1
|
Fleckner J, Barker C. The 2009 FDA PRO guidance, Potential Type I error, Descriptive Statistics and Pragmatic estimation of the number of interviews for item elicitation. J Biopharm Stat 2024:1-16. [PMID: 39582199 DOI: 10.1080/10543406.2024.2420642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 10/17/2024] [Indexed: 11/26/2024]
Abstract
A statistical methodology named "capture recapture", a Kaplan-Meier Summary Statistic, and an urn model framework are presented to describe the elicitation, then estimate both the number of interviews and the total number of items ("codes") that will be elicited during patient interviews, and present a summary graphical statistic that "saturation" has occurred. This methodology is developed to address a gap in the FDA 2009 PRO and 2012 PFDD guidance for determining the number of interviews (sample size). This estimate of the number of interviews (sample size) uses a two-step procedure. The estimate of the total number of items is then used to estimate the number of interviews to elicit all items. A framework called an urn model is a framework for describing the elicitation and demonstrate the algorithm for declaring saturation "first interview with zero new codes". A caveat emptor is that due to independence assumptions, the urn model is not used as a method for estimating probabilities. The URN model provides a framework to demonstrate that an algorithm such as "first interview with zero new codes" may establish that all codes have been elicited. The limitations of the Urn model, capture recapture, and Kaplan-Meier are summarized. The statistical methods and the estimates supplement but do not replace expert judgement and declaration of "saturation." A graphical summary statistic is presented to summarize "saturation," after expert declaration for two algorithms. An example of a capture-recapture estimate, using simulated data is provided. The example suggests that the estimate of total number of codes may be accurate when prepared as early as the second interview. A second simulation is presented with an URN model, under a strong assumption of independence that an algorithm such as 'first interview with zero new codes" may fail to identify all codes. Potential errors in declaration of saturation are presented. Recommendations are presented for additional research and the use of the algorithm "first interview with zero new codes."
Collapse
Affiliation(s)
- Josh Fleckner
- Department of Statistics and Data Science, Evanston, Illinois, USA
| | - Chris Barker
- Chris Barker Statistical Planning and Analysis Services Inc, Napa, California, USA
| |
Collapse
|
2
|
Beichman AC, Kalhori P, Kyriazis CC, DeVries AA, Nigenda-Morales S, Heckel G, Schramm Y, Moreno-Estrada A, Kennett DJ, Hylkema M, Bodkin J, Koepfli KP, Lohmueller KE, Wayne RK. Genomic analyses reveal range-wide devastation of sea otter populations. Mol Ecol 2023; 32:281-298. [PMID: 34967471 PMCID: PMC9875727 DOI: 10.1111/mec.16334] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/02/2021] [Accepted: 12/23/2021] [Indexed: 01/28/2023]
Abstract
The genetic consequences of species-wide declines are rarely quantified because the timing and extent of the decline varies across the species' range. The sea otter (Enhydra lutris) is a unique model in this regard. Their dramatic decline from thousands to fewer than 100 individuals per population occurred range-wide and nearly simultaneously due to the 18th-19th century fur trade. Consequently, each sea otter population represents an independent natural experiment of recovery after extreme population decline. We designed sequence capture probes for 50 Mb of sea otter exonic and neutral genomic regions. We sequenced 107 sea otters from five populations that span the species range to high coverage (18-76×) and three historical Californian samples from ~1500 and ~200 years ago to low coverage (1.5-3.5×). We observe distinct population structure and find that sea otters in California are the last survivors of a divergent lineage isolated for thousands of years and therefore warrant special conservation concern. We detect signals of extreme population decline in every surviving sea otter population and use this demographic history to design forward-in-time simulations of coding sequence. Our simulations indicate that this decline could lower the fitness of recovering populations for generations. However, the simulations also demonstrate how historically low effective population sizes prior to the fur trade may have mitigated the effects of population decline on genetic health. Our comprehensive approach shows how demographic inference from genomic data, coupled with simulations, allows assessment of extinction risk and different models of recovery.
