1
|
Partida-Lara R, Enríquez PL, Vázquez-Pérez JR, Borges-Ramírez MM, Rodríguez-Yah ME, Osten JRV. Historical (1960 - 2011) and spatial analysis of mercury and arsenic in two species of tropical birds in southeastern Mexico. JOURNAL OF HAZARDOUS MATERIALS 2024; 485:136917. [PMID: 39708611 DOI: 10.1016/j.jhazmat.2024.136917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 12/13/2024] [Accepted: 12/15/2024] [Indexed: 12/23/2024]
Abstract
Spatiotemporal variation in the concentrations of mercury (Hg) and arsenic (As) in body feathers of Red-throated Ant-Tanager (Driophlox fuscicauda) and Clay-colored thrush (Turdus grayi) were evaluated. Body feathers were obtained from scientific collections (specimens collected from 1960 to 2011) in Mexico. Trace elements concentrations were determined by voltammetry through acid digestion. Red-throated Ant-Tanager presented higher concentrations of Hg (31.7 ± 23.7 μg/g) and As (7.58 ± 5.84 μg/g) than the Clay-colored thrush (Hg 1.04 ± 0.72 μg/g; As 1.68 ± 1.09 μg/g). In Quintana Roo, were identified three critical regions with Hg (54.4 ± 18.5 μg/g to 67.3 ± 4.5 μg/g) and one with As (15.16 ± 3.79 μg/g). In Red-throated Ant-Tanager there was an oscillatory pattern in Hg concentrations, with the peak in 1993 and As in 2007. In Clay-colored thrush there was also an oscillatory pattern in Hg with a peak in 1974, but in As was from 1960 to 1993 and then decreased. Factors intrinsic to each species such as trophic guild, eating habits, age, could have influenced the difference in the spatial and temporal concentrations obtained. These variations of Hg and As concentrations may be due to the enrichment of anthropogenic trace elements metals by atmospheric deposition.
Collapse
Affiliation(s)
- Ruth Partida-Lara
- Instituto EPOMEX, Universidad Autónoma de Campeche, Av. Héroe de Nacozari No. 480, San Francisco de Campeche, Campeche 24070, Mexico
| | - Paula L Enríquez
- Departamento de Conservación de la Biodiversidad, Colegio de la Frontera Sur, Carretera Panamericana y Periférico Sur s/n, Barrio de María Auxiliadora, San Cristóbal de Las Casas, Chiapas 29290, Mexico
| | - José Raúl Vázquez-Pérez
- Instituto de Ciencias Biológicas, Universidad de Ciencias y Artes de Chiapas, Libramiento Norte Poniente 1150, Col. Lajas Maciel, Tuxtla Gutiérrez, Chiapas C.P. 29039, Mexico
| | - Merle M Borges-Ramírez
- Instituto EPOMEX, Universidad Autónoma de Campeche, Av. Héroe de Nacozari No. 480, San Francisco de Campeche, Campeche 24070, Mexico
| | - Marina E Rodríguez-Yah
- Instituto EPOMEX, Universidad Autónoma de Campeche, Av. Héroe de Nacozari No. 480, San Francisco de Campeche, Campeche 24070, Mexico
| | - Jaime Rendón-von Osten
- Instituto EPOMEX, Universidad Autónoma de Campeche, Av. Héroe de Nacozari No. 480, San Francisco de Campeche, Campeche 24070, Mexico.
| |
Collapse
|
2
|
Novikov A, Rizun V, Susulovsky A, Hushtan H, Hushtan K, Kuzyarin O, Savytska A, Nachychko V, Susulovska S, Leleka D. Data mobilisation at the Fund of Invertebrates of the State Museum of Natural History of the NAS of Ukraine. Biodivers Data J 2024; 12:e131188. [PMID: 39206123 PMCID: PMC11350277 DOI: 10.3897/bdj.12.e131188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
Background The described dataset contains occurrence records of invertebrate specimens deposited at the State Museum of Natural History of the NAS of Ukraine, Lviv, Ukraine (SMNH NASU). It combines diverse taxonomic groups, mostly belonging to the class Insecta of the phylum Arthropoda, that were selected as prioritised for digitisation in war conditions. Selected specimens were ascertained as those being the most vulnerable to hostilities and requiring virtual preservation. Such virtual preservation is essential in the war realities as collection can be lost or damaged at any moment, resulting in a significant retrospective biodiversity data gap. At the same time, collection virtualisation and its deposition on the internet grant remote access to scientists who cannot visit it in person due to the war. Moreover, we believe that the mobilisation of the data from the Ukrainian collections and their publication online are essential for the integration of Ukrainian research facilities into a global scientific biodiversity pool. New information A total of 3,660 occurrence records mobilised in 2023-2024 from the collection of invertebrates of the SMNH NASU, were published. This dynamic dataset will be continually supplied by new records during further digitisation work.
