1
|
Khattak WA, Sun J, Hameed R, Zaman F, Abbas A, Khan KA, Elboughdiri N, Akbar R, He F, Ullah MW, Al-Andal A, Du D. Unveiling the resistance of native weed communities: insights for managing invasive weed species in disturbed environments. Biol Rev Camb Philos Soc 2024; 99:753-777. [PMID: 38174626 DOI: 10.1111/brv.13043] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/10/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024]
Abstract
Weed communities influence the dynamics of ecosystems, particularly in disturbed environments where anthropogenic activities often result in higher pollution. Understanding the dynamics existing between native weed communities and invasive species in disturbed environments is crucial for effective management and normal ecosystem functioning. Recognising the potential resistance of native weed communities to invasion in disturbed environments can help identify suitable native plants for restoration operations. This review aims to investigate the adaptations exhibited by native and non-native weeds that may affect invasions within disturbed environments. Factors such as ecological characteristics, altered soil conditions, and adaptations of native weed communities that potentially confer a competitive advantage relative to non-native or invasive weeds in disturbed environments are analysed. Moreover, the roles of biotic interactions such as competition, mutualistic relationships, and allelopathy in shaping the invasion resistance of native weed communities are described. Emphasis is given to the consideration of the resistance of native weeds as a key factor in invasion dynamics that provides insights for conservation and restoration efforts in disturbed environments. Additionally, this review underscores the need for further research to unravel the underlying mechanisms and to devise targeted management strategies. These strategies aim to promote the resistance of native weed communities and mitigate the negative effects of invasive weed species in disturbed environments. By delving deeper into these insights, we can gain an understanding of the ecological dynamics within disturbed ecosystems and develop valuable insights for the management of invasive species, and to restore long-term ecosystem sustainability.
Collapse
Affiliation(s)
- Wajid Ali Khattak
- School of Emergency Management, Jiangsu University, No. 301, Xuefu Road, PO Box 212013, Zhenjiang City, Jiangsu Province, China
- School of the Environment and Safety Engineering, Jiangsu University, No. 301, Xuefu Road, PO Box 212013, Zhenjiang City, Jiangsu Province, China
| | - Jianfan Sun
- School of Emergency Management, Jiangsu University, No. 301, Xuefu Road, PO Box 212013, Zhenjiang City, Jiangsu Province, China
- School of the Environment and Safety Engineering, Jiangsu University, No. 301, Xuefu Road, PO Box 212013, Zhenjiang City, Jiangsu Province, China
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, PO Box 215009, Suzhou City, Jiangsu Province, P.R. China
| | - Rashida Hameed
- School of the Environment and Safety Engineering, Jiangsu University, No. 301, Xuefu Road, PO Box 212013, Zhenjiang City, Jiangsu Province, China
| | - Fawad Zaman
- Key Laboratory of National Forestry and Grassland Administration on Forest Ecosystem Protection and Restoration of Poyang Lake Watershed, Jiangxi Agricultural University, PO Box 330045, Nanchang City, Jiangxi Province, P.R. China
- Jiangxi Provincial Key Laboratory of Silviculture, College of Forestry, Jiangxi Agricultural University, PO Box 330045, Nanchang City, Jiangxi Province, P.R. China
| | - Adeel Abbas
- School of the Environment and Safety Engineering, Jiangsu University, No. 301, Xuefu Road, PO Box 212013, Zhenjiang City, Jiangsu Province, China
| | - Khalid Ali Khan
- Applied College, Center of Bee Research and its Products, Unit of Bee Research and Honey Production, and Research Center for Advanced Materials Science (RCAMS), King Khalid University, PO Box 9004, Abha, 61413, Saudi Arabia
| | - Noureddine Elboughdiri
- Chemical Engineering Department, College of Engineering, University of Ha'il, PO Box 2440, Ha'il, 81441, Saudi Arabia
- Chemical Engineering Process Department, National School of Engineers Gabes, University of Gabes, 6029, Gabes, Tunisia
| | - Rasheed Akbar
- School of the Environment and Safety Engineering, Jiangsu University, No. 301, Xuefu Road, PO Box 212013, Zhenjiang City, Jiangsu Province, China
- Department of Entomology, The University of Haripur, PO Box 22620, Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Feng He
- School of the Environment and Safety Engineering, Jiangsu University, No. 301, Xuefu Road, PO Box 212013, Zhenjiang City, Jiangsu Province, China
| | - Muhammad Wajid Ullah
- Biofuels Institute, School of The Environmental and Safety Engineering, Jiangsu University, No. 301, Xuefu Road, PO Box 212013, Zhenjiang City, Jiangsu Province, China
| | - Abeer Al-Andal
