1
|
Beulke AK, Abadía-Cardoso A, Pearse DE, Goetz LC, Thompson NF, Anderson EC, Garza JC. Distinct patterns of inheritance shape life-history traits in steelhead trout. Mol Ecol 2023; 32:6896-6912. [PMID: 37942651 DOI: 10.1111/mec.17182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 11/10/2023]
Abstract
Life-history variation is the raw material of adaptation, and understanding its genetic and environmental underpinnings is key to designing effective conservation strategies. We used large-scale genetic pedigree reconstruction of anadromous steelhead trout (Oncorhynchus mykiss) from the Russian River, CA, USA, to elucidate sex-specific patterns of life-history traits and their heritability. SNP data from adults returning from sea over a 14-year period were used to identify 13,474 parent-offspring trios. These pedigrees were used to determine age structure, size distributions and family sizes for these fish, as well as to estimate the heritability of two key life-history traits, spawn date and age at maturity (first reproduction). Spawn date was highly heritable (h2 = 0.73) and had a cross-sex genetic correlation near unity. We provide the first estimate of heritability for age at maturity in ocean-going fish from this species and found it to be highly heritable (h2 from 0.29 to 0.62, depending on sex and method), with a much lower genetic correlation across sexes. We also evaluated genotypes at a migration-associated inversion polymorphism and found sex-specific correlations with age at maturity. The significant heritability of these two key reproductive traits in these imperiled fish, and their patterns of inheritance in the two sexes, is consistent with predictions of both natural and sexually antagonistic selection (sexes experience opposing selection pressures). This emphasizes the importance of anthropogenic factors, including hatchery practices and ecosystem modifications, in shaping the fitness of this species, thus providing important guidance for management and conservation efforts.
Collapse
Affiliation(s)
- Anne K Beulke
- Department of Ocean Sciences, University of California, California, Santa Cruz, USA
- Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Santa Cruz, California, USA
| | - Alicia Abadía-Cardoso
- Facultad de Ciencias Marinas, Universidad Autónoma de Baja California, Ensenada, Mexico
| | - Devon E Pearse
- Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Santa Cruz, California, USA
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, USA
| | - Laura C Goetz
- Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Santa Cruz, California, USA
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, USA
| | - Neil F Thompson
- Pacific Shellfish Breeding Center, Agricultural Research Service, US Department of Agriculture, Newport, Oregon, USA
| | - Eric C Anderson
- Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Santa Cruz, California, USA
| | - John Carlos Garza
- Department of Ocean Sciences, University of California, California, Santa Cruz, USA
- Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Santa Cruz, California, USA
| |
Collapse
|
2
|
Gamble MM, Calsbeek RG. Sex-specific heritabilities for length at maturity among Pacific salmonids and their consequences for evolution in response to artificial selection. Evol Appl 2023; 16:1458-1471. [PMID: 37622093 PMCID: PMC10445087 DOI: 10.1111/eva.13579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/18/2023] [Accepted: 06/25/2023] [Indexed: 08/26/2023] Open
Abstract
Artificial selection, whether intentional or coincidental, is a common result of conservation policies and natural resource management. To reduce unintended consequences of artificial selection, conservation practitioners must understand both artificial selection gradients on traits of interest and how those traits are correlated with others that may affect population growth and resilience. We investigate how artificial selection on male body size in Pacific salmon (Oncorhynchus spp.) may influence the evolution of female body size and female fitness. While salmon hatchery managers often assume that selection for large males will also produce large females, this may not be the case-in fact, because the fastest-growing males mature earliest and at the smallest size, and because female age at maturity varies little, small males may produce larger females if the genetic architecture of growth rate is the same in both sexes. We explored this possibility by estimating sex-specific heritability values of and natural and artificial selection gradients on length at maturity in four populations representing three species of Pacific salmon. We then used the multivariate breeder's equation to project how artificial selection against small males may affect the evolution of female length and fecundity. Our results indicate that the heritability of length at maturity is greater within than between the sexes and that sire-daughter heritability values are especially small. Salmon hatchery policies should consider these sex-specific quantitative genetic parameters to avoid potential unintended consequences of artificial selection.