Collapse
Affiliation(s)
- Andriy Novikov
- State Museum of Natural History of the NAS of Ukraine, Lviv, UkraineState Museum of Natural History of the NAS of UkraineLvivUkraine
| | - Volodymyr Rizun
- State Museum of Natural History of the NAS of Ukraine, Lviv, UkraineState Museum of Natural History of the NAS of UkraineLvivUkraine
| | - Andrii Susulovsky
- State Museum of Natural History of the NAS of Ukraine, Lviv, UkraineState Museum of Natural History of the NAS of UkraineLvivUkraine
| | - Habriel Hushtan
- State Museum of Natural History of the NAS of Ukraine, Lviv, UkraineState Museum of Natural History of the NAS of UkraineLvivUkraine
| | - Kateryna Hushtan
- State Museum of Natural History of the NAS of Ukraine, Lviv, UkraineState Museum of Natural History of the NAS of UkraineLvivUkraine
- Separate Structural Department “Lviv Professional College of the Lviv National Environmental University”, Lviv, UkraineSeparate Structural Department “Lviv Professional College of the Lviv National Environmental University”LvivUkraine
| | - Oleksandr Kuzyarin
- State Museum of Natural History of the NAS of Ukraine, Lviv, UkraineState Museum of Natural History of the NAS of UkraineLvivUkraine
| | - Anastasiia Savytska
- State Museum of Natural History of the NAS of Ukraine, Lviv, UkraineState Museum of Natural History of the NAS of UkraineLvivUkraine
| | - Viktor Nachychko
- Ivan Franko National University of Lviv, Lviv, UkraineIvan Franko National University of LvivLvivUkraine
| | - Solomia Susulovska
- Ivan Franko National University of Lviv, Lviv, UkraineIvan Franko National University of LvivLvivUkraine
| | - Dmytro Leleka
- Institute of Ecology of the Carpathians of the NAS of Ukraine, Lviv, UkraineInstitute of Ecology of the Carpathians of the NAS of UkraineLvivUkraine
| |
Collapse
|
3
|
Snell-Rood EC, Kjaer SJ, Marek-Spartz M, Devitz AC, Jansa SA. Pronounced declines in heavy metal burdens of Minnesotan mammals over the last century. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:52473-52484. [PMID: 39150665 PMCID: PMC11374866 DOI: 10.1007/s11356-024-34667-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 08/05/2024] [Indexed: 08/17/2024]
Abstract
Humans have drastically altered the ecology of heavy metals, which can have negative effects on animal development and neural functioning. Many species have shown the ability to adapt to anthropogenic increases in metal pollution, but such evolutionary responses will depend on the extent of metal variation over space and time. For terrestrial vertebrates, it is unclear how metal exposure has changed over time: some studies suggest metal content peaked with the enactment of policies controlling lead emissions, while other studies suggest metal levels peaked at least a century earlier. We used 162 specimens of four mammal species (a mouse, shrew, bat, and squirrel) to ask how metal content of the fur and skin has changed over a 90-year time period, and impacts on individual performance (body size and cranial capacity). Using ICP-MS, we show that for lead, cadmium, copper, and chromium, there were significant declines in metal content in mammal tissue over the 90-year time period, with lead levels five times lower now than in the early 1900s. Importantly, metal content began to drop well before the pollution regulation of the 1970s. Effects of time greatly outweighed any effects of an individual living near a human population center. Surprisingly, there were no effects of body metal content on body size, and only manganese was negatively related to relative cranial capacity. Taken together, these results suggest that present day populations of mammals are experiencing levels of heavy metal exposure that are less stressful than they were 100 years ago. In addition, temporal decreases in metal loads likely partly reflect global patterns of pollution decline that affect atmospheric metal deposition rather than local point sources of exposure.
Collapse
Affiliation(s)
- Emilie C Snell-Rood
- Department Ecology, Evolution and Behavior, University of Minnesota, Twin Cities, 1479 Gortner Ave, Gortner 140, St Paul, MN, 55108, USA.
| | - Savannah J Kjaer
- Department Ecology, Evolution and Behavior, University of Minnesota, Twin Cities, 1479 Gortner Ave, Gortner 140, St Paul, MN, 55108, USA
| | - Mary Marek-Spartz
- Department Ecology, Evolution and Behavior, University of Minnesota, Twin Cities, 1479 Gortner Ave, Gortner 140, St Paul, MN, 55108, USA
| | - Amy-Charlotte Devitz
- Department Ecology, Evolution and Behavior, University of Minnesota, Twin Cities, 1479 Gortner Ave, Gortner 140, St Paul, MN, 55108, USA
| | - Sharon A Jansa
- Department Ecology, Evolution and Behavior, University of Minnesota, Twin Cities, 1479 Gortner Ave, Gortner 140, St Paul, MN, 55108, USA
| |
Collapse
|
4
|
Santos BS, Marques MP, Ceríaco LMP. Lack of country-wide systematic herpetology collections in Portugal jeopardizes future research and conservation. AN ACAD BRAS CIENC 2024; 96:e20230622. [PMID: 38451598 DOI: 10.1590/0001-3765202420230622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/27/2023] [Indexed: 03/08/2024] Open
Abstract
Natural History Collections (NHCs) represent the world's largest repositories of long-term biodiversity datasets. Specimen collection and voucher deposition has been the backbone of NHCs since their inception, but recent decades have seen a drastic decline in rates of growth via active collecting. Amphibians and reptiles are amongst the most threatened zoological groups on the planet and are historically underrepresented in most worldwide NHCs. As part of an ongoing project to review the Portuguese zoological collections in the country's NHCs, herpetological data from its three major museums and smaller collections was gathered and used to examine the coverage and representation of the different taxa extant in Portugal. These collections are not taxonomically, geographically, or temporally complete. Approximately 90% of the Portuguese herpetological taxa are represented in the country's NHCs, and around half of the taxa are represented by less than 50 specimens. Geographically, the collections cover less than 30% of the country's territory and almost all of the occurring taxa have less than 10% of their known distribution represented in the collections. A discussion on the implications for science of such incomplete collections and a review of the current status of Portuguese NHCs is presented.
