1
|
Duysens J, Graide H, Niesten A, Mouithys-Mickalad A, Deby-Dupont G, Franck T, Ceusters J, Serteyn D. Culture and Immunomodulation of Equine Muscle-Derived Mesenchymal Stromal Cells: A Comparative Study of Innovative 2D versus 3D Models Using Equine Platelet Lysate. Cells 2024; 13:1290. [PMID: 39120320 PMCID: PMC11312061 DOI: 10.3390/cells13151290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024] Open
Abstract
Muscle-derived mesenchymal stromal cells (mdMSCs) hold great promise in regenerative medicine due to their immunomodulatory properties, multipotent differentiation capacity and ease of collection. However, traditional in vitro expansion methods use fetal bovine serum (FBS) and have numerous limitations including ethical concerns, batch-to-batch variability, immunogenicity, xenogenic contamination and regulatory compliance issues. This study investigates the use of 10% equine platelet lysate (ePL) obtained by plasmapheresis as a substitute for FBS in the culture of mdMSCs in innovative 2D and 3D models. Using muscle microbiopsies as the primary cell source in both models showed promising results. Initial investigations indicated that small variations in heparin concentration in 2D cultures strongly influenced medium coagulation with an optimal proliferation observed at final heparin concentrations of 1.44 IU/mL. The two novel models investigated showed that expansion of mdMSCs is achievable. At the end of expansion, the 3D model revealed a higher total number of cells harvested (64.60 ± 5.32 million) compared to the 2D culture (57.20 ± 7.66 million). Trilineage differentiation assays confirmed the multipotency (osteoblasts, chondroblasts and adipocytes) of the mdMSCs generated in both models with no significant difference observed. Immunophenotyping confirmed the expression of the mesenchymal stem cell (MSC) markers CD-90 and CD-44, with low expression of CD-45 and MHCII markers for mdMSCs derived from the two models. The generated mdMSCs also had great immunomodulatory properties. Specific immunological extraction followed by enzymatic detection (SIEFED) analysis demonstrated that mdMSCs from both models inhibited myeloperoxidase (MPO) activity in a strong dose-dependent manner. Moreover, they were also able to reduce reactive oxygen species (ROS) activity, with mdMSCs from the 3D model showing significantly higher dose-dependent inhibition compared to the 2D model. These results highlighted for the first time the feasibility and efficacy of using 10% ePL for mdMSC expansion in novel 2D and 3D approaches and also that mdMSCs have strong immunomodulatory properties that can be exploited to advance the field of regenerative medicine and cell therapy instead of using FBS with all its drawbacks.
Collapse
Affiliation(s)
- J. Duysens
- Revatis SA, Rue de la Science 8, 6900 Marche-En-Famenne, Belgium; (H.G.); (J.C.); (D.S.)
- Centre of Oxygen Research and Development (CORD), University of Liege, 4000 Liege, Belgium; (A.N.); (A.M.-M.); (G.D.-D.); (T.F.)
| | - H. Graide
- Revatis SA, Rue de la Science 8, 6900 Marche-En-Famenne, Belgium; (H.G.); (J.C.); (D.S.)
| | - A. Niesten
- Centre of Oxygen Research and Development (CORD), University of Liege, 4000 Liege, Belgium; (A.N.); (A.M.-M.); (G.D.-D.); (T.F.)
| | - A. Mouithys-Mickalad
- Centre of Oxygen Research and Development (CORD), University of Liege, 4000 Liege, Belgium; (A.N.); (A.M.-M.); (G.D.-D.); (T.F.)
| | - G. Deby-Dupont
- Centre of Oxygen Research and Development (CORD), University of Liege, 4000 Liege, Belgium; (A.N.); (A.M.-M.); (G.D.-D.); (T.F.)
| | - T. Franck
- Centre of Oxygen Research and Development (CORD), University of Liege, 4000 Liege, Belgium; (A.N.); (A.M.-M.); (G.D.-D.); (T.F.)
| | - J. Ceusters
- Revatis SA, Rue de la Science 8, 6900 Marche-En-Famenne, Belgium; (H.G.); (J.C.); (D.S.)
