1
|
Santostasi NL, Bauduin S, Grente O, Gimenez O, Ciucci P. Simulating the efficacy of wolf-dog hybridization management with individual-based modeling. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2025; 39:e14312. [PMID: 38894638 PMCID: PMC11780192 DOI: 10.1111/cobi.14312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 06/21/2024]
Abstract
Introgressive hybridization between wolves and dogs is a conservation concern due to its potentially deleterious long-term evolutionary consequences. European legislation requires that wolf-dog hybridization be mitigated through effective management. We developed an individual-based model (IBM) to simulate the life cycle of gray wolves that incorporates aspects of wolf sociality that affect hybridization rates (e.g., the dissolution of packs after the death of one/both breeders) with the goal of informing decision-making on management of wolf-dog hybridization. We applied our model by projecting hybridization dynamics in a local wolf population under different mate choice and immigration scenarios and contrasted results of removal of admixed individuals with their sterilization and release. In several scenarios, lack of management led to complete admixture, whereas reactive management interventions effectively reduced admixture in wolf populations. Management effectiveness, however, strongly depended on mate choice and number and admixture level of individuals immigrating into the wolf population. The inclusion of anthropogenic mortality affecting parental and admixed individuals (e.g., poaching) increased the probability of pack dissolution and thus increased the probability of interbreeding with dogs or admixed individuals and boosted hybridization and introgression rates in all simulation scenarios. Recognizing the necessity of additional model refinements (appropriate parameterization, thorough sensitivity analyses, and robust model validation) to generate management recommendations applicable in real-world scenarios, we maintain confidence in our model's potential as a valuable conservation tool that can be applied to diverse situations and species facing similar threats.
Collapse
Affiliation(s)
- Nina Luisa Santostasi
- Department of Biology and Biotechnologies “Charles Darwin”Sapienza University of RomeRomaItaly
- CEFECNRS, Univ. Montpellier, EPHE, IRDMontpellierFrance
- National Biodiversity Future CenterPalermoItaly
| | - Sarah Bauduin
- Direction de la Recherche et Appui Scientifique, Service Conservation et Gestion des Espèces à EnjeuxOffice Français de la BiodiversitéJuvignacFrance
| | - Oksana Grente
- CEFECNRS, Univ. Montpellier, EPHE, IRDMontpellierFrance
| | | | - Paolo Ciucci
- Department of Biology and Biotechnologies “Charles Darwin”Sapienza University of RomeRomaItaly
- National Biodiversity Future CenterPalermoItaly
| |
Collapse
|
2
|
Sarabia C, Salado I, Fernández-Gil A, vonHoldt BM, Hofreiter M, Vilà C, Leonard JA. Potential Adaptive Introgression From Dogs in Iberian Grey Wolves (Canis lupus). Mol Ecol 2025:e17639. [PMID: 39791197 DOI: 10.1111/mec.17639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/03/2024] [Accepted: 12/16/2024] [Indexed: 01/12/2025]
Abstract
Invading species along with increased anthropogenization may lead to hybridization events between wild species and closely related domesticates. As a consequence, wild species may carry introgressed alleles from domestic species, which is generally assumed to yield adverse effects in wild populations. The opposite evolutionary consequence, adaptive introgression, where introgressed genes are positively selected in the wild species, is possible but has rarely been documented. Grey wolves (Canis lupus) are widely distributed across the Holarctic and frequently coexist with their close relative, the domestic dog (C. familiaris). Despite ample opportunity, hybridization rarely occurs in most populations. Here we studied the geographically isolated grey wolves of the Iberian Peninsula, who have coexisted with a large population of loosely controlled dogs for thousands of years in a human-modified landscape. We assessed the extent and impact of dog introgression on the current Iberian grey wolf population by analysing 150 whole genomes of Iberian and other Eurasian grey wolves as well as dogs originating from across Europe and western Siberia. We identified almost no recent introgression and a small (< 5%) overall ancient dog ancestry. Using a combination of single scan statistics and ancestry enrichment estimates, we identified positive selection on six genes (DAPP1, NSMCE4A, MPPED2, PCDH9, MBTPS1, and CDH13) for which wild Iberian wolves carry alleles introgressed from dogs. The genes with introgressed and positively selected alleles include functions in immune response and brain functions, which may explain some of the unique behavioural phenotypes in Iberian wolves such as their reduced dispersal compared to other wolf populations.
