomas
- CREEC (CREES), Unité Mixte de Recherches, IRD 224-CNRS 5290-Université de Montpellier, Montpellier, France
| |
Collapse
|
15
|
Apari P, Müller V. Paradoxes of tumour complexity: somatic selection, vulnerability by design, or infectious aetiology? Biol Rev Camb Philos Soc 2018; 94:1075-1088. [PMID: 30592143 DOI: 10.1111/brv.12490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 11/28/2018] [Accepted: 11/30/2018] [Indexed: 12/01/2022]
Abstract
The aetiology of cancer involves intricate cellular and molecular mechanisms that apparently emerge on the short timescale of a single lifetime. Some of these traits are remarkable not only for their complexity, but also because it is hard to conceive selection pressures that would favour their evolution within the local competitive microenvironment of the tumour. Examples include 'niche construction' (re-programming of tumour-specific target sites) to create permissive conditions for distant metastases; long-range feedback loops of tumour growth; and remarkably 'plastic' phenotypes (e.g. density-dependent dispersal) associated with metastatic cancer. These traits, which we term 'paradoxical tumour traits', facilitate the long-range spread or long-term persistence of the tumours, but offer no apparent benefit, and might even incur costs in the competition of clones within the tumour. We discuss three possible scenarios for the origin of these characters: somatic selection driven by specific selection regimes; non-adaptive emergence due to inherent vulnerabilities in the organism; and manipulation by putative transmissible agents that contribute to and benefit from these traits. Our work highlights a lack of understanding of some aspects of tumour development, and offers alternative hypotheses that might guide further research.
Collapse
Affiliation(s)
- Péter Apari
- Institute of Biology, Eötvös Loránd University, Budapest 1117, Hungary.,Evolutionary Systems Research Group, MTA Centre for Ecological Research, Tihany 8237, Hungary
| | - Viktor Müller
- Institute of Biology, Eötvös Loránd University, Budapest 1117, Hungary.,Evolutionary Systems Research Group, MTA Centre for Ecological Research, Tihany 8237, Hungary
| |
Collapse
|
16
|
The Impact of Tumor Eco-Evolution in Renal Cell Carcinoma Sampling. Cancers (Basel) 2018; 10:cancers10120485. [PMID: 30518081 PMCID: PMC6316833 DOI: 10.3390/cancers10120485] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 11/29/2018] [Accepted: 11/30/2018] [Indexed: 12/31/2022] Open
Abstract
Malignant tumors behave dynamically as cell communities governed by ecological principles. Massive sequencing tools are unveiling the true dimension of the heterogeneity of these communities along their evolution in most human neoplasms, clear cell renal cell carcinomas (CCRCC) included. Although initially thought to be purely stochastic processes, very recent genomic analyses have shown that temporal tumor evolution in CCRCC may follow some deterministic pathways that give rise to different clones and sub-clones randomly spatially distributed across the tumor. This fact makes each case unique, unrepeatable and unpredictable. Precise and complete molecular information is crucial for patients with cancer since it may help in establishing a personalized therapy. Intratumor heterogeneity (ITH) detection relies on the correctness of tumor sampling and this is part of the pathologist’s daily work. International protocols for tumor sampling are insufficient today. They were conceived decades ago, when ITH was not an issue, and have remained unchanged until now. Noteworthy, an alternative and more efficient sampling method for detecting ITH has been developed recently. This new method, called multisite tumor sampling (MSTS), is specifically addressed to large tumors that are impossible to be totally sampled, and represent an opportunity to improve ITH detection without extra costs.
Collapse
|
17
|
Rosenheim JA. Short- and long-term evolution in our arms race with cancer: Why the war on cancer is winnable. Evol Appl 2018; 11:845-852. [PMID: 29928294 PMCID: PMC5999210 DOI: 10.1111/eva.12612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 02/07/2018] [Indexed: 12/11/2022] Open
Abstract
Human society is engaged in an arms race against cancer, which pits one evolutionary process-human cultural evolution as we develop novel cancer therapies-against another evolutionary process-the ability of oncogenic selection operating among cancer cells to select for lineages that are resistant to our therapies. Cancer cells have a powerful ability to evolve resistance over the short term, leading to patient relapse following an initial period of apparent treatment efficacy. However, we are the beneficiaries of a fundamental asymmetry in our arms race against cancer: Whereas our cultural evolution is a long-term and continuous process, resistance evolution in cancer cells operates only over the short term and is discontinuous - all resistance adaptations are lost each time a cancer patient dies. Thus, our cultural adaptations are permanent, whereas cancer's genetic adaptations are ephemeral. Consequently, over the long term, there is good reason to expect that we will emerge as the winners in our war against cancer.