- Centre of Oxygen Research and Development (CORD), University of Liege, 4000 Liege, Belgium; (A.N.); (A.M.-M.); (G.D.-D.); (T.F.)
| | - D. Serteyn
- Revatis SA, Rue de la Science 8, 6900 Marche-En-Famenne, Belgium; (H.G.); (J.C.); (D.S.)
- Centre of Oxygen Research and Development (CORD), University of Liege, 4000 Liege, Belgium; (A.N.); (A.M.-M.); (G.D.-D.); (T.F.)
| |
Collapse
|
2
|
Koch TG, Kuzma-Hunt AG, Russell KA. Overview of Equine Stem Cells: Sources, Practices, and Potential Safety Concerns. Vet Clin North Am Equine Pract 2023; 39:461-474. [PMID: 37574382 DOI: 10.1016/j.cveq.2023.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023] Open
Abstract
Over the past 2 decades, equine veterinarians are turning increasingly to stem cell therapies to repair damaged tissues or to promote healing through modulation of the immune system. Research is ongoing into optimizing practices associated with stem cell product transport, dosage, and administration. Culture-expanded equine mesenchymal stem cell therapies seem safe, even when used allogeneically, but various safety concerns should be considered. Stem cells and cellular reprogramming tools hold great promise for future equine therapies.
Collapse
Affiliation(s)
- Thomas G Koch
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1, Canada.
| | - Alexander G Kuzma-Hunt
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1, Canada
| | - Keith A Russell
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1, Canada
| |
Collapse
|
3
|
Petrova V, Vachkova E. Outlook of Adipose-Derived Stem Cells: Challenges to Their Clinical Application in Horses. Vet Sci 2023; 10:vetsci10050348. [PMID: 37235430 DOI: 10.3390/vetsci10050348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/05/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Adipose tissue is recognized as the major endocrine organ, potentially acting as a source of mesenchymal stem cells for various applications in regenerative medicine. Athletic horses are often exposed to traumatic injuries, resulting in severe financial losses. The development of adipose-derived stem cells' regenerative potential depends on many factors. The extraction of stem cells from subcutaneous adipose tissue is non-invasive, non-traumatic, cheaper, and safer than other sources. Since there is a lack of unique standards for identification, the isolated cells and applied differentiation protocols are often not species-specific; therefore, the cells cannot reveal their multipotent properties, so their stemness features remain questionable. The current review discusses some aspects of the specificity of equine adipose stem cells concerning their features, immunophenotyping, secretome profile, differentiation abilities, culturing conditions, and consequent possibilities for clinical application in concrete disorders. The presented new approaches elucidate the possibility of the transition from cell-based to cell-free therapy with regenerative purposes in horses as an alternative treatment to cellular therapy. In conclusion, their clinical benefits should not be underestimated due to the higher yield and the physiological properties of adipose-derived stem cells that facilitate the healing and tissue regeneration process and the ability to amplify the effects of traditional treatments. More profound studies are necessary to apply these innovative approaches when treating traumatic disorders in racing horses.