Collapse
Affiliation(s)
- Madilyn M. Gamble
- Graduate Program in Ecology, Evolution, Ecosystems, and SocietyDartmouth CollegeHanoverNew HampshireUSA
| | - Ryan G. Calsbeek
- Department of Biological SciencesDartmouth CollegeHanoverNew HampshireUSA
| |
Collapse
|
3
|
Euclide PT, Larson WA, Bootsma M, Miller LM, Scribner KT, Stott W, Wilson CC, Latch EK. A new GTSeq resource to facilitate multijurisdictional research and management of walleye Sander vitreus. Ecol Evol 2022; 12:e9591. [PMID: 36532137 PMCID: PMC9750844 DOI: 10.1002/ece3.9591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 12/23/2022] Open
Abstract
Conservation and management professionals often work across jurisdictional boundaries to identify broad ecological patterns. These collaborations help to protect populations whose distributions span political borders. One common limitation to multijurisdictional collaboration is consistency in data recording and reporting. This limitation can impact genetic research, which relies on data about specific markers in an organism's genome. Incomplete overlap of markers between separate studies can prevent direct comparisons of results. Standardized marker panels can reduce the impact of this issue and provide a common starting place for new research. Genotyping-in-thousands (GTSeq) is one approach used to create standardized marker panels for nonmodel organisms. Here, we describe the development, optimization, and early assessments of a new GTSeq panel for use with walleye (Sander vitreus) from the Great Lakes region of North America. High genome-coverage sequencing conducted using RAD capture provided genotypes for thousands of single nucleotide polymorphisms (SNPs). From these markers, SNP and microhaplotype markers were chosen, which were informative for genetic stock identification (GSI) and kinship analysis. The final GTSeq panel contained 500 markers, including 197 microhaplotypes and 303 SNPs. Leave-one-out GSI simulations indicated that GSI accuracy should be greater than 80% in most jurisdictions. The false-positive rates of parent-offspring and full-sibling kinship identification were found to be low. Finally, genotypes could be consistently scored among separate sequencing runs >94% of the time. Results indicate that the GTSeq panel that we developed should perform well for multijurisdictional walleye research throughout the Great Lakes region.
Collapse
Affiliation(s)
- Peter T. Euclide
- Department of Forestry and Natural ResourcesPurdue UniversityWest LafayetteIndianaUSA
| | - Wesley A. Larson
- College of Natural ResourcesUniversity of Wisconsin‐Stevens PointStevens PointWisconsinUSA
- National Marine Fisheries Service, Alaska Fisheries Science CenterNational Oceanographic and Atmospheric AdministrationJuneauAlaskaUSA
| | - Matthew Bootsma
- College of Natural ResourcesUniversity of Wisconsin‐Stevens PointStevens PointWisconsinUSA
| | - Loren M. Miller
- Minnesota Department of Natural ResourcesSt. PaulMinnesotaUSA
| | - Kim T. Scribner
- Department of Fish and WildlifeDepartment of Integrative BiologyMichigan State UniversityEast LansingMichiganUSA
| | - Wendylee Stott
- Department of Fisheries and Oceans, Artic and Aquatic Research DivisionWinnipegManitobaCanada
| | - Chris C. Wilson
- Ontario Ministry of Natural Resources and ForestryTrent UniversityPeterboroughOntarioCanada
| | - Emily K. Latch
- Department of Biological SciencesUniversity of Wisconsin‐MilwaukeeMilwaukeeWisconsinUSA
| |
Collapse
|
4
|
Waples RS, Ford MJ, Nichols K, Kardos M, Myers J, Thompson TQ, Anderson EC, Koch IJ, McKinney G, Miller MR, Naish K, Narum SR, O'Malley KG, Pearse DE, Pess GR, Quinn TP, Seamons TR, Spidle A, Warheit KI, Willis SC. Implications of Large-Effect Loci for Conservation: A Review and Case Study with Pacific Salmon. J Hered 2022; 113:121-144. [PMID: 35575083 DOI: 10.1093/jhered/esab069] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 11/07/2021] [Indexed: 11/13/2022] Open