Collapse
Affiliation(s)
- Annabel C. Beichman
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA
| | - Pooneh Kalhori
- Department of Biology, San Francisco State University, San Francisco, CA 94132, USA
| | - Christopher C. Kyriazis
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA
| | - Amber A. DeVries
- Center for Bioinformatics and Functional Genomics, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Sergio Nigenda-Morales
- National Laboratory of Genomics for Biodiversity, Unit of Advanced Genomics (LANGEBIO), CINVESTAV, Irapuato, Guanajuato 36824, Mexico
| | - Gisela Heckel
- Centro de Investigación Científica y de Educación Superior de Ensenada (Ensenada Center for Scientific Research and Higher Education), Ensenada, Baja California 22860, Mexico
| | - Yolanda Schramm
- Universidad Autónoma de Baja California (Autonomous University of Baja California), Ensenada, Baja California 22860, Mexico
| | - Andrés Moreno-Estrada
- National Laboratory of Genomics for Biodiversity, Unit of Advanced Genomics (LANGEBIO), CINVESTAV, Irapuato, Guanajuato 36824, Mexico
| | - Douglas J. Kennett
- Department of Anthropology, University of California, Santa Barbara, CA 93106, USA
| | - Mark Hylkema
- Cultural Resources Program Manager and Tribal Liaison/Archaeologist, Santa Cruz District, California State Parks, Santa Cruz, California, USA
| | - James Bodkin
- Retired, Alaska Science Center, US Geological Survey, Anchorage Alaska, 99503, USA
| | - Klaus-Peter Koepfli
- Smithsonian-Mason School of Conservation, George Mason University, Front Royal, VA 22630, USA
- Smithsonian Conservation Biology Institute, Center for Species Survival, National Zoological Park, Washington, D.C., 20008, USA
- ITMO University, Computer Technologies Laboratory, St. Petersburg 197101, Russia
| | - Kirk E. Lohmueller
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA
- Interdepartmental Program in Bioinformatics, University of California, Los Angeles, CA 90095, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Robert K. Wayne
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
3
|
Kimble SJA, Unger SD, Williams RN. Genetically derived effective population size estimates of herpetofaunal species should be used with caution. J Wildl Manage 2022. [DOI: 10.1002/jwmg.22340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | - Shem D. Unger
- Department of Biology Wingate University Wingate NC 28174 USA
| | - Rod N. Williams
- Department of Forestry and Natural Resources Purdue University West Lafayette IN 47907 USA
| |
Collapse
|
4
|
Investigating Associations Among Relatedness, Genetic Diversity, and Causes of Mortality In Southern Sea Otters (Enhydra lutris nereis). J Wildl Dis 2021; 58:63-75. [PMID: 34818404 DOI: 10.7589/jwd-d-21-00019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 07/15/2021] [Indexed: 11/20/2022]
Abstract
Southern sea otter (Enhydra lutris nereis) population recovery is influenced by a variety of factors, including predation, biotoxin exposure, infectious disease, oil spills, habitat degradation, and resource limitation. This population has also experienced a significant genetic bottleneck, resulting in low genetic diversity. We investigated how two metrics, familial relatedness and genetic diversity, are correlated with common causes of mortality in southern sea otters, including cardiomyopathy, acanthocephalan (Profilicollis spp.) peritonitis, systemic protozoal infection (Toxoplasma gondii and Sarcocystis neurona), domoic acid intoxication, end-lactation syndrome, and shark bite. Microsatellite genetic markers were used to examine this association in 356 southern sea otters necropsied from 1998 to 2012. Significant associations with genetic diversity or familial relatedness (P<0.05) were observed for cardiomyopathy, acanthocephalan peritonitis, and sarcocystosis, and these associations varied by sex. Adult male cardiomyopathy cases (n=86) were more related than the null expectation (P<0.049). Conversely, female acanthocephalan peritonitis controls (n=110) were more related than the null expectation (P<0.004). Including genetic diversity as a predictor for fatal acanthocephalan peritonitis in the multivariate logistic model significantly improved model fit; lower genetic diversity was associated with reduced odds of sea otter death due to acanthocephalan peritonitis. Finally, male sarcocystosis controls (n=158) were more related than the null expectation (P<0.011). Including genetic diversity in the multivariate logistic model for fatal S. neurona infection improved model fit; lower genetic diversity was associated with increased odds of sea otter death due to S. neurona. Our study suggests that genetic diversity and familial relatedness, in conjunction with other factors such as age and sex, may influence outcome (survival or death) in relation to several common southern sea otter diseases. Our findings can inform policy for conservation management, such as potential reintroduction efforts, as part of species recovery.