Collapse
Affiliation(s)
- Valeria Petrova
- Department of Pharmacology, Animal Physiology and Physiological Chemistry, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria
| | - Ekaterina Vachkova
- Department of Pharmacology, Animal Physiology and Physiological Chemistry, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria
| |
Collapse
|
4
|
Freitas NPP, Silva BDP, Bezerra MRL, Pescini LYG, Olinda RG, Salgueiro CCDM, Nunes JF, Martins JAM, Neto SG, Martins LT. Freeze-dried Platelet-rich Plasma and Stem Cell-conditioned Medium for Therapeutic Use in Horses. J Equine Vet Sci 2023; 121:104189. [PMID: 36464033 DOI: 10.1016/j.jevs.2022.104189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/19/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022]
Abstract
This study investigated platelet-rich plasma (PRP) and adipose stem cell-conditioned medium (ASC-CM) use as a strategy to accelerate tissue healing. Platelet-derived growth factor (PDGF) and vascular endothelial growth factor (VEGF) were quantified in fresh and freeze-dried PRP and ASC-CM, and a stability test was performed in the freeze-dried samples (90 and 180 days of storage). A cell proliferation test was performed using equine mesenchymal stem cell culture in reconstituted PRP gel mesh after freeze-drying. In vivo PRP, ASC-CM applications, or their association were performed in induced wounds at 15 and 9-day intervals, according to the treatments: saline solution (control), PRP, ASC-CM, or ASC-CM + PRP. Horses were monitored through photographs and wound area measurements on days 5, 7, 15, and 24 after lesion induction. Skin biopsies were obtained on days 15 and 24 of the experiment. PDGF and VEGF quantification did not differ between fresh or freeze-dried treatments, was similar after freeze-drying or 90 days of storage, but showed a significant reduction after 180 days of storage. Comparing all treatments, no differences were observed in the histopathological analyses. For inflammation, fibroplasia, and collagen formation, only the time effect between the first and second biopsies was significant. The cell proliferation test revealed intense multiplication in the PRP gel mesh. Healing time was similar among all treatments. In conclusion, our results showed the possibility to produce and maintain freeze-dried PRP and ASC-CM for 90 days. Further studies are needed to better explore the in vivo therapeutic PRP and ASC-CM effects.
Collapse
Affiliation(s)
- Natália P P Freitas
- Department of Veterinary Medicine, Graduate Program, Rede Nordeste de Biotecnologia (Renorbio), State University of Ceará (UECE), Fortaleza, Ceará, Brazil.
| | - Beatriz D'Almeida P Silva
- Department of Veterinary Medicine, Experimental Biology Unit (Nubex), University of Fortaleza (Unifor), Fortaleza, Ceará, Brazil
| | - Marcus R L Bezerra
- Department of Biotechnology, Graduate Program, Federal University of Ceará (UFC), Fortaleza, Ceará, Brazil
| | - Laura Y G Pescini
- Department of Veterinary Medicine, Experimental Biology Unit (Nubex), University of Fortaleza (Unifor), Fortaleza, Ceará, Brazil
| | - Roberio G Olinda
- Department of Pathology, Vetlab Veterinary Laboratory, Fortaleza, Ceará, Brazil
| | | | - José F Nunes
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, State University of Ceará (UECE), Fortaleza, Ceará, Brazil
| | - Jorge A M Martins
- Department of Veterinary Medicine, Federal University of Cariri (UFCA), Crato, Ceará, Brazil
| | - Saul G Neto
- Department of Veterinary Medicine, Experimental Biology Unit (Nubex), University of Fortaleza (Unifor), Fortaleza, Ceará, Brazil
| | - Leonardo T Martins
- Department of Veterinary Medicine, Experimental Biology Unit (Nubex), University of Fortaleza (Unifor), Fortaleza, Ceará, Brazil
| |
Collapse
|
5
|
Duddy HR, Schoonover MJ, Hague BA. Outcome following local injection of a liquid amnion allograft for treatment of equine tendonitis or desmitis – 100 cases. BMC Vet Res 2022; 18:391. [PMID: 36345002 PMCID: PMC9639279 DOI: 10.1186/s12917-022-03480-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 10/19/2022] [Indexed: 11/09/2022] Open
Abstract
Background Tendon and ligament injuries are significant causes of loss of use and early retirement in performance horses. Amniotic fluid and tissue are excellent sources of growth factors and cytokines important in tendon and ligament healing. Thus, an equine-origin liquid amnion allograft (ELAA) may be beneficial in the treatment of equine tendonitis and desmitis. Objectives of this study were to report the outcome achieved (i.e. ability to return to work) for horses diagnosed with tendonitis or desmitis lesions treated with local injection of ELAA and to compare these outcomes to those reported for other regenerative medicine modalities. Methods A prospective, multi-center, non-blinded clinical trial was conducted. Equine veterinarians at 14 sites were selected to participate in the data collection for the trial. Criterion for inclusion was a horse presenting with lameness which was attributed to tendonitis or desmitis by diagnostic anesthesia and/or imaging. These horses were subsequently treated by local injection of the lesion with ELAA by the attending veterinarian. Standardized questionnaires describing each horse’s signalment, discipline, ability to return to work, and any adverse events were completed and submitted by the attending veterinarian following a minimum of six months of follow-up. The current literature was reviewed to identify clinical studies reporting outcomes of equine tendonitis/desmitis lesions treated with other regenerative therapies. Contingency table analyses were performed comparing outcomes. Results Questionnaires for 100 horses with 128 tendonitis and desmitis lesions met the inclusion criteria. Of these, 72 horses with 94 lesions returned to or exceeded their original level of work, 10 horses with 13 lesions returned to work but could not perform to previous standards, and 18 horses with 20 lesions did not return to work as a result of the injury. No differences were observed when outcome of horses treated with ELAA were compared to those of similar studies using other regenerative therapies. Conclusions Treatment of tendonitis and desmitis lesions by local injection of ELAA resulted in similar outcomes for horses returning to previous level of performance as other regenerative modalities such as mesenchymal stem cells, platelet-rich plasma, and autologous conditioned serum; however, blinded placebo-controlled studies are indicated. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-022-03480-5.