Collapse
Affiliation(s)
- Bruna S Santos
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, 4485-661 Vairão, Portugal
- Universidade do Porto, Departamento de Biologia, Faculdade de Ciências, Rua do Campo Alegre 1021, 4169-007 Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal
| | - Mariana P Marques
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, 4485-661 Vairão, Portugal
- Universidade do Porto, Departamento de Biologia, Faculdade de Ciências, Rua do Campo Alegre 1021, 4169-007 Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal
- Carnegie Museum of Natural History, 4400 Forbes Avenue, Pittsburgh, PA 15213, U.S.A
| | - Luis M P Ceríaco
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, 4485-661 Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal
- Carnegie Museum of Natural History, 4400 Forbes Avenue, Pittsburgh, PA 15213, U.S.A
- Universidade Federal do Rio de Janeiro, Departamento de Vertebrados, Museu Nacional, Quinta da Boavista, São Cristóvão, 20940-040 Rio de Janeiro, RJ, Brazil
- Departamento de Zoologia e Antropologia (Museu Bocage), Museu Nacional de História Natural e da Ciência, Rua da Escola Politécnica, 58, 1269-102 Lisboa, Portugal
| |
Collapse
|
5
|
Rader JA, Pivovarnik MA, Vantilburg ME, Whitehouse LS. PhyloMatcher: a tool for resolving conflicts in taxonomic nomenclature. BIOINFORMATICS ADVANCES 2023; 3:vbad144. [PMID: 37840907 PMCID: PMC10576170 DOI: 10.1093/bioadv/vbad144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/31/2023] [Accepted: 10/03/2023] [Indexed: 10/17/2023]
Abstract
Summary Large-scale comparative studies rely on the application of both phylogenetic trees and phenotypic data, both of which come from a variety of sources, but due to the changing nature of phylogenetic classification over time, many taxon names in comparative datasets do not match the nomenclature in phylogenetic trees. Manual curation of taxonomic synonyms in large comparative datasets can be daunting. To address this issue, we introduce PhyloMatcher, a tool which allows for programmatic querying of the National Center for Biotechnology Information Taxonomy and Global Biodiversity Information Facility databases to find associated synonyms with given target species names. Availability and implementation PhyloMatcher is easily installed as a Python package with pip, or as a standalone GUI application. PhyloMatcher source code and documentation are freely available at https://github.com/Lswhiteh/PhyloMatcher, the GUI application can be downloaded from the Releases page.
Collapse
Affiliation(s)
- Jonathan A Rader
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-3280, United States
| | - Madelyn A Pivovarnik
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-3280, United States
| | - Matias E Vantilburg
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-3280, United States
| | - Logan S Whitehouse
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7264, United States
| |
Collapse
|
6
|
Rader JA, Pivovarnik MA, Vantilburg ME, Whitehouse LS. PhyloMatcher: a tool for resolving conflicts in taxonomic nomenclature. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.07.552263. [PMID: 37609275 PMCID: PMC10441299 DOI: 10.1101/2023.08.07.552263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Summary Large-scale comparative studies rely on the application of both phylogenetic trees and phenotypic data, both of which come from a variety of sources, but due to the changing nature of phylogenetic classification over time, many taxon names in comparative datasets do not match the nomenclature in phylogenetic trees. Manual curation of taxonomic synonyms in large comparative datasets can be daunting. To address this issue, we introduce PhyloMatcher, a tool which allows for programmatic querying of two commonly used taxonomic databases to find associated synonyms with given target species names. Availability and implementation PhyloMatcher is easily installed as a Python package with pip, or as a standalone GUI application. PhyloMatcher source code and documentation are freely available at https://github.com/Lswhiteh/PhyloMatcher, the GUI application can be downloaded from the Releases page. Contact Lswhiteh@unc.edu. Supplemental Information We provide documentation for PhyloMatcher, including walkthrough instructions for the GUI application on the Releases page of https://github.com/Lswhiteh/PhyloMatcher.