Abstract
The increasing feasibility of assembling large genomic datasets for non-model species presents both opportunities and challenges for applied conservation and management. A popular theme in recent studies is the search for large-effect loci that explain substantial portions of phenotypic variance for a key trait(s). If such loci can be linked to adaptations, 2 important questions arise: 1) Should information from these loci be used to reconfigure conservation units (CUs), even if this conflicts with overall patterns of genetic differentiation? 2) How should this information be used in viability assessments of populations and larger CUs? In this review, we address these questions in the context of recent studies of Chinook salmon and steelhead (anadromous form of rainbow trout) that show strong associations between adult migration timing and specific alleles in one small genomic region. Based on the polygenic paradigm (most traits are controlled by many genes of small effect) and genetic data available at the time showing that early-migrating populations are most closely related to nearby late-migrating populations, adult migration differences in Pacific salmon and steelhead were considered to reflect diversity within CUs rather than separate CUs. Recent data, however, suggest that specific alleles are required for early migration, and that these alleles are lost in populations where conditions do not support early-migrating phenotypes. Contrasting determinations under the US Endangered Species Act and the State of California's equivalent legislation illustrate the complexities of incorporating genomics data into CU configuration decisions. Regardless how CUs are defined, viability assessments should consider that 1) early-migrating phenotypes experience disproportionate risks across large geographic areas, so it becomes important to identify early-migrating populations that can serve as reliable sources for these valuable genetic resources; and 2) genetic architecture, especially the existence of large-effect loci, can affect evolutionary potential and adaptability.
Collapse
Affiliation(s)
- Robin S Waples
- Northwest Fisheries Science Center, National Marine Fisheries Service, 2725 Montlake Blvd. East, Seattle, WA, USA
| | - Michael J Ford
- Northwest Fisheries Science Center, National Marine Fisheries Service, 2725 Montlake Blvd. East, Seattle, WA, USA
| | - Krista Nichols
- Northwest Fisheries Science Center, National Marine Fisheries Service, 2725 Montlake Blvd. East, Seattle, WA, USA
| | | | - Jim Myers
- Northwest Fisheries Science Center, National Marine Fisheries Service, 2725 Montlake Blvd. East, Seattle, WA, USA
| | | | - Eric C Anderson
- Southwest Fisheries Science Center, National Marine Fisheries Service, Santa Cruz, CA, USA
| | - Ilana J Koch
- Columbia River Inter-Tribal Fish Commission, Hagerman, ID, USA
| | - Garrett McKinney
- Northwest Fisheries Science Center, National Marine Fisheries Service, 2725 Montlake Blvd. East, Seattle, WA, USA
- Washington Department of Fish and Wildlife, Olympia, WA, USA
| | | | - Kerry Naish
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WAUSA
| | - Shawn R Narum
- Columbia River Inter-Tribal Fish Commission, Hagerman, ID, USA
| | | | - Devon E Pearse
- Southwest Fisheries Science Center, National Marine Fisheries Service, Santa Cruz, CA, USA
| | - George R Pess
- Northwest Fisheries Science Center, National Marine Fisheries Service, 2725 Montlake Blvd. East, Seattle, WA, USA
| | - Thomas P Quinn
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WAUSA
| | - Todd R Seamons
- Washington Department of Fish and Wildlife, Olympia, WA, USA