Collapse
|
5
|
Tinker MT, Yee JL, Laidre KL, Hatfield BB, Harris MD, Tomoleoni JA, Bell TW, Saarman E, Carswell LP, Miles AK. Habitat Features Predict Carrying Capacity of a Recovering Marine Carnivore. J Wildl Manage 2021. [DOI: 10.1002/jwmg.21985] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- M. Tim Tinker
- U.S. Geological Survey, Western Ecological Research Center Santa Cruz Field Station 2885 Mission Street Santa Cruz CA 95060 USA
| | - Julie L. Yee
- U.S. Geological Survey, Western Ecological Research Center Santa Cruz Field Station 2885 Mission Street Santa Cruz CA 95060 USA
| | - Kristin L. Laidre
- Polar Science Center, Applied Physics Laboratory University of Washington 1013 NE 40th Street Seattle WA 98105 USA
| | - Brian B. Hatfield
- U.S. Geological Survey, Western Ecological Research Center Santa Cruz Field Station 2885 Mission Street Santa Cruz CA 95060 USA
| | - Michael D. Harris
- California Department of Fish and Wildlife Office of Spill Prevention and Response—Veterinary Services 1385 Main Street Morro Bay CA 93442 USA
| | - Joseph A. Tomoleoni
- U.S. Geological Survey, Western Ecological Research Center Santa Cruz Field Station 2885 Mission Street Santa Cruz CA 95060 USA
| | - Tom W. Bell
- Earth Research Institute University of California, Santa Barbara, Santa Barbara California 93106 USA
| | - Emily Saarman
- Partnership for Interdisciplinary Studies of Coastal Oceans (PISCO), Long Marine Laboratory, 115 McAllister Way University of California Santa Cruz CA 95060 USA
| | | | - A. Keith Miles
- U.S. Geological Survey Western Ecological Research Center 3020 State University Drive Sacramento CA 95819 USA
| |
Collapse
|
6
|
Moriarty ME, Tinker MT, Miller MA, Tomoleoni JA, Staedler MM, Fujii JA, Batac FI, Dodd EM, Kudela RM, Zubkousky-White V, Johnson CK. Exposure to domoic acid is an ecological driver of cardiac disease in southern sea otters ✰. HARMFUL ALGAE 2021; 101:101973. [PMID: 33526183 DOI: 10.1016/j.hal.2020.101973] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 06/12/2023]
Abstract
Harmful algal blooms produce toxins that bioaccumulate in the food web and adversely affect humans, animals, and entire marine ecosystems. Blooms of the diatom Pseudo-nitzschia can produce domoic acid (DA), a toxin that most commonly causes neurological disease in endothermic animals, with cardiovascular effects that were first recognized in southern sea otters. Over the last 20 years, DA toxicosis has caused significant morbidity and mortality in marine mammals and seabirds along the west coast of the USA. Identifying DA exposure has been limited to toxin detection in biological fluids using biochemical assays, yet measurement of systemic toxin levels is an unreliable indicator of exposure dose or timing. Furthermore, there is little information regarding repeated DA exposure in marine wildlife. Here, the association between long-term environmental DA exposure and fatal cardiac disease was investigated in a longitudinal study of 186 free-ranging sea otters in California from 2001 - 2017, highlighting the chronic health effects of a marine toxin. A novel Bayesian spatiotemporal approach was used to characterize environmental DA exposure by combining several DA surveillance datasets and integrating this with life history data from radio-tagged otters in