Collapse
Affiliation(s)
- Jonathan A. Rader
- Dept. of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Matias E. Vantilburg
- Dept. of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Logan S. Whitehouse
- Dept. of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
7
|
Li Y, Hopkins AJM, Davis RA. Going, Going, Gone The Diminishing Capacity of Museum Specimen Collections to Address Global Change Research: A Case Study on Urban Reptiles. Animals (Basel) 2023; 13:ani13061078. [PMID: 36978619 PMCID: PMC10044672 DOI: 10.3390/ani13061078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 03/19/2023] Open
Abstract
It has been increasingly popular to use natural history specimens to examine environmental changes. As the current functionality of museum specimens has extended beyond their traditional taxonomic role, there has been a renewed focus on the completeness of biological collections to provide data for current and future research. We used the collections of the Western Australian Museum to answer questions about the change in occurrence of five common reptile species due to the rapid urbanization of Perth. We recorded a significant decline in collection effort from the year 2000 onwards (F = 7.65, p < 0.01) compared to the period 1990–1999. Spatial analysis revealed that only 0.5% of our study region was well sampled, 8.5% were moderately sampled and the majority of the regions (91%) were poorly sampled. By analysing the trend of specimen acquisition from 1950 to 2010, we discovered a significant inconsistency in specimen sampling effort for 13 common reptile species across time and space. A large proportion of past specimens lacked information including the place and time of collection. An increase in investment to museums and an increase in geographically and temporally systematic collecting is advocated to ensure that collections can answer questions about environmental change.
Collapse
Affiliation(s)
- Yanlin Li
- School of Science, Edith Cowan University, 100 Joondalup Drive, Joondalup, WA 6027, Australia
| | - Anna J. M. Hopkins
- School of Science, Edith Cowan University, 100 Joondalup Drive, Joondalup, WA 6027, Australia
| | - Robert A. Davis
- School of Science, Edith Cowan University, 100 Joondalup Drive, Joondalup, WA 6027, Australia
- Department of Terrestrial Zoology, Western Australia Museum, 49 Kew St, Welshpool, WA 6106, Australia
- Correspondence:
| |
Collapse
|
8
|
Mychajliw AM, Ellwood ER, Alagona PS, Anderson RS, Balisi MA, Biber E, Brown JL, George J, Hendy AJW, Higgins L, Hofman CA, Leger A, Ordeñana MA, Pauly GB, Putman BJ, Randall JM, Riley SPD, Shultz AJ, Stegner MA, Wake TA, Lindsey EL. Lessons for conservation from beneath the pavement. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2022; 36:e13983. [PMID: 36069058 DOI: 10.1111/cobi.13983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 05/25/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Alexis M Mychajliw
- La Brea Tar Pits & Museum, Los Angeles, California, USA
- Department of Biology and Environmental Studies Program, Middlebury College, Middlebury, Vermont, USA
| | - Elizabeth R Ellwood
- La Brea Tar Pits & Museum, Los Angeles, California, USA
- iDigBio, Florida Museum of Natural History, University of Florida, Gainesville, Florida, USA
| | - Peter S Alagona
- Environmental Studies Program, University of California, Santa Barbara, Santa Barbara, California, USA
| | - R Scott Anderson
- School of Earth and Sustainability, Northern Arizona University, Flagstaff, Arizona, USA
| | - Mairin A Balisi
- La Brea Tar Pits & Museum, Los Angeles, California, USA
- Department of Life and Environmental Sciences, University of California, Merced, Merced, California, USA
- Raymond M. Alf Museum of Paleontology, The Webb Schools, Claremont, California, USA
| | - Eric Biber
- School of Law, University of California, Berkeley, Berkeley, California, USA
| | - Justin L Brown
- National Park Service, Santa Monica Mountains National Recreation Area, Thousand Oaks, California, USA
| | - Jessie George
- Department of Geography, University of California, Los Angeles, Los Angeles, California, USA
| | - Austin J W Hendy
- Department of Invertebrate Paleontology, Natural History Museum of Los Angeles County, Los Angeles, California, USA
| | - Lila Higgins
- Community Science Program, Natural History Museum of Los Angeles County, Los Angeles, California, USA
- Urban Nature Research Center, Natural History Museum of Los Angeles County, Los Angeles, California, USA
| | - Courtney A Hofman
- Department of Anthropology, University of Oklahoma, Norman, Oklahoma, USA
- Laboratories of Molecular Anthropology & Microbiome Research, University of Oklahoma, Norman, Oklahoma, USA
| | - Ashley Leger
- Cogstone Resource Management, Orange, California, USA
| | - Miguel A Ordeñana
- Community Science Program, Natural History Museum of Los Angeles County, Los Angeles, California, USA
- Urban Nature Research Center, Natural History Museum of Los Angeles County, Los Angeles, California, USA
| | - Gregory B Pauly
- Urban Nature Research Center, Natural History Museum of Los Angeles County, Los Angeles, California, USA
- Department of Herpetology, Natural History Museum of Los Angeles County, Los Angeles, California, USA
| | - Breanna J Putman
- Urban Nature Research Center, Natural History Museum of Los Angeles County, Los Angeles, California, USA
- Department of Biology, California State University, San Bernardino, California, USA
| | - John M Randall
- The Nature Conservancy, California Chapter, San Diego, California, USA