Collapse
Affiliation(s)
- Carlos Sarabia
- Center for Computational Molecular Biology, Brown University, Providence, Rhode Island, USA
| | - Isabel Salado
- Estación Biológica de Doñana (EBD-CSIC), Seville, Spain
| | | | - Bridgett M vonHoldt
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
| | - Michael Hofreiter
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Carles Vilà
- Estación Biológica de Doñana (EBD-CSIC), Seville, Spain
| | | |
Collapse
|
3
|
Musiani M, Randi E. Conservation genomics of wolves: The global impact of RK Wayne's research. J Hered 2024; 115:458-469. [PMID: 38381553 DOI: 10.1093/jhered/esae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 01/31/2024] [Accepted: 02/20/2024] [Indexed: 02/23/2024] Open
Abstract
RK Wayne has arguably been the most influential geneticist of canids, famously promoting the conservation of wolves in his homeland, the United States. His influence has been felt in other countries and regions outside the contiguous United States, where he inspired others, also including former graduate students and research fellows of his, to use modern molecular techniques to examine the evolutionary biology of canids to inform the conservation and management of wolves. In this review, we focus on the implications of Wayne's work on wolves outside the United States. He envisioned a clear future for wolf conservation research, involving the study of wolves' ecological and genetic diversity, and the description of ecotypes requiring conservation. He also documented widespread hybridization among canids and introgression of DNA from domestic dogs to wolves, a process that started dozens of thousands of years ago. His work therefore calls for innovative studies, such as examining the potential fitness benefits of introgression. Inspired by his results, for example, on the purging of deleterious alleles in small populations, wolf researchers should use novel molecular tools to challenge other conservation genetics paradigms. Overall, RK Wayne's work constitutes a call for answers, which as scientists or citizens concerned with conservation matters, we are obliged to address, as we contribute to monitoring and maintaining biodiversity during our period of dramatic transformations of the biosphere.
Collapse
Affiliation(s)
- Marco Musiani
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali (BiGeA), University of Bologna, Bologna, Italy
| | - Ettore Randi
- Department of Chemistry and Bioscience, Aalborg University, Aalborg Øst, Denmark
| |
Collapse
|
4
|
Bougiouri K, Aninta SG, Charlton S, Harris A, Carmagnini A, Piličiauskienė G, Feuerborn TR, Scarsbrook L, Tabadda K, Blaževičius P, Parker HG, Gopalakrishnan S, Larson G, Ostrander EA, Irving-Pease EK, Frantz LA, Racimo F. Imputation of ancient canid genomes reveals inbreeding history over the past 10,000 years. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.15.585179. [PMID: 38903121 PMCID: PMC11188068 DOI: 10.1101/2024.03.15.585179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
The multi-millenia long history between dogs and humans has placed them at the forefront of archeological and genomic research. Despite ongoing efforts including the analysis of ancient dog and wolf genomes, many questions remain regarding their geographic and temporal origins, and the microevolutionary processes that led to the diversity of breeds today. Although ancient genomes provide valuable information, their use is hindered by low depth of coverage and post-mortem damage, which inhibits confident genotype calling. In the present study, we assess how genotype imputation of ancient dog and wolf genomes, utilising a large reference panel, can improve the resolution provided by ancient datasets. Imputation accuracy was evaluated by down-sampling high coverage dog and wolf genomes to 0.05-2x coverage and comparing concordance between imputed and high coverage genotypes. We measured the impact of imputation on principal component analyses and runs of homozygosity. Our findings show high (R2>0.9) imputation accuracy for dogs with coverage as low as 0.5x and for wolves as low as 1.0x. We then imputed a dataset of 90 ancient dog and wolf genomes, to assess changes in inbreeding during the last 10,000 years of dog evolution. Ancient dog and wolf populations generally exhibited lower inbreeding levels than present-day individuals. Interestingly, regions with low ROH density maintained across ancient and present-day samples were significantly associated with genes related to olfaction and immune response. Our study indicates that imputing ancient canine genomes is a viable strategy that allows for the use of analytical methods previously limited to high-quality genetic data.