Collapse
Affiliation(s)
- Jay A. Rosenheim
- Department of Entomology and Nematologyand Center for Population Biology, University of California DavisDavisCAUSA
| |
Collapse
|
18
|
van Niekerk G, Nell T, Engelbrecht AM. Domesticating Cancer: An Evolutionary Strategy in the War on Cancer. Front Oncol 2017; 7:304. [PMID: 29270389 PMCID: PMC5725441 DOI: 10.3389/fonc.2017.00304] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 11/24/2017] [Indexed: 12/14/2022] Open
Abstract
Since cancer shares the same molecular machinery as the host, most therapeutic interventions that aim to target cancer would inadvertently also adversely affect the host. In addition, cancer continuously evolves, streamlining its host-derived genome for a new single-celled existence. In particular, short-term clinical success observed with most antineoplastic therapies directly relate to the fact that cancer is constantly evolving. However, the clonal evolution of cancer occasionally also render cancer cells uniquely susceptible to therapeutic interventions, as is exemplified by the clinical relevance of synthetic lethality. Synthetic lethality describes a situation where the simultaneous loss of function in two genes results in lethality, but where a loss of function in either single gene is tolerated. This observation suggests that the evolution of cancer, usually seen as a major clinical challenge, may also afford a key opportunity in lowering on-target toxicities accosted with chemotherapy. As an example, by subjecting cancer to specific selection regimes, cancer can in effect be placed on evolutionary trajectories leading to the development of “targetable” phenotypes such as synthetic lethal interactions. However, such a selection regime would have to overcome a range of obstacles such as on-target toxicity and the selection of an evolvable trait. Since the majority of cancer evolution manifests as a loss of function, we suggest that the induction of auxotrophic phenotypes (i.e., where an organism lose the ability to synthesize specific organic compounds required for growth and thus become dependent on it from dietary sources) may represent an attractive therapeutic option. As an example, animals can obtain vitamin C either by de novo synthesis or from their diet. However, since the maintenance of synthetic pathways is costly, such pathways are often lost if no longer necessary, resulting in the organism being auxotrophic toward the dietary compound. Similarly, increasing the maintenance cost of a redundant pathway in cancer cells is likely to select for clones that have lost such a redundant pathway. Inhibition of a pathway, while supporting the activity of a compensating pathway, may thus induce auxotrophism in cancer cells but not in genomic stable host cells.
Collapse
Affiliation(s)
- Gustav van Niekerk
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Theo Nell
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Anna-Mart Engelbrecht
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
19
|
Rifkin RF, Potgieter M, Ramond J, Cowan DA. Ancient oncogenesis, infection and human evolution. Evol Appl 2017; 10:949-964. [PMID: 29151852 PMCID: PMC5680625 DOI: 10.1111/eva.12497] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 05/22/2017] [Indexed: 12/27/2022] Open
Abstract
The recent discovery that malignant neoplastic lesions date back nearly 2 million years ago not only highlights the antiquity of cancer in the human lineage, but also provides remarkable insight into ancestral hominin disease pathology. Using these Early Pleistocene examples as a point of departure, we emphasize the prominent role of viral and bacterial pathogens in oncogenesis and evaluate the impact of pathogens on human evolutionary processes in Africa. In the Shakespearean vernacular "what's past is prologue," we highlight the significance of novel information derived from ancient pathogenic DNA. In particular, and given the temporal depth of human occupation in sub-Saharan Africa, it is emphasized that the region is ideally positioned to play a strategic role in the discovery of ancient pathogenic drivers of not only human mortality, but also human evolution. Ancient African pathogen genome data can provide novel revelations concerning human-pathogen coevolutionary processes, and such knowledge is essential for forecasting the ways in which emerging zoonotic and increasingly transmissible diseases might influence human demography and longevity in the future.