a time-dependent survival model. In this study, a sea otter with high DA exposure had a 1.7-fold increased hazard of fatal cardiomyopathy compared to an otter with low exposure. Otters that consumed a high proportion of crab and clam had a 2.5- and 1.2-times greater hazard of death due to cardiomyopathy than otters that consumed low proportions. Increasing age is a well-established predictor of cardiac disease, but this study is the first to identify that DA exposure affects the risk of cardiomyopathy more substantially in prime-age adults than aged adults. A 4-year-old otter with high DA exposure had 2.3 times greater risk of fatal cardiomyopathy than an otter with low exposure, while a 10-year old otter with high DA exposure had just 1.2 times greater risk. High Toxoplasma gondii titers also increased the hazard of death due to heart disease 2.4-fold. Domoic acid exposure was most detrimental for prime-age adults, whose survival and reproduction are vital for population growth, suggesting that persistent DA exposure will likely impact long-term viability of this threatened species. These results offer insight into the pervasiveness of DA in the food web and raise awareness of under-recognized chronic health effects of DA for wildlife at a time when toxic blooms are on the rise.
Collapse
Affiliation(s)
- Megan E Moriarty
- Karen C. Drayer Wildlife Health Center and EpiCenter for Disease Dynamics, One Health Institute, University of California Davis School of Veterinary Medicine, 1089 Veterinary Medicine Dr. VM3B, Davis, CA, United States.
| | - M Tim Tinker
- U.S. Geological Survey, Western Ecological Research Center, Santa Cruz Field Station, 2885 Mission St., Santa Cruz, CA, United States; Department of Ecology and Evolutionary Biology, University of California, Long Marine Lab, 100 Shaffer Rd., Santa Cruz, CA, United States
| | - Melissa A Miller
- Karen C. Drayer Wildlife Health Center and EpiCenter for Disease Dynamics, One Health Institute, University of California Davis School of Veterinary Medicine, 1089 Veterinary Medicine Dr. VM3B, Davis, CA, United States; Marine Wildlife Veterinary Care and Research Center, California Department of Fish and Wildlife, 1451 McAllister Way, Santa Cruz, CA, USA
| | - Joseph A Tomoleoni
- U.S. Geological Survey, Western Ecological Research Center, Santa Cruz Field Station, 2885 Mission St., Santa Cruz, CA, United States
| | | | - Jessica A Fujii
- Monterey Bay Aquarium, 886 Cannery Row, Monterey, CA, United States
| | - Francesca I Batac
- Marine Wildlife Veterinary Care and Research Center, California Department of Fish and Wildlife, 1451 McAllister Way, Santa Cruz, CA, USA
| | - Erin M Dodd
- Marine Wildlife Veterinary Care and Research Center, California Department of Fish and Wildlife, 1451 McAllister Way, Santa Cruz, CA, USA
| | - Raphael M Kudela
- Ocean Sciences Department, University of California, Santa Cruz, CA, United States
| | - Vanessa Zubkousky-White
- California Department of Public Health, Environmental Management Branch, 850 Marina Bay Pkwy, Richmond, CA, United States
| | - Christine K Johnson
- Karen C. Drayer Wildlife Health Center and EpiCenter for Disease Dynamics, One Health Institute, University of California Davis School of Veterinary Medicine, 1089 Veterinary Medicine Dr. VM3B, Davis, CA, United States.