Collapse
Affiliation(s)
- Katia Bougiouri
- Section for Molecular Ecology and Evolution, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Sabhrina Gita Aninta
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Sophy Charlton
- BioArCh, Department of Archaeology, University of York, York, UK
| | - Alex Harris
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alberto Carmagnini
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
- Palaeogenomics Group, Department of Veterinary Sciences, Ludwig Maximilian University, Munich, Germany
| | - Giedrė Piličiauskienė
- Department of Archeology, Faculty of History, Vilnius University, Vilnius, Lithuania
| | - Tatiana R. Feuerborn
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lachie Scarsbrook
- The Palaeogenomics and Bio-archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
| | - Kristina Tabadda
- The Palaeogenomics and Bio-archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
| | - Povilas Blaževičius
- Department of Archeology, Faculty of History, Vilnius University, Vilnius, Lithuania
- National Museum of Lithuania, Vilnius, Lithuania
| | - Heidi G. Parker
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shyam Gopalakrishnan
- Center for Evolutionary Hologenomics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Greger Larson
- The Palaeogenomics and Bio-archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
| | - Elaine A. Ostrander
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Evan K. Irving-Pease
- Section for Molecular Ecology and Evolution, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Laurent A.F. Frantz
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
- Palaeogenomics Group, Department of Veterinary Sciences, Ludwig Maximilian University, Munich, Germany
| | - Fernando Racimo
- Section for Molecular Ecology and Evolution, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Amici F, Meacci S, Caray E, Oña L, Liebal K, Ciucci P. A first exploratory comparison of the behaviour of wolves (Canis lupus) and wolf-dog hybrids in captivity. Anim Cogn 2024; 27:9. [PMID: 38429445 PMCID: PMC10907477 DOI: 10.1007/s10071-024-01849-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/31/2023] [Accepted: 11/07/2023] [Indexed: 03/03/2024]
Abstract
Extensive introgression of genes from domesticated taxa may be a serious threat for the genomic integrity and adaptability of wild populations. Grey wolves (Canis lupus) are especially vulnerable to this phenomenon, but there are no studies yet assessing the potential behavioural effects of dog-introgression in wolves. In this study, we conducted a first systematic comparison of admixed (N = 11) and non-admixed (N = 14) wolves in captivity, focusing on their reaction to unfamiliar humans and novel objects, and the cohesiveness of their social groups. When exposed to unfamiliar humans in the experimental task, wolves were more vigilant, fearful and aggressive than admixed wolves, and less likely to approach humans, but also more likely to spend time in human proximity. When exposed to novel objects, wolves were more aggressive than admixed wolves, less likely to spend time in object proximity, and more likely to interact with objects, but also less vigilant and as fearful as admixed wolves. Finally, social networks were more cohesive in wolves than in admixed wolves. Although caution is needed when comparing groups of captive individuals with different life experiences, our study suggests that dog admixture may lead to important behavioural changes in wolves, with possible implications for conservation strategies.
Collapse
Affiliation(s)
- Federica Amici
- Life Sciences, Institute for Biology, Human Biology and Primate Cognition, Leipzig University, Leipzig, Germany.