| | - Seth P D Riley
- National Park Service, Santa Monica Mountains National Recreation Area, Thousand Oaks, California, USA
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, California, USA
| | - Allison J Shultz
- Department of Ornithology, Natural History Museum of Los Angeles County, Los Angeles, California, USA
| | - M Allison Stegner
- Jasper Ridge Biological Preserve, Stanford University, California, USA
- Department of Biology, Stanford University, Stanford, California, USA
| | - Thomas A Wake
- The Cotsen Institute of Archaeology, University of California, Los Angeles, Los Angeles, California, USA
- Department of Anthropology, University of California, Los Angeles, Los Angeles, California, USA
| | - Emily L Lindsey
- La Brea Tar Pits & Museum, Los Angeles, California, USA
- Institute of the Environment and Sustainability, University of California, Los Angeles, Los Angeles, California, USA
- Department of Earth Sciences, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
9
|
Winchell KM, Aviles‐Rodriguez KJ, Carlen EJ, Miles LS, Charmantier A, De León LF, Gotanda KM, Rivkin LR, Szulkin M, Verrelli BC. Moving past the challenges and misconceptions in urban adaptation research. Ecol Evol 2022; 12:e9552. [PMID: 36425909 PMCID: PMC9679025 DOI: 10.1002/ece3.9552] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/25/2022] [Accepted: 11/04/2022] [Indexed: 10/14/2023] Open
Abstract
Although the field of urban evolutionary ecology has recently expanded, much progress has been made in identifying adaptations that arise as a result of selective pressures within these unique environments. However, as studies within urban environments have rapidly increased, researchers have recognized that there are challenges and opportunities in characterizing urban adaptation. Some of these challenges are a consequence of increased direct and indirect human influence, which compounds long-recognized issues with research on adaptive evolution more generally. In this perspective, we discuss several common research challenges to urban adaptation related to (1) methodological approaches, (2) trait-environment relationships and the natural history of organisms, (3) agents and targets of selection, and (4) habitat heterogeneity. Ignoring these challenges may lead to misconceptions and further impede our ability to draw conclusions regarding evolutionary and ecological processes in urban environments. Our goal is to first shed light on the conceptual challenges of conducting urban adaptation research to help avoid the propagation of these misconceptions. We further summarize potential strategies to move forward productively to construct a more comprehensive picture of urban adaptation, and discuss how urban environments also offer unique opportunities and applications for adaptation research.
Collapse
Affiliation(s)
- Kristin M. Winchell
- Department of BiologyNew York UniversityNew YorkNYUSA
- Department of BiologyWashington University in St. LouisSt. LouisMissouriUSA
| | - Kevin J. Aviles‐Rodriguez
- Department of BiologyUniversity of Massachusetts BostonBostonMassachusettsUSA
- Department of BiologyFordham UniversityBronxNew YorkUSA
| | - Elizabeth J. Carlen
- Department of BiologyWashington University in St. LouisSt. LouisMissouriUSA
- Department of BiologyFordham UniversityBronxNew YorkUSA
- Living Earth CollaborativeWashington University in St. LouisSt. LouisMissouriUSA
| | - Lindsay S. Miles
- Center for Biological Data ScienceVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Anne Charmantier
- Centre d'Ecologie Fonctionnelle et EvolutiveUniversité de Montpellier, CNRS, EPHE, IRDMontpellierFrance
| | - Luis F. De León
- Department of BiologyUniversity of Massachusetts BostonBostonMassachusettsUSA
| | - Kiyoko M. Gotanda
- Department of BiologyUniversité de SherbrookeSherbrookeQuebecCanada
- Department of Biological SciencesBrock UniversitySt. Catharine'sOntarioCanada
| | - L. Ruth Rivkin
- Department of Ecology and Evolutionary BiologyUniversity of TorontoTorontoOntarioCanada
- Department of BiologyUniversity of Toronto MississaugaMississaugaOntarioCanada
- Centre for Urban EnvironmentsUniversity of Toronto MississaugaMississaugaOntarioCanada
| | - Marta Szulkin
- Centre of New TechnologiesUniversity of WarsawWarsawPoland
| | - Brian C. Verrelli
- Center for Biological Data ScienceVirginia Commonwealth UniversityRichmondVirginiaUSA
| |
Collapse
|
10
|
Abstract
Natural history collections are invaluable repositories of biological information that provide an unrivaled record of Earth's biodiversity. Museum genomics-genomics research using traditional museum and cryogenic collections and the infrastructure supporting these investigations-has particularly enhanced research in ecology and evolutionary biology, the study of extinct organisms, and the impact of anthropogenic activity on biodiversity. However, leveraging genomics in biological collections has exposed challenges, such as digitizing, integrating, and sharing collections data; updating practices to ensure broadly optimal data extraction from existing and new collections; and modernizing collections practices, infrastructure, and policies to ensure fair, sustainable, and genomically manifold uses of museum collections by increasingly diverse stakeholders. Museum genomics collections are poised to address these challenges and, with increasingly sensitive genomics approaches, will catalyze a future era of reproducibility, innovation, and insight made possible through integrating museum and genome sciences.