Collapse
Affiliation(s)
- Riaan F. Rifkin
- Center for Microbial Ecology and Genomics (CMEG)Department of GeneticsUniversity of PretoriaHatfieldSouth Africa
| | - Marnie Potgieter
- Center for Microbial Ecology and Genomics (CMEG)Department of GeneticsUniversity of PretoriaHatfieldSouth Africa
| | - Jean‐Baptiste Ramond
- Center for Microbial Ecology and Genomics (CMEG)Department of GeneticsUniversity of PretoriaHatfieldSouth Africa
| | - Don A. Cowan
- Center for Microbial Ecology and Genomics (CMEG)Department of GeneticsUniversity of PretoriaHatfieldSouth Africa
| |
Collapse
|
20
|
Morais MCC, Stuhl I, Sabino AU, Lautenschlager WW, Queiroga AS, Tortelli TC, Chammas R, Suhov Y, Ramos AF. Stochastic model of contact inhibition and the proliferation of melanoma in situ. Sci Rep 2017; 7:8026. [PMID: 28808257 PMCID: PMC5556068 DOI: 10.1038/s41598-017-07553-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 06/27/2017] [Indexed: 11/09/2022] Open
Abstract
Contact inhibition is a central feature orchestrating cell proliferation in culture experiments; its loss is associated with malignant transformation and tumorigenesis. We performed a co-culture experiment with human metastatic melanoma cell line (SKMEL- 147) and immortalized keratinocyte cells (HaCaT). After 8 days a spatial pattern was detected, characterized by the formation of clusters of melanoma cells surrounded by keratinocytes constraining their proliferation. In addition, we observed that the proportion of melanoma cells within the total population has increased. To explain our results we propose a spatial stochastic model (following a philosophy of the Widom-Rowlinson model from Statistical Physics and Molecular Chemistry) which considers cell proliferation, death, migration, and cell-to-cell interaction through contact inhibition. Our numerical simulations demonstrate that loss of contact inhibition is a sufficient mechanism, appropriate for an explanation of the increase in the proportion of tumor cells and generation of spatial patterns established in the conducted experiments.
Collapse
Affiliation(s)
- Mauro César Cafundó Morais
- Departamento de Radiologia e Oncologia, Faculdade de Medicina, Universidade de São Paulo, Sao Paulo, Brazil.,Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, Av Arlindo Béttio, 1000, Sao Paulo, 03828-000, SP, Brazil.,Centro de Investigação Translacional em Oncologia, Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina, Universidade de São Paulo, São Paulo Paulo, Brazil.,Núcleo de Estudos Interdisciplinares em Sistemas Complexos, Universidade de São Paulo, São Paulo, Brazil
| | - Izabella Stuhl
- Math Department, University of Denver, Denver, USA.,DAMPT, University of Debrecen, Debrecen, Hungary
| | - Alan U Sabino
- Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, Av Arlindo Béttio, 1000, Sao Paulo, 03828-000, SP, Brazil.,Math Department, University of Denver, Denver, USA.,Centro de Investigação Translacional em Oncologia, Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina, Universidade de São Paulo, São Paulo Paulo, Brazil.,Núcleo de Estudos Interdisciplinares em Sistemas Complexos, Universidade de São Paulo, São Paulo, Brazil
| | - Willian W Lautenschlager
- Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, Av Arlindo Béttio, 1000, Sao Paulo, 03828-000, SP, Brazil.,Math Department, University of Denver, Denver, USA.,Centro de Investigação Translacional em Oncologia, Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina, Universidade de São Paulo, São Paulo Paulo, Brazil.,Núcleo de Estudos Interdisciplinares em Sistemas Complexos, Universidade de São Paulo, São Paulo, Brazil
| | - Alexandre S Queiroga
- Departamento de Radiologia e Oncologia, Faculdade de Medicina, Universidade de São Paulo, Sao Paulo, Brazil.,Math Department, University of Denver, Denver, USA.,Centro de Investigação Translacional em Oncologia, Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina, Universidade de São Paulo, São Paulo Paulo, Brazil.,Núcleo de Estudos Interdisciplinares em Sistemas Complexos, Universidade de São Paulo, São Paulo, Brazil
| | - Tharcisio Citrangulo Tortelli
- Departamento de Radiologia e Oncologia, Faculdade de Medicina, Universidade de São Paulo, Sao Paulo, Brazil.,Centro de Investigação Translacional em Oncologia, Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina, Universidade de São Paulo, São Paulo Paulo, Brazil
| | - Roger Chammas
- Departamento de Radiologia e Oncologia, Faculdade de Medicina, Universidade de São Paulo, Sao Paulo, Brazil.,Centro de Investigação Translacional em Oncologia, Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina, Universidade de São Paulo, São Paulo Paulo, Brazil
| | - Yuri Suhov
- DPMMS, University of Cambridge, Cambridge, UK.,Math Department, Penn State University, State College, USA
| | - Alexandre F Ramos