| |
Collapse
|
7
|
Wellman HP, Austin RM, Dagtas ND, Moss ML, Rick TC, Hofman CA. Archaeological mitogenomes illuminate the historical ecology of sea otters ( Enhydra lutris) and the viability of reintroduction. Proc Biol Sci 2020; 287:20202343. [PMID: 33259759 DOI: 10.1098/rspb.2020.2343] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Genetic analyses are an important contribution to wildlife reintroductions, particularly in the modern context of extirpations and ecological destruction. To address the complex historical ecology of the sea otter (Enhydra lutris) and its failed 1970s reintroduction to coastal Oregon, we compared mitochondrial genomes of pre-extirpation Oregon sea otters to extant and historical populations across the range. We sequenced, to our knowledge, the first complete ancient mitogenomes from archaeological Oregon sea otter dentine and historical sea otter dental calculus. Archaeological Oregon sea otters (n = 20) represent 10 haplotypes, which cluster with haplotypes from Alaska, Washington and British Columbia, and exhibit a clear division from California haplotypes. Our results suggest that extant northern populations are appropriate for future reintroduction efforts. This project demonstrates the feasibility of mitogenome capture and sequencing from non-human dental calculus and the diverse applications of ancient DNA analyses to pressing ecological and conservation topics and the management of at-risk/extirpated species.
Collapse
Affiliation(s)
- Hannah P Wellman
- Department of Anthropology, University of Oregon, Eugene, OR 97403, USA.,Laboratories of Molecular Anthropology and Microbiome Research, Stephenson Research and Technology Center, Norman, OK 73019, USA
| | - Rita M Austin
- Laboratories of Molecular Anthropology and Microbiome Research, Stephenson Research and Technology Center, Norman, OK 73019, USA.,Department of Anthropology, University of Oklahoma, Norman, OK 73019, USA.,Natural History Museum, University of Oslo, Oslo, Norway
| | - Nihan D Dagtas
- Laboratories of Molecular Anthropology and Microbiome Research, Stephenson Research and Technology Center, Norman, OK 73019, USA.,Department of Anthropology, University of Oklahoma, Norman, OK 73019, USA
| | - Madonna L Moss
- Department of Anthropology, University of Oregon, Eugene, OR 97403, USA
| | - Torben C Rick
- Program in Human Ecology and Archaeobiology, Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA
| | - Courtney A Hofman
- Laboratories of Molecular Anthropology and Microbiome Research, Stephenson Research and Technology Center, Norman, OK 73019, USA.,Department of Anthropology, University of Oklahoma, Norman, OK 73019, USA
| |
Collapse
|
8
|
Love Stowell SM, Gagne RB, McWhirter D, Edwards W, Ernest HB. Bighorn Sheep Genetic Structure in Wyoming Reflects Geography and Management. J Wildl Manage 2020. [DOI: 10.1002/jwmg.21882] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Sierra M. Love Stowell
- Wildlife Genomics & Disease Ecology Lab, Department of Veterinary SciencesUniversity of Wyoming 1174 Snowy Range Rd Laramie WY 82070 USA
| | - Roderick B. Gagne
- Wildlife Genomics & Disease Ecology Lab, Department of Veterinary SciencesUniversity of Wyoming 1174 Snowy Range Rd Laramie WY 82070 USA
| | - Doug McWhirter
- Wyoming Game and Fish DepartmentJackson Regional Office 420 N Cache St Jackson WY 830001 USA
| | - William Edwards
- Wyoming Game and Fish DepartmentWildlife Health Laboratory 1174 Snowy Range Rd Laramie WY 82070 USA
| | - Holly B. Ernest
- Wildlife Genomics & Disease Ecology Lab, Department of Veterinary SciencesUniversity of Wyoming 1174 Snowy Range Rd Laramie WY 82070 USA
| |
Collapse
|
9
|
Latorre-Cardenas MC, Gutiérrez-Rodríguez C, Rico Y. Estimating genetic and demographic parameters relevant for the conservation of the Neotropical otter, Lontra longicaudis, in Mexico. CONSERV GENET 2020. [DOI: 10.1007/s10592-020-01283-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
10
|
Murray MJ, Young MA, Santymire RM. Use of the ACTH challenge test to identify the predominant glucocorticoid in the southern sea otter ( Enhydra lutris nereis). CONSERVATION PHYSIOLOGY 2020; 8:coz116. [PMID: 32038847 PMCID: PMC6996579 DOI: 10.1093/conphys/coz116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 11/20/2019] [Accepted: 12/30/2019] [Indexed: 06/10/2023]