| | - Adrian Spidle
- Northwest Indian Fisheries Commission, Olympia, WA, USA
| | | | - Stuart C Willis
- Columbia River Inter-Tribal Fish Commission, Hagerman, ID, USA
| |
Collapse
|
5
|
Palejowski H, Bylemans J, Ammann V, Marques da Cunha L, Nusbaumer D, Castro I, Uppal A, Mobley KB, Knörr S, Wedekind C. Sex-Specific Life History Affected by Stocking in Juvenile Brown Trout. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.869925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Salmonids are a socioeconomically and ecologically important group of fish that are often managed by stocking. Little is known about potential sex-specific effects of stocking, but recent studies found that the sexes differ in their stress tolerances already at late embryonic stage, i.e., before hatchery-born larvae are released into the wild and long before morphological gonad formation. It has also been speculated that sex-specific life histories can affect juvenile growth and mortality, and that a resulting sex-biassed demography can reduce population growth. Here we test whether juvenile brown trout (Salmo trutta) show sex-specific life histories and whether such sex effects differ in hatchery- and wild-born fish. We modified a genetic sexing protocol to reduce false assignment rates and used it to study the timing of sex differentiation in a laboratory setting, and in a large-scale field experiment to study growth and mortality of hatchery- and wild-born fish in different environments. We found no sex-specific mortality in any of the environments we studied. However, females started sex differentiation earlier than males, and while growth rates were similar in the laboratory, they differed significantly in the field depending on location and origin of fish. Overall, hatchery-born males grew larger than hatchery-born females while wild-born fish showed the reverse pattern. Whether males or females grew larger was location-specific. We conclude that juvenile brown trout show sex-specific growth that is affected by stocking and by other environmental factors that remain to be identified.
Collapse
|
6
|
Bronikowski AM, Meisel RP, Biga PR, Walters J, Mank JE, Larschan E, Wilkinson GS, Valenzuela N, Conard AM, de Magalhães JP, Duan J, Elias AE, Gamble T, Graze R, Gribble KE, Kreiling JA, Riddle NC. Sex-specific aging in animals: Perspective and future directions. Aging Cell 2022; 21:e13542. [PMID: 35072344 PMCID: PMC8844111 DOI: 10.1111/acel.13542] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/15/2021] [Accepted: 12/11/2021] [Indexed: 12/14/2022] Open
Abstract
Sex differences in aging occur in many animal species, and they include sex differences in lifespan, in the onset and progression of age-associated decline, and in physiological and molecular markers of aging. Sex differences in aging vary greatly across the animal kingdom. For example, there are species with longer-lived females, species where males live longer, and species lacking sex differences in lifespan. The underlying causes of sex differences in aging remain mostly unknown. Currently, we do not understand the molecular drivers of sex differences in aging, or whether they are related to the accepted hallmarks or pillars of aging or linked to other well-characterized processes. In particular, understanding the role of sex-determination mechanisms and sex differences in aging is relatively understudied. Here, we take a comparative, interdisciplinary approach to explore various hypotheses about how sex differences in aging arise. We discuss genomic, morphological, and environmental differences between the sexes and how these relate to sex differences in aging. Finally, we present some suggestions for future research in this area and provide recommendations for promising experimental designs.