- Departamento de Radiologia e Oncologia, Faculdade de Medicina, Universidade de São Paulo, Sao Paulo, Brazil. .,Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, Av Arlindo Béttio, 1000, Sao Paulo, 03828-000, SP, Brazil. .,Centro de Investigação Translacional em Oncologia, Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina, Universidade de São Paulo, São Paulo Paulo, Brazil. .,Núcleo de Estudos Interdisciplinares em Sistemas Complexos, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
21
|
Thomas F, Rome S, Mery F, Dawson E, Montagne J, Biro PA, Beckmann C, Renaud F, Poulin R, Raymond M, Ujvari B. Changes in diet associated with cancer: An evolutionary perspective. Evol Appl 2017; 10:651-657. [PMID: 28717385 PMCID: PMC5511355 DOI: 10.1111/eva.12465] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 02/02/2017] [Indexed: 12/15/2022] Open
Abstract
Changes in diet are frequently correlated with the occurrence and progression of malignant tumors (i.e., cancer) in both humans and other animals, but an integrated conceptual framework to interpret these changes still needs to be developed. Our aim is to provide a new perspective on dietary changes in tumor‐bearing individuals by adapting concepts from parasitology. Dietary changes may occur alongside tumor progression for several reasons: (i) as a pathological side effect with no adaptive value, (ii) as the result of self‐medication by the host to eradicate the tumor and/or to slow down its progression, (iii) as a result of host manipulation by the tumor that benefits its progression, and finally (iv) as a host tolerance strategy, to alleviate and repair damages caused by tumor progression. Surprisingly, this tolerance strategy can be beneficial for the host even if diet changes are beneficial to tumor progression, provided that cancer‐induced death occurs sufficiently late (i.e., when natural selection is weak). We argue that more data and a unifying evolutionary framework, especially during the early stages of tumorigenesis, are needed to understand the links between changes in diet and tumor progression. We argue that a focus on dietary changes accompanying tumor progression can offer novel preventive and therapeutic strategies against cancer.
Collapse
Affiliation(s)
- Frédéric Thomas
- CREEC/MIVEGEC UMR IRD/CNRS/UM 5290 Montpellier Cedex 5 France
| | - Sophie Rome
- CarMen (UMR INSERM 1060, INRA 1397, INSA) Faculté de Médecine Lyon-Sud Université de Lyon Oullins France
| | - Frédéric Mery
- Evolution, Génomes, Comportement and Ecologie CNRS, IRD Université Paris-Sud, Université Paris-Saclay Gif-sur-Yvette France
| | - Erika Dawson
- Evolution, Génomes, Comportement and Ecologie CNRS, IRD Université Paris-Sud, Université Paris-Saclay Gif-sur-Yvette France
| | - Jacques Montagne
- Institute for Integrative Biology of the Cell (I2BC) CNRS Université Paris-Sud, CEA, UMR 9198 Gif-sur-Yvette France
| | - Peter A Biro
- Centre for Integrative Ecology School of Life and Environmental Sciences Deakin University Waurn Ponds VIC Australia
| | - Christa Beckmann
- Centre for Integrative Ecology School of Life and Environmental Sciences Deakin University Waurn Ponds VIC Australia
| | - François Renaud
- CREEC/MIVEGEC UMR IRD/CNRS/UM 5290 Montpellier Cedex 5 France
| | - Robert Poulin
- Department of Zoology University of Otago Dunedin New Zealand
| | - Michel Raymond
- Institute of Evolutionary Sciences University of Montpellier Montpellier France
| | - Beata Ujvari
- Centre for Integrative Ecology School of Life and Environmental Sciences Deakin University Waurn Ponds VIC Australia
| |
Collapse
|
22
|
de Groot AE, Roy S, Brown JS, Pienta KJ, Amend SR. Revisiting Seed and Soil: Examining the Primary Tumor and Cancer Cell Foraging in Metastasis. Mol Cancer Res 2017; 15:361-370. [PMID: 28209759 DOI: 10.1158/1541-7786.mcr-16-0436] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 01/18/2017] [Accepted: 02/03/2017] [Indexed: 12/24/2022]
Abstract
Metastasis is the consequence of a cancer cell that disperses from the primary tumor, travels throughout the body, and invades and colonizes a distant site. On the basis of Paget's 1889 hypothesis, the majority of modern metastasis research focuses on the properties of the metastatic "seed and soil," but the implications of the primary tumor "soil" have been largely neglected. The rare lethal metastatic "seed" arises as a result of the selective pressures in the primary tumor. Optimal foraging theory describes how cancer cells adopt a mobile foraging strategy to balance predation risk and resource reward. Further selection in the dispersal corridors leading out of the primary tumor enhances the adaptive profile of the potentially metastatic cell. This review focuses on the selective pressures of the primary tumor "soil" that generate lethal metastatic "seeds" which is essential to understanding this critical component of prostate cancer metastasis.Implication: Elucidating the selective pressures of the primary tumor "soil" that generate lethal metastatic "seeds" is essential to understand how and why metastasis occurs in prostate cancer. Mol Cancer Res; 15(4); 361-70. ©2017 AACR.