- Department of Comparative Cultural Psychology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
| | - Simone Meacci
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Emmeline Caray
- Department of Life Sciences, University of Strasbourg, Strasbourg, France
| | - Linda Oña
- Life Sciences, Institute for Biology, Human Biology and Primate Cognition, Leipzig University, Leipzig, Germany
| | - Katja Liebal
- Life Sciences, Institute for Biology, Human Biology and Primate Cognition, Leipzig University, Leipzig, Germany
- Department of Comparative Cultural Psychology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Paolo Ciucci
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy
| |
Collapse
|
6
|
Tensen L, Fischer K. Evaluating hybrid speciation and swamping in wild carnivores with a decision-tree approach. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2024; 38:e14197. [PMID: 37811741 DOI: 10.1111/cobi.14197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/12/2023] [Accepted: 06/28/2023] [Indexed: 10/10/2023]
Abstract
Hybridization is an important evolutionary force with a principal role in the origin of new species, known as hybrid speciation. However, ongoing hybridization can create hybrid swamping, in which parental genomes are completely lost. This can become a biodiversity threat if it involves species that have adapted to certain environmental conditions and occur nowhere else. Because conservation scientists commonly have a negative attitude toward hybrids, it is important to improve understanding of the influence of interspecific gene flow on the persistence of species. We reviewed the literature on species hybridization to build a list of all known cases in the order Carnivora. To examine the relative impact, we also noted level of introgression, whether fertile offspring were produced, and whether there was mention of negative or positive evolutionary effects (hybrid speciation and swamping). To evaluate the conservation implications of hybrids, we developed a decision-making tree with which to determine which actions should be taken to manage hybrid species. We found 53 hybrids involving 68 unique taxa, which is roughly 23% of all carnivore species. They mainly involved monophyletic (83%) and sympatric species (75%). For 2 species, the outcome of the assessment was to eliminate or restrict the hybrids: Ethiopian wolf (Canis simensis) and Scottish wildcat (Felis silvestris silvestris). Both species hybridize with their domestic conspecifics. For all other cases, we suggest hybrids be protected in the same manner as native species. We found no evidence of genomic extinction in Carnivora. To the contrary, some species appear to be of hybrid origin, such as the Asiatic black bear (Ursus thibetanus) and African golden wolf (Canis lupaster). Other positive outcomes of hybridization are novel genetic diversity, adaptation to extreme environments, and increased reproductive fitness. These outcomes are particularly valuable for counterbalancing genetic drift and enabling adaptive introgression in a human-dominated world.
Collapse
Affiliation(s)
- Laura Tensen
- Institute for Integrated Natural Sciences, Department of Zoology, University of Koblenz, Koblenz, Germany
- Centre for Ecological Genomics and Wildlife Conservation, Department of Zoology, University of Johannesburg, Johannesburg, South Africa
| | - Klaus Fischer
- Institute for Integrated Natural Sciences, Department of Zoology, University of Koblenz, Koblenz, Germany
| |
Collapse
|
7
|
Lobo D, López-Bao JV, Godinho R. The population bottleneck of the Iberian wolf impacted genetic diversity but not admixture with domestic dogs: A temporal genomic approach. Mol Ecol 2023; 32:5986-5999. [PMID: 37855673 DOI: 10.1111/mec.17171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 09/25/2023] [Accepted: 10/06/2023] [Indexed: 10/20/2023]
Abstract
After decades of intense persecution, the Iberian wolf subspecies faced a severe bottleneck in the 1970s that considerably reduced its range and population size, nearly leading to its extinction in central and southern Iberian Peninsula. Such population decline could have impacted the genetic diversity of Iberian wolves through different processes, namely genetic drift and dynamics of hybridization with domestic dogs. By contrasting the genomes of 68 contemporary with 54 historical samples spanning the periods before and immediately after the 1970s bottleneck, we found evidence of its impact on genetic diversity and dynamics of wolf-dog hybridization. Our genome-wide assessment revealed that wolves and dogs form two well-differentiated genetic groups in Iberia and that hybridization rates did not increase during the bottleneck. However, an increased number of hybrid individuals was found over time during the population re-expansion, particularly at the edge of the wolf range. We estimated a low percentage of dog ancestry (~1.4%) in historical samples, suggesting that dog introgression was not a key driver for wolf extinction in central and southern Iberia. Our findings also unveil a significant decline in genetic diversity in contemporary samples, with the highest proportion of homozygous segments in the genome being recently inherited. Overall, our study provides unprecedented insight into the impact of a sharp decline on the Iberian wolf genome and refines our understanding of the ecological and evolutionary drivers of wolf-dog hybridization in the wild.