Collapse
Affiliation(s)
- Daren C Card
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA; .,Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Beth Shapiro
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, California 95064, USA.,Howard Hughes Medical Institute, University of California, Santa Cruz, California 95064, USA
| | - Gonzalo Giribet
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA; .,Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Craig Moritz
- Centre for Biodiversity Analysis and Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 0200, Australia
| | - Scott V Edwards
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA; .,Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
11
|
Old Brains in Alcohol: The Usability of Legacy Collection Material to Study the Spider Neuroarchitecture. DIVERSITY 2021. [DOI: 10.3390/d13110601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Natural history collections include rare and significant taxa that might otherwise be unavailable for comparative studies. However, curators must balance the needs of current and long-term research. Methods of data extraction that minimize the impact on specimens are therefore favored. Micro-CT has the potential to expose new character systems based on internal anatomy to taxonomic and phylogenetic analysis without dissection or thin sectioning for histology. However, commonly applied micro-CT protocols involve critical point drying, which permanently changes the specimen. Here, we apply a minimally destructive method of specimen preparation for micro-CT investigation of spider neuroanatomy suitable for application to legacy specimens in natural history collections. We used two groups of female spiders of the common species Araneus diadematus—freshly captured (n = 11) vs. legacy material between 70 and 90 years old (n = 10)—to qualitatively and quantitatively assess the viability of micro-CT scanning and the impact of aging on their neuroarchitecture. We statistically compared the volumes of the supraesophageal ganglion (syncerebrum) and used 2D geometric morphometrics to analyze variations in the gross shape of the brain. We found no significant differences in the brain shape or the brain volume relative to the cephalothorax size. Nonetheless, a significant difference was observed in the spider size. We considered such differences to be explained by environmental factors rather than preservation artifacts. Comparison between legacy and freshly collected specimens indicates that museum specimens do not degrade over time in a way that might bias the study results, as long as the basic preservation conditions are consistently maintained, and where lapses in preservation have occurred, these can be identified. This, together with the relatively low-impact nature of the micro-CT protocol applied here, could facilitate the use of old, rare, and valuable material from collections in studies of internal morphology.
Collapse
|
12
|
Abstract
Although research performed in cities will not uncover new evolutionary mechanisms, it could provide unprecedented opportunities to examine the interplay of evolutionary forces in new ways and new avenues to address classic questions. However, while the variation within and among cities affords many opportunities to advance evolutionary biology research, careful alignment between how cities are used and the research questions being asked is necessary to maximize the insights that can be gained. In this review, we develop a framework to help guide alignment between urban evolution research approaches and questions. Using this framework, we highlight what has been accomplished to date in the field of urban evolution and identify several up-and-coming research directions for further expansion. We conclude that urban environments can be used as evolutionary test beds to tackle both new and long-standing questions in evolutionary biology.
Collapse
Affiliation(s)
- Sarah E. Diamond
- Department of Biology, Case Western Reserve University, Cleveland, Ohio 44106, USA;,
| | - Ryan A. Martin
- Department of Biology, Case Western Reserve University, Cleveland, Ohio 44106, USA;,
| |
Collapse
|
13
|
Meineke EK, Daru BH. Bias assessments to expand research harnessing biological collections. Trends Ecol Evol 2021; 36:1071-1082. [PMID: 34489117 DOI: 10.1016/j.tree.2021.08.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 12/22/2022]
Abstract
Biological collections are arguably the most important resources for investigations into the impacts of human activities on biodiversity. However, the apparent opportunities presented by museum-derived datasets have not resulted in consistent or widespread use of specimens in ecology outside phenological research and species distribution modeling. We attribute this gap between opportunity and application to biases introduced by collectors, curators, and preservation practices and an imperfect understanding of these biases and how to mitigate them. To facilitate broader use of specimen-based data, we characterize collection biases across key axes and explore interactions among them. We then present a framework for determining the bias assessments needed when extracting data from biological collections. We show that bias assessments required by particular ecological studies will depend on the response variables being measured and the predictor axes of interest. We argue that quantification of biases in specimen-derived datasets is needed to facilitate the widespread application of these data.