Collapse
Affiliation(s)
- Amber E de Groot
- The James Buchanan Brady Urological Institute at the Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Sounak Roy
- The James Buchanan Brady Urological Institute at the Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Joel S Brown
- Department of Biological Sciences and UIC Cancer Center, University of Illinois at Chicago, Chicago, Illinois.,Integrated Mathematical Oncology, Moffitt Cancer Center, Tampa, Florida
| | - Kenneth J Pienta
- The James Buchanan Brady Urological Institute at the Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Sarah R Amend
- The James Buchanan Brady Urological Institute at the Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
23
|
Fortunato A, Boddy A, Mallo D, Aktipis A, Maley CC, Pepper JW. Natural Selection in Cancer Biology: From Molecular Snowflakes to Trait Hallmarks. Cold Spring Harb Perspect Med 2017; 7:cshperspect.a029652. [PMID: 28148564 DOI: 10.1101/cshperspect.a029652] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Evolution by natural selection is the conceptual foundation for nearly every branch of biology and increasingly also for biomedicine and medical research. In cancer biology, evolution explains how populations of cells in tumors change over time. It is a fundamental question whether this evolutionary process is driven primarily by natural selection and adaptation or by other evolutionary processes such as founder effects and drift. In cancer biology, as in organismal evolutionary biology, there is controversy about this question and also about the use of adaptation through natural selection as a guiding framework for research. In this review, we discuss the differences and similarities between evolution among somatic cells versus evolution among organisms. We review what is known about the parameters and rate of evolution in neoplasms, as well as evidence for adaptation. We conclude that adaptation is a useful framework that accurately explains the defining characteristics of cancer. Further, convergent evolution through natural selection provides the only satisfying explanation both for how a group of diverse pathologies have enough in common to usefully share the descriptive label of "cancer" and for why this convergent condition becomes life-threatening.
Collapse
Affiliation(s)
- Angelo Fortunato
- Biodesign Center for Personalized Diagnostics, and School of Life Sciences, Arizona State University, Tempe, Arizona 85287
| | - Amy Boddy
- Department of Psychology, Arizona State University, Tempe, Arizona 85287
| | - Diego Mallo
- Biodesign Center for Personalized Diagnostics, and School of Life Sciences, Arizona State University, Tempe, Arizona 85287
| | - Athena Aktipis
- Department of Psychology, Arizona State University, Tempe, Arizona 85287.,Biodesign Center for Evolution and Medicine, Arizona State University, Tempe, Arizona 85287
| | - Carlo C Maley
- Biodesign Center for Personalized Diagnostics, and School of Life Sciences, Arizona State University, Tempe, Arizona 85287.,Centre for Evolution and Cancer, Institute of Cancer Research, London SM2 5NG, United Kingdom
| | - John W Pepper
- Biometry Research Group, Division of Cancer Prevention, National Cancer Institute, Rockville, Maryland 20850.,Santa Fe Institute, Santa Fe, New Mexico 87501
| |
Collapse
|
24
|
Thomas F, Nesse RM, Gatenby R, Gidoin C, Renaud F, Roche B, Ujvari B. Evolutionary Ecology of Organs: A Missing Link in Cancer Development? Trends Cancer 2016; 2:409-415. [DOI: 10.1016/j.trecan.2016.06.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 06/28/2016] [Accepted: 06/29/2016] [Indexed: 12/18/2022]
|
25
|
Tissot T, Arnal A, Jacqueline C, Poulin R, Lefèvre T, Mery F, Renaud F, Roche B, Massol F, Salzet M, Ewald P, Tasiemski A, Ujvari B, Thomas F. Host manipulation by cancer cells: Expectations, facts, and therapeutic implications. Bioessays 2016; 38:276-85. [PMID: 26849295 DOI: 10.1002/bies.201500163] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Similar to parasites, cancer cells depend on their hosts for sustenance, proliferation and reproduction, exploiting the hosts for energy and resources, and thereby impairing their health and fitness. Because of this lifestyle similarity, it is predicted that cancer cells could, like numerous parasitic organisms, evolve the capacity to manipulate the phenotype of their hosts to increase their own fitness. We claim that the extent of this phenomenon and its therapeutic implications are, however, underappreciated. Here, we review and discuss what can be regarded as cases of host manipulation in the context of cancer development and progression. We elaborate on how acknowledging the applicability of these principles can offer novel therapeutic and preventive strategies. The manipulation of host phenotype by cancer cells is one more reason to adopt a Darwinian approach in cancer research.