Collapse
Affiliation(s)
- Diana Lobo
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- BIOPOLIS, Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - José Vicente López-Bao
- Biodiversity Research Institute (CSIC - Oviedo University - Principality of Asturias) Oviedo University, Mieres, Spain
| | - Raquel Godinho
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- BIOPOLIS, Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
- Centre for Ecological Genomics and Wildlife Conservation, Department of Zoology, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
8
|
Fabbri G, Molinaro L, Mucci N, Pagani L, Scandura M. Anthropogenic hybridization and its influence on the adaptive potential of the Sardinian wild boar (Sus scrofa meridionalis). J Appl Genet 2023; 64:521-530. [PMID: 37369962 PMCID: PMC10457222 DOI: 10.1007/s13353-023-00763-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 05/06/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023]
Abstract
The wild boar (Sus scrofa meridionalis) arrived in Sardinia with the first human settlers in the early Neolithic with the potential to hybridize with the domestic pig (S. s. domesticus) throughout its evolution on the island. In this paper, we investigated the possible microevolutionary effects of such introgressive hybridization on the present wild boar population, comparing Sardinian wild specimens with several commercial pig breeds and Sardinian local pigs, along with a putatively unadmixed wild boar population from Central Italy, all genotyped with a medium density SNP chip. We first aimed at identifying hybrids in the population using different approaches, then examined genomic regions enriched for domestic alleles in the hybrid group, and finally we applied two methods to find regions under positive selection to possibly highlight instances of domestic adaptive introgression into a wild population. We found three hybrids within the Sardinian sample (3.1% out of the whole dataset). We reported 11 significant windows under positive selection with a method that looks for overly differentiated loci in the target population, compared with other two populations. We also identified 82 genomic regions with signs of selection in the domestic pig but not in the wild boar, two of which overlapped with genomic regions enriched for domestic alleles in the hybrid pool. Genes in these regions can be linked with reproductive success. Given our results, domestic introgression does not seem to be pervasive in the Sardinian wild boar. Nevertheless, we suggest monitoring the possible spread of advantageous domestic alleles in the coming years.
Collapse
Affiliation(s)
- Giulia Fabbri
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2A, 07100, Sassari, Italy.
| | - Ludovica Molinaro
- Department of Human Genetics, KU Leuven, 3000, Leuven, Belgium
- Estonian Biocentre, Institute of Genomics, University of Tartu, Riia 23b, 51010, Tartu, Estonia
| | - Nadia Mucci
- Unit for Conservation Genetics (BIO-CGE), Italian Institute for Environmental Protection and Research (ISPRA), Ozzano dell'Emilia, Bologna, Italy
| | - Luca Pagani
- Estonian Biocentre, Institute of Genomics, University of Tartu, Riia 23b, 51010, Tartu, Estonia
- Department of Biology, University of Padua, Viale G. Colombo 3, 35131, Padua, Italy
| | - Massimo Scandura
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2A, 07100, Sassari, Italy
| |
Collapse
|
9
|
Cairns KM, Crowther MS, Parker HG, Ostrander EA, Letnic M. Genome-wide variant analyses reveal new patterns of admixture and population structure in Australian dingoes. Mol Ecol 2023; 32:4133-4150. [PMID: 37246949 PMCID: PMC10524503 DOI: 10.1111/mec.16998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 04/29/2023] [Accepted: 05/05/2023] [Indexed: 05/30/2023]
Abstract
Admixture between species is a cause for concern in wildlife management. Canids are particularly vulnerable to interspecific hybridisation, and genetic admixture has shaped their evolutionary history. Microsatellite DNA testing, relying on a small number of genetic markers and geographically restricted reference populations, has identified extensive domestic dog admixture in Australian dingoes and driven conservation management policy. But there exists a concern that geographic variation in dingo genotypes could confound ancestry analyses that use a small number of genetic markers. Here, we apply genome-wide single-nucleotide polymorphism (SNP) genotyping to a set of 402 wild and captive dingoes collected from across Australia and then carry out comparisons to domestic dogs. We then perform ancestry modelling and biogeographic analyses to characterise population structure in dingoes and investigate the extent of admixture between dingoes and dogs in different regions of the continent. We show that there are at least five distinct dingo populations across Australia. We observed limited evidence of dog admixture in wild dingoes. Our work challenges previous reports regarding the occurrence and extent of dog admixture in dingoes, as our ancestry analyses show that previous assessments severely overestimate the degree of domestic dog admixture in dingo populations, particularly in south-eastern Australia. These findings strongly support the use of genome-wide SNP genotyping as a refined method for wildlife managers and policymakers to assess and inform dingo management policy and legislation moving forwards.