Abstract
After nearly being hunted to extinction during the fur trade of the late 20th Century, sea otter (Enhydra lutris) populations have recovered to varying degrees of their historical range. While overall population numbers and range have increased, there are regions in which expansion has occurred at a slower rate and/or animal numbers have decreased, which may be a result of chronic stress from a variety of sources. Some have employed glucocorticoid analysis in their attempts to validate these explanations. Our goal was to conduct a controlled study using sea otters managed under human care to validate the use of serum glucocorticoid analysis to monitor stress physiology in the sea otter. We used a standard ACTH challenge test to compare cortisol and corticosterone responses, thereby identifying the primary glucocorticoid in the sea otter. Fourteen sea otters of both sexes (five males, nine females), including juveniles, sub-adults and adults, participated in the study. The results of the testing supported cortisol as the primary glucocorticoid in the sea otter. Sex and age did not affect how the individual responded to the ACTH or saline injection. Interestingly, the saline injection not only confirmed the effects of the ACTH on glucocorticoid release from the adrenal glands but also provided information on how long it takes the sea otter's glucocorticoid levels to return to baseline after capture and sedation. The insight gained from this study will aid in future efforts to better understand the role of stress in free-ranging sea otter populations. Recognition of the primary glucocorticoid will facilitate evaluation of more stable biological material, such as fur or whiskers, which tend to be less affected by the diurnal cycling of glucocorticoids.
Collapse
Affiliation(s)
- M J Murray
- Monterey Bay Aquarium, 886 Cannery Row, Monterey, CA 93940, USA
| | - M A Young
- Monterey Bay Aquarium, 886 Cannery Row, Monterey, CA 93940, USA
| | - R M Santymire
- Conservation & Science Department, Lincoln Park Zoo, 2001 N. Clark St., Chicago, IL 60614, USA
| |
Collapse
|
11
|
Beichman AC, Koepfli KP, Li G, Murphy W, Dobrynin P, Kliver S, Tinker MT, Murray MJ, Johnson J, Lindblad-Toh K, Karlsson EK, Lohmueller KE, Wayne RK. Aquatic Adaptation and Depleted Diversity: A Deep Dive into the Genomes of the Sea Otter and Giant Otter. Mol Biol Evol 2019; 36:2631-2655. [PMID: 31212313 PMCID: PMC7967881 DOI: 10.1093/molbev/msz101] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Despite its recent invasion into the marine realm, the sea otter (Enhydra lutris) has evolved a suite of adaptations for life in cold coastal waters, including limb modifications and dense insulating fur. This uniquely dense coat led to the near-extinction of sea otters during the 18th-20th century fur trade and an extreme population bottleneck. We used the de novo genome of the southern sea otter (E. l. nereis) to reconstruct its evolutionary history, identify genes influencing aquatic adaptation, and detect signals of population bottlenecks. We compared the genome of the southern sea otter with the tropical freshwater-living giant otter (Pteronura brasiliensis) to assess common and divergent genomic trends between otter species, and with the closely related northern sea otter (E. l. kenyoni) to uncover population-level trends. We found signals of positive selection in genes related to aquatic adaptations, particularly limb development and polygenic selection on genes related to hair follicle development. We found extensive pseudogenization of olfactory receptor genes in both the sea otter and giant otter lineages, consistent with patterns of sensory gene loss in other aquatic mammals. At the population level, the southern sea otter and the northern sea otter showed extremely low genomic diversity, signals of recent inbreeding, and demographic histories marked by population declines. These declines may predate the fur trade and appear to have resulted in an increase in putatively deleterious variants that could impact the future recovery of the sea otter.