Collapse
Affiliation(s)
- Emily K Meineke
- Department of Entomology and Nematology, University of California, Davis 95616, CA, USA.
| | - Barnabas H Daru
- Department of Life Sciences, Texas A&M University-Corpus Christi, Corpus Christi, TX 78412, USA.
| |
Collapse
|
14
|
O'Connell KA, Mulder KP, Wynn A, de Queiroz K, Bell RC. Genomic library preparation and hybridization capture of formalin-fixed tissues and allozyme supernatant for population genomics and considerations for combining capture- and RADseq-based single nucleotide polymorphism data sets. Mol Ecol Resour 2021; 22:487-502. [PMID: 34329532 DOI: 10.1111/1755-0998.13481] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/10/2021] [Accepted: 07/14/2021] [Indexed: 12/17/2022]
Abstract
Until recently many historical museum specimens were largely inaccessible to genomic inquiry, but high-throughput sequencing (HTS) approaches have allowed researchers to successfully sequence genomic DNA from dried and fluid-preserved museum specimens. In addition to preserved specimens, many museums contain large series of allozyme supernatant samples, but the amenability of these samples to HTS has not yet been assessed. Here, we compared the performance of a target-capture approach using alternative sources of genomic DNA from 10 specimens of spring salamanders (Plethodontidae: Gyrinophilus porphyriticus) collected between 1985 and 1990: allozyme supernatants, allozyme homogenate pellets and formalin-fixed tissues. We designed capture probes based on double-digest restriction-site associated sequencing (RADseq) derived loci from frozen blood samples available for seven of the specimens and assessed the success and consistency of capture and RADseq approaches. This study design enabled direct comparisons of data quality and potential biases among the different data sets for phylogenomic and population genomic analyses. We found that in phylogenetic analyses, all enrichment types for a given specimen clustered together. In principal component space all capture-based samples clustered together, but RADseq samples did not cluster with corresponding capture-based samples. Single nucleotide polymorphism calls were on average 18.3% different between enrichment types for a given individual, but these discrepancies were primarily due to differences in heterozygous/homozygous single nucleotide polymorphism calls. We demonstrate that both allozyme supernatant and formalin-fixed samples can be successfully used for population genomic analyses and we discuss ways to identify and reduce biases associated with combining capture and RADseq data.
Collapse
Affiliation(s)
- Kyle A O'Connell
- Global Genome Initiative, National Museum of Natural History, Smithsonian Institution, Washington, District of Columbia, USA.,Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, District of Columbia, USA.,Department of Biological Sciences, The George Washington University, Washington, District of Columbia, USA.,Biomedical Data Science Lab, Deloitte Consulting LLP, Arlington, Virginia, USA
| | - Kevin P Mulder
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, District of Columbia, USA.,CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal.,Center for Conservation Genomics, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, District of Columbia, USA
| | - Addison Wynn
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, District of Columbia, USA
| | - Kevin de Queiroz
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, District of Columbia, USA
| | - Rayna C Bell
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, District of Columbia, USA.,Department of Herpetology, California Academy of Sciences, San Francisco, California, USA
| |
Collapse
|
15
|
Multiple Introductions of the Pestiferous Land Snail Theba pisana (Müller, 1774) (Gastropoda: Helicidae) in Southern California. INSECTS 2021; 12:insects12080662. [PMID: 34442227 PMCID: PMC8396441 DOI: 10.3390/insects12080662] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 11/17/2022]
Abstract
Simple Summary In Southern California, USA, the introduced white Italian land snail, Theba pisana, is prolific and locally pestiferous. To better understand its diversity and infer its parent population(s), we collected it from Los Angeles and San Diego counties and generated and analyzed gene sequence data (CO1, 16S, ITS2) that we compared between localities and to T. pisana CO1 barcodes from around the world. We also compared the morphology of the jaw, radula, and reproductive systems in T. pisana from Los Angeles and San Diego Counties. We found that T. pisana living at several sites in Los Angeles County in 2019–2020 had a single origin and were most similar in CO1 DNA sequence, based on available data, to specimens from Malta. Theba pisana collected from one site in San Diego County differed from Los Angeles T. pisana and were most similar in CO1 barcode sequence to specimens from Morocco. Jaw and mucous gland morphology also differed between Los Angeles and San Diego populations, but it is unclear if these traits are unique to lineages of T. pisana or if they change during a snail’s lifetime. We discuss how Los Angeles and San Diego T. pisana lineages may have arrived in Southern California and anticipate that the genetic data and morphological observations generated by this study will inform future studies of T. pisana where it is native and introduced. Abstract The terrestrial land snail Theba pisana is circum-Mediterranean in native range and widely introduced and pestiferous in regions around the world. In California, USA, T. pisana has been recorded intermittently since 1914, but its source population(s) are unknown, and no morphological or molecular analyses within or between California populations have been published. Therefore, we compared molecular data (CO1, 16S, ITS2) and internal morphology (jaw, radula, reproductive system) in T. pisana collected from Los Angeles and San Diego counties in 2019–2020. DNA barcode (CO1 mtDNA) analysis revealed that T. pisana from Los Angeles County was most similar to T. pisana from the Mediterranean island of Malta, and northern San Diego County-collected specimens were most similar to T. pisana from Morocco. Morphology of the jaw and mucous glands also differed between Los Angeles and San Diego populations, but it is unclear if traits are lineage-specific or artifacts of ontogeny. Several pathways of introduction into Southern California are possible for this species, but evidence for intentional vs. accidental introduction of present populations is lacking. Subsequent investigation(s) could use the data generated herein to assess the provenance of T. pisana elsewhere in California and/or worldwide and inform analyses of reproductive biology and systematics in this widespread species.