Collapse
Affiliation(s)
- Kylie M. Cairns
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia
- Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Mathew S. Crowther
- School of Life and Environmental Sciences, University of Sydney, New South Wales 2006, Australia
| | - Heidi G. Parker
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Elaine A. Ostrander
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Mike Letnic
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia
- Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
10
|
Barash A, Preiss-Bloom S, Machluf Y, Fabbri E, Malkinson D, Velli E, Mucci N, Barash A, Caniglia R, Dayan T, Dekel Y. Possible origins and implications of atypical morphologies and domestication-like traits in wild golden jackals (Canis aureus). Sci Rep 2023; 13:7388. [PMID: 37149712 PMCID: PMC10164184 DOI: 10.1038/s41598-023-34533-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 05/03/2023] [Indexed: 05/08/2023] Open
Abstract
Deciphering the origins of phenotypic variations in natural animal populations is a challenging topic for evolutionary and conservation biologists. Atypical morphologies in mammals are usually attributed to interspecific hybridisation or de-novo mutations. Here we report the case of four golden jackals (Canis aureus), that were observed during a camera-trapping wildlife survey in Northern Israel, displaying anomalous morphological traits, such as white patches, an upturned tail, and long thick fur which resemble features of domesticated mammals. Another individual was culled under permit and was genetically and morphologically examined. Paternal and nuclear genetic profiles, as well as geometric morphometric data, identified this individual as a golden jackal rather than a recent dog/wolf-jackal hybrid. Its maternal haplotype suggested past introgression of African wolf (Canis lupaster) mitochondrial DNA, as previously documented in other jackals from Israel. When viewed in the context of the jackal as an overabundant species in Israel, the rural nature of the surveyed area, the abundance of anthropogenic waste, and molecular and morphological findings, the possibility of an individual presenting incipient stages of domestication should also be considered.
Collapse
Affiliation(s)
- Ayelet Barash
- School of Zoology and The Steinhardt Museum of Natural History, Tel Aviv University, Tel Aviv, Israel
- Unit of Agrigenomics, Shamir Research Institute, University of Haifa, 1290000, Kazerin, Israel
| | - Shlomo Preiss-Bloom
- School of Zoology and The Steinhardt Museum of Natural History, Tel Aviv University, Tel Aviv, Israel
| | - Yossy Machluf
- Unit of Agrigenomics, Shamir Research Institute, University of Haifa, 1290000, Kazerin, Israel
| | - Elena Fabbri
- Unit for Conservation Genetics (BIO‑CGE), Italian Institute for Environmental Protection and Research (ISPRA), Via Cà Fornacetta 9, Ozzano dell'Emilia, 40064, Bologna, Italy
| | - Dan Malkinson
- Department of Geography and Environmental Studies, University of Haifa, 3498838, Haifa, Israel
| | - Edoardo Velli
- Unit for Conservation Genetics (BIO‑CGE), Italian Institute for Environmental Protection and Research (ISPRA), Via Cà Fornacetta 9, Ozzano dell'Emilia, 40064, Bologna, Italy
| | - Nadia Mucci
- Unit for Conservation Genetics (BIO‑CGE), Italian Institute for Environmental Protection and Research (ISPRA), Via Cà Fornacetta 9, Ozzano dell'Emilia, 40064, Bologna, Italy
| | - Alon Barash
- The Azrieli Faculty of Medicine, Bar Ilan University, 8 Henrietta Szold St, Safed, Israel
| | - Romolo Caniglia
- Unit for Conservation Genetics (BIO‑CGE), Italian Institute for Environmental Protection and Research (ISPRA), Via Cà Fornacetta 9, Ozzano dell'Emilia, 40064, Bologna, Italy.