Collapse
Affiliation(s)
- Anne M. Bronikowski
- Department of Ecology, Evolution, and Organismal BiologyIowa State UniversityAmesIowaUSA
| | - Richard P. Meisel
- Department of Biology and BiochemistryUniversity of HoustonHoustonTexasUSA
| | - Peggy R. Biga
- Department of BiologyThe University of Alabama at BirminghamBirminghamAlabamaUSA
| | - James R. Walters
- Department of Ecology and Evolutionary BiologyThe University of KansasLawrenceKansasUSA
| | - Judith E. Mank
- Department of ZoologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Department of BioscienceUniversity of ExeterPenrynUK
| | - Erica Larschan
- Department of Molecular Biology, Cell Biology and BiochemistryBrown UniversityProvidenceRhode IslandUSA
| | | | - Nicole Valenzuela
- Department of Ecology, Evolution, and Organismal BiologyIowa State UniversityAmesIowaUSA
| | - Ashley Mae Conard
- Department of Computer ScienceCenter for Computational and Molecular BiologyBrown UniversityProvidenceRhode IslandUSA
| | - João Pedro de Magalhães
- Integrative Genomics of Ageing GroupInstitute of Ageing and Chronic DiseaseUniversity of LiverpoolLiverpoolUK
| | | | - Amy E. Elias
- Department of Molecular Biology, Cell Biology and BiochemistryBrown UniversityProvidenceRhode IslandUSA
| | - Tony Gamble
- Department of Biological SciencesMarquette UniversityMilwaukeeWisconsinUSA
- Milwaukee Public MuseumMilwaukeeWisconsinUSA
- Bell Museum of Natural HistoryUniversity of MinnesotaSaint PaulMinnesotaUSA
| | - Rita M. Graze
- Department of Biological SciencesAuburn UniversityAuburnAlabamaUSA
| | - Kristin E. Gribble
- Josephine Bay Paul Center for Comparative Molecular Biology and EvolutionMarine Biological LaboratoryWoods HoleMassachusettsUSA
| | - Jill A. Kreiling
- Department of Molecular Biology, Cell Biology and BiochemistryBrown UniversityProvidenceRhode IslandUSA
| | - Nicole C. Riddle
- Department of BiologyThe University of Alabama at BirminghamBirminghamAlabamaUSA
| |
Collapse
|
7
|
Gai Z, Zhai J, Chen X, Jiao P, Zhang S, Sun J, Qin R, Liu H, Wu Z, Li Z. Phylogeography Reveals Geographic and Environmental Factors Driving Genetic Differentiation of Populus sect. Turanga in Northwest China. FRONTIERS IN PLANT SCIENCE 2021; 12:705083. [PMID: 34456946 PMCID: PMC8385373 DOI: 10.3389/fpls.2021.705083] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/14/2021] [Indexed: 05/28/2023]
Abstract
Populus sect. Turanga (hereafter referred to as "Populus"), including Populus euphratica and Populus pruinosa, are the predominant tree species in desert riparian forests in northwestern China. These trees play key roles in maintaining ecosystem balance, curbing desertification, and protecting biodiversity. However, the distribution area of Populus forests has been severely diminished and degraded in recent years due to increased habitat destruction and human activity. Understanding the genetic diversity among Populus individuals and populations is essential for designing conservation strategies, but comprehensive studies of their genetic diversity in northwest China are lacking. Here, we assessed the population structures and genetic diversity of 1,620 samples from 85 natural populations of Populus (59 P. euphratica and 26 P. pruinosa populations) covering all of northwestern China using 120 single nucleotide polymorphism (SNP) markers. Analysis of population structure revealed significant differentiation between these two sister species and indicated that strong geographical distribution patterns, a geographical barrier, and environmental heterogeneity shaped the extant genetic patterns of Populus. Both P. euphratica and P. pruinosa populations in southern Xinjiang had higher genetic diversity than populations in other clades, perhaps contributing to local geographic structure and strong gene flow. Analysis of molecular variance (AMOVA) identified 15% variance among and 85% variance within subpopulations. Mantel tests suggested that the genetic variation among P. euphratica and P. pruinosa populations could be explained by both geographical and environmental distance. The genetic diversity of P. euphratica showed a significant negative correlation with latitude and longitude and a positive correlation with various environmental factors, such as precipitation of warmest quarter and driest month, temperature seasonality, and annual mean temperature. These findings provide insights into how the genetic differentiation of endangered Populus species was driven by geographical and environmental factors, which should be helpful for designing strategies to protect these genetic resources in the future.