Collapse
|
16
|
Clause AG, Celestian AJ, Pauly GB. Plastic ingestion by freshwater turtles: a review and call to action. Sci Rep 2021; 11:5672. [PMID: 33758245 PMCID: PMC7987988 DOI: 10.1038/s41598-021-84846-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 02/19/2021] [Indexed: 11/09/2022] Open
Abstract
Plastic pollution, and especially plastic ingestion by animals, is a serious global issue. This problem is well documented in marine systems, but it is relatively understudied in freshwater systems. For turtles, it is unknown how plastic ingestion compares between marine and non-marine species. We review the relevant turtle dietary literature, and find that plastic ingestion is reported for all 7 marine turtle species, but only 5 of 352 non-marine turtle species. In the last 10 years, despite marine turtles representing just 2% of all turtle species, almost 50% of relevant turtle dietary studies involved only marine turtles. These results suggest that the potential threat of plastic ingestion is poorly studied in non-marine turtles. We also examine plastic ingestion frequency in a freshwater turtle population, finding that 7.7% of 65 turtles had ingested plastic. However, plastic-resembling organic material would have inflated our frequency results up to 40% higher were it not for verification using Raman spectroscopy. Additionally, we showcase how non-native turtles can be used as a proxy for understanding the potential for plastic ingestion by co-occurring native turtles of conservation concern. We conclude with recommendations for how scientists studying non-marine turtles can improve the implementation, quality, and discoverability of plastic ingestion research.
Collapse
Affiliation(s)
- Adam G Clause
- Urban Nature Research Center and Department of Herpetology, Natural History Museum of Los Angeles County, Los Angeles, CA, USA
| | - Aaron J Celestian
- Department of Mineral Sciences, Natural History Museum of Los Angeles County, Los Angeles, CA, USA
| | - Gregory B Pauly
- Urban Nature Research Center and Department of Herpetology, Natural History Museum of Los Angeles County, Los Angeles, CA, USA.
| |
Collapse
|
17
|
Abstract
Cities and towns are complex ecosystems with features that can vary dramatically in space and time. Our knowledge of the spatial structure of urban land and ecological systems is expanding. These systems have been investigated across spatial scales, urban to rural gradients, networks of urban macrosystems, and global megalopolises. However, the temporal dimensions of urban ecosystems – such as those related to ecological cycles and historical legacies – are far less understood and investigated. Here, we outline the main dimensions of time that can shape how events in urban ecosystems unfold, which we categorize as: (i) time flows and duration, (ii) synchrony, lags, and delays, (iii) trends and transitions, (iv) cycles and hysteresis, (v) legacies and priming, (vi) temporal hotspots and hot moments, and (vii) stochastic vs. deterministic processes affecting our ability to forecast the future of cities and the species that live in them. First, we demonstrate the roles of these understudied dimensions by discussing exemplary studies. We then propose key future research directions for investigating how processes over time may regulate the structure and functioning of urban land and biodiversity, as well as its effects on and implications for urban ecology. Our analysis and conceptual framework highlights that several temporal dimensions of urban ecosystems – like those related to temporal hotspots/moments and stochastic vs. deterministic processes – are understudied. This offers important research opportunities to further urban ecology and a comprehensive research agenda valuing the “Urban Chronos” – the change of urban ecosystems through time.
Collapse
|
18
|
Miles LS, Carlen EJ, Winchell KM, Johnson MTJ. Urban evolution comes into its own: Emerging themes and future directions of a burgeoning field. Evol Appl 2021; 14:3-11. [PMID: 33519952 PMCID: PMC7819569 DOI: 10.1111/eva.13165] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 11/01/2020] [Indexed: 01/02/2023] Open
Abstract
Urbanization has recently emerged as an exciting new direction for evolutionary research founded on our growing understanding of rapid evolution paired with the expansion of novel urban habitats. Urbanization can influence adaptive and nonadaptive evolution in urban-dwelling species, but generalized patterns and the predictability of urban evolutionary responses within populations remain unclear. This editorial introduces the special feature "Evolution in Urban Environments" and addresses four major emerging themes, which include: (a) adaptive evolution and phenotypic plasticity via physiological responses to urban climate, (b) adaptive evolution via phenotype-environment relationships in urban habitats, (c) population connectivity and genetic drift in urban landscapes, and (d) human-wildlife interactions in urban spaces. Here, we present the 16 articles (12 empirical, 3 review, 1 capstone) within this issue and how they represent each of these four emerging themes in urban evolutionary biology. Finally, we discuss how these articles address previous questions and have now raised new ones, highlighting important new directions for the field.
Collapse
Affiliation(s)
- Lindsay S. Miles
- Department of BiologyUniversity of Toronto MississaugaMississaugaONCanada
- Centre for Urban EnvironmentsUniversity of Toronto MississaugaMississaugaONCanada
| | | | | | - Marc T. J. Johnson
- Department of BiologyUniversity of Toronto MississaugaMississaugaONCanada
- Centre for Urban EnvironmentsUniversity of Toronto MississaugaMississaugaONCanada
| |
Collapse
|