- Department of Biology, College of Science, King Khalid University, PO Box 960, Abha, 61413, Saudi Arabia
| | - Daolin Du
- School of the Environment and Safety Engineering, Jiangsu University, No. 301, Xuefu Road, PO Box 212013, Zhenjiang City, Jiangsu Province, China
| |
Collapse
|
2
|
Xiaoming C, Tianzeng C, Haomin M, Ziqi Z, Dehua W, Jianchao S, Jun W. An improved algorithm based on YOLOv5 for detecting Ambrosia trifida in UAV images. FRONTIERS IN PLANT SCIENCE 2024; 15:1360419. [PMID: 38799099 PMCID: PMC11116602 DOI: 10.3389/fpls.2024.1360419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 03/25/2024] [Indexed: 05/29/2024]
Abstract
A YOLOv5-based YOLOv5-KE unmanned aerial vehicle (UAV) image detection algorithm is proposed to address the low detection accuracy caused by the small size, high density, and overlapping leaves of Ambrosia trifida targets in UAV images. The YOLOv5-KE algorithm builds upon the YOLOv5 algorithm by adding a micro-scale detection layer, adjusting the hierarchical detection settings based on k-Means for Anchor Box, improving the loss function of CIoU, reselecting and improving the detection box fusion algorithm. Comparative validation experiments of the YOLOv5-KE algorithm for Ambrosia trifida recognition were conducted using a self-built dataset. The experimental results show that the best detection accuracy of Ambrosia trifida in UAV images is 93.9%, which is 15.2% higher than the original YOLOv5. Furthermore, this algorithm also outperforms other existing object detection algorithms such as YOLOv7, DC-YOLOv8, YOLO-NAS, RT-DETR, Faster RCNN, SSD, and Retina Net. Therefore, YOLOv5-KE is a practical algorithm for detecting Ambrosia trifida under complex field conditions. This algorithm shows good potential in detecting weeds of small, high-density, and overlapping leafy targets in UAV images, it could provide technical reference for the detection of similar plants.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wang Jun
- College of Engineering and Technology, Jilin Agricultural University, Changchun, China
| |
Collapse
|
3
|
Xu K, Liu X, Zhao C, Pan Q, Chen X, Jiang N, Du C, Xu Y, Shao M, Qu B. Nitrogen deposition further increases Ambrosia trifida root exudate invasiveness under global warming. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:759. [PMID: 37249649 DOI: 10.1007/s10661-023-11380-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/09/2023] [Indexed: 05/31/2023]
Abstract
Invasive plants can change the soil ecological environment in the invasion area to adapt to their growth and reproduction through root exudates. Root exudates are the most direct manifestation of plant responses to external environmental changes, but there is a lack of studies on root exudates of invasive plants in the context of inevitable global warming and nitrogen deposition. In this research, we used widely targeted metabolomics to investigate Ambrosia trifida root exudates during seedling and maturity under warming and nitrogen deposition to reveal the possible mechanisms of A. trifida adaptation to climate change. The results showed that the organic acids increased under warming condition but decreased after nitrogen addition in the seedling stage. Phenolic acids increased greatly after nitrogen addition in the mature stage. Most phenolic acids were annotated in the phenylpropane metabolic pathway and tyrosine metabolism. Therefore, nitrogen deposition may increase the adaptability of A. trifida through root exudates, making it more invasive under global warming. The results provide new ideas for preventing and controlling the invasion of A. trifida under climate change.
Collapse
Affiliation(s)
- Ke Xu
- Liaoning Key Laboratory of Biological Invasions and Global Changes, Shenyang Agricultural University, Shenyang, China.
| | - Xinyue Liu
- Liaoning Key Laboratory of Biological Invasions and Global Changes, Shenyang Agricultural University, Shenyang, China
| | - Changxin Zhao
- Liaoning Key Laboratory of Biological Invasions and Global Changes, Shenyang Agricultural University, Shenyang, China
| | - Qingmin Pan
- Liaoning Key Laboratory of Biological Invasions and Global Changes, Shenyang Agricultural University, Shenyang, China
| | - Xiaoxing Chen
- Liaoning Key Laboratory of Biological Invasions and Global Changes, Shenyang Agricultural University, Shenyang, China
| | - Ning Jiang
- Liaoning Key Laboratory of Biological Invasions and Global Changes, Shenyang Agricultural University, Shenyang, China
| | - Cuiping Du
- Liaoning Key Laboratory of Biological Invasions and Global Changes, Shenyang Agricultural University, Shenyang, China
| | - Yufeng Xu
- Liaoning Key Laboratory of Biological Invasions and Global Changes, Shenyang Agricultural University, Shenyang, China
| | - Meini Shao
- Liaoning Key Laboratory of Biological Invasions and Global Changes, Shenyang Agricultural University, Shenyang, China
| | - Bo Qu
- Liaoning Key Laboratory of Biological Invasions and Global Changes, Shenyang Agricultural University, Shenyang, China.