Collapse
Affiliation(s)
- Zhongshuai Gai
- Key Laboratory of Biological Resource Protection and Utilization of Tarim Basin, Xinjiang Production and Construction Group, Alar, China
- College of Life Sciences, Tarim University, Alar, China
- Desert Poplar Research Center of Tarim University, Alar, China
| | - Juntuan Zhai
- Key Laboratory of Biological Resource Protection and Utilization of Tarim Basin, Xinjiang Production and Construction Group, Alar, China
- College of Life Sciences, Tarim University, Alar, China
- Desert Poplar Research Center of Tarim University, Alar, China
| | - Xiangxiang Chen
- Key Laboratory of Biological Resource Protection and Utilization of Tarim Basin, Xinjiang Production and Construction Group, Alar, China
- College of Life Sciences, Tarim University, Alar, China
- Desert Poplar Research Center of Tarim University, Alar, China
| | - Peipei Jiao
- Key Laboratory of Biological Resource Protection and Utilization of Tarim Basin, Xinjiang Production and Construction Group, Alar, China
- College of Life Sciences, Tarim University, Alar, China
- Desert Poplar Research Center of Tarim University, Alar, China
| | - Shanhe Zhang
- Key Laboratory of Biological Resource Protection and Utilization of Tarim Basin, Xinjiang Production and Construction Group, Alar, China
- College of Life Sciences, Tarim University, Alar, China
- Desert Poplar Research Center of Tarim University, Alar, China
| | - Jianhao Sun
- Key Laboratory of Biological Resource Protection and Utilization of Tarim Basin, Xinjiang Production and Construction Group, Alar, China
- College of Life Sciences, Tarim University, Alar, China
- Desert Poplar Research Center of Tarim University, Alar, China
| | - Rui Qin
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Hong Liu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Zhihua Wu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Zhijun Li
- Key Laboratory of Biological Resource Protection and Utilization of Tarim Basin, Xinjiang Production and Construction Group, Alar, China
- College of Life Sciences, Tarim University, Alar, China
- Desert Poplar Research Center of Tarim University, Alar, China
| |
Collapse
|
8
|
Waters CD, Clemento A, Aykanat T, Garza JC, Naish KA, Narum S, Primmer CR. Heterogeneous genetic basis of age at maturity in salmonid fishes. Mol Ecol 2021; 30:1435-1456. [PMID: 33527498 DOI: 10.1111/mec.15822] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/07/2020] [Accepted: 01/11/2021] [Indexed: 12/12/2022]
Abstract
Understanding the genetic basis of repeated evolution of the same phenotype across taxa is a fundamental aim in evolutionary biology and has applications in conservation and management. However, the extent to which interspecific life-history trait polymorphisms share evolutionary pathways remains underexplored. Here, we address this gap by studying the genetic basis of a key life-history trait, age at maturity, in four species of Pacific salmonids (genus Oncorhynchus) that exhibit intra- and interspecific variation in this trait-Chinook Salmon, Coho Salmon, Sockeye Salmon, and Steelhead Trout. We tested for associations in all four species between age at maturity and two genome regions, six6 and vgll3, that are strongly associated with the same trait in Atlantic Salmon (Salmo salar). We also conducted a genome-wide association analysis in Steelhead to assess whether additional regions were associated with this trait. We found the genetic basis of age at maturity to be heterogeneous across salmonid species. Significant associations between six6 and age at maturity were observed in two of the four species, Sockeye and Steelhead, with the association in Steelhead being particularly strong in both sexes (p = 4.46 × 10-9 after adjusting for genomic inflation). However, no significant associations were detected between age at maturity and the vgll3 genome region in any of the species, despite its strong association with the same trait in Atlantic Salmon. We discuss possible explanations for the heterogeneous nature of the genetic architecture of this key life-history trait, as well as the implications of our findings for conservation and management.
Collapse
Affiliation(s)
- Charles D Waters
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, USA
| | - Anthony Clemento
- Institute of Marine Sciences, University of California, Santa Cruz, CA, USA.,Santa Cruz Laboratory, Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Santa Cruz, CA, USA
| | - Tutku Aykanat
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland
| | - John Carlos Garza
- Institute of Marine Sciences, University of California, Santa Cruz, CA, USA.,Santa Cruz Laboratory, Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Santa Cruz, CA, USA
| | - Kerry A Naish
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, USA
| | - Shawn Narum
- Hagerman Genetics Laboratory, Columbia River Inter-Tribal Fish Commission, Hagerman, ID, USA
| | - Craig R Primmer
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland.,Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| |
Collapse
|