Collapse
Affiliation(s)
- Tazzio Tissot
- CREEC/MIVEGEC, UMR IRD/CNRS/UM 5290, Montpellier, France
| | - Audrey Arnal
- CREEC/MIVEGEC, UMR IRD/CNRS/UM 5290, Montpellier, France
| | | | - Robert Poulin
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | | | - Frédéric Mery
- Evolution, Génomes, Comportement and Ecologie, CNRS, IRD, University of Paris-Sud, Université Paris Saclay, Gif-sur-Yvette, France
| | | | - Benjamin Roche
- CREEC/MIVEGEC, UMR IRD/CNRS/UM 5290, Montpellier, France.,Unité mixte internationale de Modélisation Mathématique et Informatique des Systèmes Complexes, (UMI IRD/UPMC UMMISCO), BondyCedex, France
| | - François Massol
- Université de Lille, UMR 8198, Unité EEP, Ecoimmunology Group, Lille, France
| | - Michel Salzet
- Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM) INSERM U1192, Université Lille, Lille, France
| | - Paul Ewald
- Department of Biology and the Program on Disease Evolution, University of Louisville, Louisville, KY, USA
| | - Aurélie Tasiemski
- Université de Lille, UMR 8198, Unité EEP, Ecoimmunology Group, Lille, France
| | - Beata Ujvari
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia
| | | |
Collapse
|
26
|
Tissot T, Ujvari B, Solary E, Lassus P, Roche B, Thomas F. Do cell-autonomous and non-cell-autonomous effects drive the structure of tumor ecosystems? Biochim Biophys Acta Rev Cancer 2016; 1865:147-54. [PMID: 26845682 DOI: 10.1016/j.bbcan.2016.01.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 01/28/2016] [Accepted: 01/30/2016] [Indexed: 12/21/2022]
Abstract
By definition, a driver mutation confers a growth advantage to the cancer cell in which it occurs, while a passenger mutation does not: the former is usually considered as the engine of cancer progression, while the latter is not. Actually, the effects of a given mutation depend on the genetic background of the cell in which it appears, thus can differ in the subclones that form a tumor. In addition to cell-autonomous effects generated by the mutations, non-cell-autonomous effects shape the phenotype of a cancer cell. Here, we review the evidence that a network of biological interactions between subclones drives cancer cell adaptation and amplifies intra-tumor heterogeneity. Integrating the role of mutations in tumor ecosystems generates innovative strategies targeting the tumor ecosystem's weaknesses to improve cancer treatment.
Collapse
Affiliation(s)
- Tazzio Tissot
- CREEC/MIVEGEC, UMR IRD/CNRS/UM 5290, 911 Avenue Agropolis, BP 64501, 34394 Montpellier Cedex 5, France.
| | - Beata Ujvari
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Australia
| | - Eric Solary
- INSERM U1170, Gustave Roussy, 94805 Villejuif, France; University Paris-Saclay, Faculty of Medicine, 94270 Le Kremlin-Bicêtre, France
| | - Patrice Lassus
- CNRS, UMR 5535, Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, Montpellier, France
| | - Benjamin Roche
- CREEC/MIVEGEC, UMR IRD/CNRS/UM 5290, 911 Avenue Agropolis, BP 64501, 34394 Montpellier Cedex 5, France; Unité mixte internationale de Modélisation Mathématique et Informatique des Systèmes Complexes (UMI IRD/UPMC UMMISCO), 32 Avenue Henri Varagnat, 93143 Bondy Cedex, France
| | - Frédéric Thomas
- CREEC/MIVEGEC, UMR IRD/CNRS/UM 5290, 911 Avenue Agropolis, BP 64501, 34394 Montpellier Cedex 5, France
| |
Collapse
|
27
|
Cancer Ecology: Niche Construction, Keystone Species, Ecological Succession, and Ergodic Theory. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s13752-015-0226-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|