| | - Tamar Dayan
- School of Zoology and The Steinhardt Museum of Natural History, Tel Aviv University, Tel Aviv, Israel.
| | - Yaron Dekel
- Unit of Agrigenomics, Shamir Research Institute, University of Haifa, 1290000, Kazerin, Israel.
- The Cheryl Spencer Department of Nursing and The Cheryl Spencer Institute of Nursing Research, University of Haifa, 3498838, Haifa, Israel.
| |
Collapse
|
11
|
Schroeder L, Ackermann RR. Moving beyond the adaptationist paradigm for human evolution, and why it matters. J Hum Evol 2023; 174:103296. [PMID: 36527977 DOI: 10.1016/j.jhevol.2022.103296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 11/12/2022] [Accepted: 11/12/2022] [Indexed: 12/23/2022]
Abstract
The Journal of Human Evolution (JHE) was founded 50 years ago when much of the foundation for how we think about human evolution was in place or being put in place, providing the main framework for how we consider our origins today. Here, we will explore historical developments, including early JHE outputs, as they relate to our understanding of the relationship between phenotypic variation and evolutionary process, and use that as a springboard for considering our current understanding of these links as applied to human evolution. We will focus specifically on how the study of variation itself has shifted us away from taxonomic and adaptationist perspectives toward a richer understanding of the processes shaping human evolutionary history, using literature searches and specific test cases to highlight this. We argue that natural selection, gene exchange, genetic drift, and mutation should not be considered individually when considering the production of hominin diversity. In this context, we offer suggestions for future research directions and reflect on this more complex understanding of human evolution and its broader relevance to society. Finally, we end by considering authorship demographics and practices in the last 50 years within JHE and how a shift in these demographics has the potential to reshape the science of human evolution going forward.
Collapse
Affiliation(s)
- Lauren Schroeder
- Department of Anthropology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada; Human Evolution Research Institute, University of Cape Town, Rondebosch, 7701, South Africa.
| | - Rebecca Rogers Ackermann
- Human Evolution Research Institute, University of Cape Town, Rondebosch, 7701, South Africa; Department of Archaeology, University of Cape Town, Rondebosch, 7701, South Africa.
| |
Collapse
|
12
|
Poyarkov AD, Korablev MP, Bragina E, Hernandez-Blanco JA. Overview of Current Research on Wolves in Russia. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.869161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This paper provides an overview of wolf research in Russia at the beginning of the 21st century. Wolf research covered various directions, including population density estimation, management methods and minimization of human-wildlife conflicts, general and behavioral ecology, behavior, wolf population genetics and morphology, paleontology, dog domestication, helminthology and the wolves’ role in the rabies transmission. Some studies are performed with state-of-art methodology using molecular genetics, mathematical modeling, camera traps, and GPS telemetry.
Collapse
|
13
|
Adavoudi R, Pilot M. Consequences of Hybridization in Mammals: A Systematic Review. Genes (Basel) 2021; 13:50. [PMID: 35052393 PMCID: PMC8774782 DOI: 10.3390/genes13010050] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/14/2021] [Accepted: 12/20/2021] [Indexed: 12/18/2022] Open
Abstract
Hybridization, defined as breeding between two distinct taxonomic units, can have an important effect on the evolutionary patterns in cross-breeding taxa. Although interspecific hybridization has frequently been considered as a maladaptive process, which threatens species genetic integrity and survival via genetic swamping and outbreeding depression, in some cases hybridization can introduce novel adaptive variation and increase fitness. Most studies to date focused on documenting hybridization events and analyzing their causes, while relatively little is known about the consequences of hybridization and its impact on the parental species. To address this knowledge gap, we conducted a systematic review of studies on hybridization in mammals published in 2010-2021, and identified 115 relevant studies. Of 13 categories of hybridization consequences described in these studies, the most common negative consequence (21% of studies) was genetic swamping and the most common positive consequence (8%) was the gain of novel adaptive variation. The total frequency of negative consequences (49%) was higher than positive (13%) and neutral (38%) consequences. These frequencies are biased by the detection possibilities of microsatellite loci, the most common genetic markers used in the papers assessed. As negative outcomes are typically easier to demonstrate than positive ones (e.g., extinction vs hybrid speciation), they may be over-represented in publications. Transition towards genomic studies involving both neutral and adaptive variation will provide a better insight into the real impacts of hybridization.