- Liaoning Panjin Wetland Ecosystem National Observation and Research Station, Shenyang, 110866, China.
| |
Collapse
|
4
|
Li B, Gschwend AR, Hovick SM, Gutek A, McHale L, Harrison SK, Regnier EE. Evolution of weedy giant ragweed ( Ambrosia trifida): Multiple origins and gene expression variability facilitates weediness. Ecol Evol 2022; 12:e9590. [PMID: 36514541 PMCID: PMC9731915 DOI: 10.1002/ece3.9590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 11/16/2022] [Indexed: 12/13/2022] Open
Abstract
Agricultural weeds may originate from wild populations, but the origination patterns and genetics underlying this transition remain largely unknown. Analysis of weedy-wild paired populations from independent locations may provide evidence to identify key genetic variation contributing to this adaptive shift. We performed genetic variation and expression analyses on transcriptome data from 67 giant ragweed samples collected from different locations in Ohio, Iowa, and Minnesota and found geographically separated weedy populations likely originated independently from their adjacent wild populations, but subsequent spreading of weedy populations also occurred locally. By using eight closely related weedy-wild paired populations, we identified thousands of unique transcripts in weedy populations that reflect shared or specific functions corresponding, respectively, to both convergently evolved and population-specific weediness processes. In addition, differential expression of specific groups of genes was detected between weedy and wild giant ragweed populations using gene expression diversity and gene co-expression network analyses. Our study suggests an integrated route of weedy giant ragweed origination, consisting of independent origination combined with the subsequent spreading of certain weedy populations, and provides several lines of evidence to support the hypothesis that gene expression variability plays a key role in the evolution of weedy species.
Collapse
Affiliation(s)
- Bo Li
- Department of Horticulture and Crop SciencesThe Ohio State UniversityColumbusOhioUSA
| | - Andrea R. Gschwend
- Department of Horticulture and Crop SciencesThe Ohio State UniversityColumbusOhioUSA
| | - Stephen M. Hovick
- Department of Evolution, Ecology and Organismal BiologyThe Ohio State UniversityColumbusOhioUSA
| | - Amanda Gutek
- Department of Horticulture and Crop SciencesThe Ohio State UniversityColumbusOhioUSA
| | - Leah McHale
- Department of Horticulture and Crop SciencesThe Ohio State UniversityColumbusOhioUSA
| | - S. Kent Harrison
- Department of Horticulture and Crop SciencesThe Ohio State UniversityColumbusOhioUSA
| | - Emilie E. Regnier
- Department of Horticulture and Crop SciencesThe Ohio State UniversityColumbusOhioUSA
| |
Collapse
|
5
|
Yoko ZG, Volk KL, Dochtermann NA, Hamilton JA. The importance of quantitative trait differentiation in restoration: landscape heterogeneity and functional traits inform seed transfer guidelines. AOB PLANTS 2020; 12:plaa009. [PMID: 32257091 PMCID: PMC7112727 DOI: 10.1093/aobpla/plaa009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 02/28/2020] [Indexed: 06/01/2023]
Abstract
For widely distributed species, understanding the scale over which genetic variation correlates to landscape structure and composition is critical. Particularly within the context of restoration, the evolution of genetic differences may impact success if seeds are maladapted to the restoration environment. In this study, we used Geum triflorum to quantify the scale over which genetic differences for quantitative traits important to adaptation have evolved, comparing the proportion of variance attributed to broad regional- and local population-level effects. Geum triflorum is a widely distributed species spanning a range of environments, including alvar and prairie habitats, which have extreme regional differences in soil-moisture availability. Alvar habitats are regions of thin soil over limestone that experience substantial seasonal variation in water availability, from flooding to desiccation annually. This contrasts with prairie habitats, whose deeper soils mitigate irregular flood-desiccation cycles. Using a common garden experiment, we evaluated 15 traits broadly grouped into three trait classes: resource allocation, stomatal characteristics, and leaf morphological traits for individuals sourced from prairie and alvar environments. We quantified the proportion of trait variance explained by regional- and population-scale effects and compared the proportion of regional- and population-trait variances explained across trait classes. Significant regional differentiation was observed for the majority of quantitative traits; however, population-scale effects were equal or greater than regional effects, suggesting that important genetic differences may have evolved across the finer population scale. Stomatal and resource allocation trait classes exhibited substantial regional differentiation relative to morphological traits, which may indicate increased strength of selection for stomatal and resource allocation traits relative to morphological traits. These patterns point towards the value in considering the scale over which genetic differences may have evolved for widely distributed species and identify different functional trait classes that may be valuable in establishing seed transfer guidelines.
Collapse
Affiliation(s)
- Zebadiah G Yoko
- Department of Biological Sciences, North Dakota State University, Fargo, ND, USA
| | - Kate L Volk
- Department of Biological Sciences, North Dakota State University, Fargo, ND, USA
| | - Ned A Dochtermann
- Department of Biological Sciences, North Dakota State University, Fargo, ND, USA
| | - Jill A Hamilton
- Department of Biological Sciences, North Dakota State University, Fargo, ND, USA
| |
Collapse
|