Collapse
Affiliation(s)
- Annabel C Beichman
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA
| | - Klaus-Peter Koepfli
- Center for Species Survival, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Gang Li
- College of Life Science, Shaanxi Normal University, Xi’an, Shaanxi, China
| | - William Murphy
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX
| | - Pasha Dobrynin
- Center for Species Survival, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Sergei Kliver
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Martin T Tinker
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA
| | | | - Jeremy Johnson
- Vertebrate Genome Biology, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Kerstin Lindblad-Toh
- Vertebrate Genome Biology, Broad Institute of MIT and Harvard, Cambridge, MA
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Elinor K Karlsson
- Vertebrate Genome Biology, Broad Institute of MIT and Harvard, Cambridge, MA
- Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA
| | - Kirk E Lohmueller
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA
- Interdepartmental Program in Bioinformatics, University of California, Los Angeles, CA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - Robert K Wayne
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA
| |
Collapse
|
12
|
Raymond WW, Tinker MT, Kissling ML, Benter B, Gill VA, Eckert GL. Location‐specific factors influence patterns and effects of subsistence sea otter harvest in Southeast Alaska. Ecosphere 2019. [DOI: 10.1002/ecs2.2874] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Wendel W. Raymond
- College of Fisheries and Ocean Sciences University of Alaska Fairbanks 17101 Point Lena Loop Road Juneau Alaska 99801 USA
| | - M. Tim Tinker
- Department of Ecology & Evolutionary Biology University of California Santa Cruz 1156 High Street Santa Cruz California 95064 USA
| | - Michelle L. Kissling
- Marine Mammal Management United States Fish and Wildlife Service 3000 Vintage Boulevard, Suite 201 Juneau Alaska 99801 USA
| | - Brad Benter
- Marking, Tagging & Reporting Program United States Fish and Wildlife Service 1011 East Tudor Road # 200 Anchorage Alaska 99503 USA
| | - Verena A. Gill
- National Oceanic and Atmospheric Administration National Marine Fisheries Service 222 West 7th Avenue, Rm 552 Anchorage Alaska 99513 USA
| | - Ginny L. Eckert
- College of Fisheries and Ocean Sciences University of Alaska Fairbanks 17101 Point Lena Loop Road Juneau Alaska 99801 USA
| |
Collapse
|
13
|
Moxley JH, Nicholson TE, Van Houtan KS, Jorgensen SJ. Non-trophic impacts from white sharks complicate population recovery for sea otters. Ecol Evol 2019; 9:6378-6388. [PMID: 31236228 PMCID: PMC6580303 DOI: 10.1002/ece3.5209] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 01/22/2023] Open
Abstract
Complex interactions between protected populations may challenge the recovery of whole ecosystems. In California, white sharks (Carcharodon carcharias) mistargeting southern sea otters (Enhydra lutris nereis) are an emergent impact to sea otter recovery, inhibiting the broader ecosystem restoration sea otters might provide. Here, we integrate and analyze tracking and stranding data to compare the phenology of interactions between white sharks and their targeted prey (elephant seals, Mirounga angustirostris) with those of mistargeted prey (sea otters, humans). Pronounced seasonal peaks in shark bites to otters and humans overlap in the late boreal summer, immediately before the annual adult white shark migration to elephant seal rookeries. From 1997 to 2017, the seasonal period when sharks bite otters expanded from 2 to 8 months of the year and occurred primarily in regions where kelp cover declined. Immature and male otters, demographics most associated with range expansion, were disproportionately impacted. While sea otters are understood to play a keystone role in kelp forests, recent ecosystem shifts are revealing unprecedented bottom-up and top-down interactions. Such shifts challenge ecosystem management programs that rely on static models of species interactions.
Collapse
Affiliation(s)
| | | | - Kyle S. Van Houtan
- Monterey Bay AquariumMontereyCalifornia
- Nicholas School of the EnvironmentDuke UniversityDurhamNorth Carolina
| | | |
Collapse
|