Collapse
Affiliation(s)
| | - Małgorzata Pilot
- Museum and Institute of Zoology, Polish Academy of Sciences, ul. Nadwiślańska 108, 80-680 Gdańsk, Poland;
| |
Collapse
|
14
|
Krofel M, Hatlauf J, Bogdanowicz W, Campbell LAD, Godinho R, Jhala YV, Kitchener AC, Koepfli K, Moehlman P, Senn H, Sillero‐Zubiri C, Viranta S, Werhahn G, Alvares F. Towards resolving taxonomic uncertainties in wolf, dog and jackal lineages of Africa, Eurasia and Australasia. J Zool (1987) 2021. [DOI: 10.1111/jzo.12946] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- M. Krofel
- Biotechnical Faculty University of Ljubljana Ljubljana Slovenia
| | - J. Hatlauf
- University of Natural Resources and Life Sciences Vienna, Department of Integrative Biology and Biodiversity Research Institute of Wildlife Biology and Game Management Vienna Austria
| | - W. Bogdanowicz
- Museum and Institute of Zoology Polish Academy of Sciences Warszawa Poland
| | - L. A. D. Campbell
- Department of Zoology Recanati‐Kaplan Centre; Tubney University of Oxford Wildlife Conservation Research Unit Oxfordshire UK
| | - R. Godinho
- InBIO Laboratório Associado, Campus de Vairão CIBIO Centro de Investigação em Biodiversidade e Recursos Genéticos Universidade do Porto Vairão Portugal
- BIOPOLIS Program in Genomics Biodiversity and Land Planning, CIBIO Vairão Portugal
- Departamento de Biologia Faculdade de Ciências Universidade do Porto Porto Portugal
| | - Y. V. Jhala
- Animal Ecology & Conservation Biology Wildlife Institute of India Dehradun India
| | - A. C. Kitchener
- Department of Natural Sciences National Museums Scotland Edinburgh UK
| | - K.‐P. Koepfli
- Smithsonian‐Mason School of Conservation George Mason University Front Royal VA USA
- Smithsonian Conservation Biology Institute Center for Species Survival National Zoological Park Front Royal VA USA
- Computer Technologies Laboratory ITMO University St. Petersburg Russia
| | - P. Moehlman
- IUCN/SSC Equid Specialist Group Tanzania Wildlife Research Institute (TAWIRI) EcoHealth Alliance and The Earth Institute Columbia University Arusha Tanzania
| | - H. Senn
- WildGenes Laboratory Conservation and Science Programmes Royal Zoological Society of Scotland, RZSS Edinburgh UK
| | - C. Sillero‐Zubiri
- Wildlife Conservation Research Unit, Zoology University of Oxford Tubney UK
- IUCN SSC Canid Specialist Group Oxford UK
- Born Free Foundation Horsham UK
| | - S. Viranta
- Faculty of Medicine University of Helsinki Helsinki Finland
| | - G. Werhahn
- IUCN SSC Canid Specialist Group Oxford UK
- Wildlife Conservation Research Unit, Zoology University of Oxford Tubney UK
| | - F. Alvares
- CIBIO Centro de Investigação em Biodiversidade e Recursos Genéticos InBIO Laboratório Associado Universidade do Porto Vairão Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning CIBIO Vairão Portugal
| |
Collapse
|