Collapse
|
6
|
Sharun K, Jambagi K, Kumar R, Gugjoo MB, Pawde AM, Tuli HS, Dhama K, Amarpal. Clinical applications of adipose-derived stromal vascular fraction in veterinary practice. Vet Q 2022; 42:151-166. [PMID: 35841195 PMCID: PMC9364732 DOI: 10.1080/01652176.2022.2102688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Adipose tissue-derived stromal vascular fraction (AdSVF) comprises a heterogeneous cell population, including the multipotent mesenchymal stem cells, hematopoietic stem cells, immune cells, endothelial cells, fibroblasts, and pericytes. As such, multipotent adipose tissue-derived mesenchymal stem cells (AdMSCs), are one of the important components of AdSVF. Commonly used techniques to harvest AdSVF involve enzymatic or non-enzymatic methods. The enzymatic method is considered to be the gold standard technique due to its higher yield. The cellular components of AdSVF can be resuspended in normal saline, platelet-rich plasma, or phosphate-buffered saline to produce a ready-to-use solution. Freshly isolated AdSVF has exhibited promising osteogenic and vasculogenic capacity. AdSVF has already been proven to possess therapeutic potential for osteoarthritis management. It is also an attractive therapeutic option for enhancing wound healing. In addition, the combined use of AdSVF and platelet-rich plasma has an additive stimulatory effect in accelerating wound healing and can be considered an alternative to AdMSC treatment. It is also widely used for managing various orthopaedic conditions in clinical settings and has the potential for regenerating bone, cartilage, and tendons. Autologous AdSVF cells are used along with bone substitutes and other biological factors as an alternative to conventional bone grafting techniques owing to their promising osteogenic and vasculogenic capacity. It can also be used for treating osteonecrosis, meniscus tear, chondromalacia, and tendon injuries in veterinary practice. It has several advantages over in vitro expanded AdMSC, including precluding the need for culturing, reduced risk of cell contamination, and cost-effectiveness, making it ideal for clinical use.
Collapse
Affiliation(s)
- Khan Sharun
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh-243122, India
| | - Kaveri Jambagi
- Division of Medicine, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh-243122, India
| | - Rohit Kumar
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh-243122, India
| | - Mudasir Bashir Gugjoo
- Division of Veterinary Clinical Complex, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST-Kashmir, Shuhama, Srinagar, Jammu and Kashmir-190006, India
| | - Abhijit M Pawde
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh-243122, India
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, Haryana, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh-243122, India
| | - Amarpal
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh-243122, India
| |
Collapse
|
7
|
Melotti L, Carolo A, Elshazly N, Boesso F, Da Dalt L, Gabai G, Perazzi A, Iacopetti I, Patruno M. Case Report: Repeated Intralesional Injections of Autologous Mesenchymal Stem Cells Combined With Platelet-Rich Plasma for Superficial Digital Flexor Tendon Healing in a Show Jumping Horse. Front Vet Sci 2022; 9:843131. [PMID: 35252428 PMCID: PMC8894652 DOI: 10.3389/fvets.2022.843131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 01/18/2022] [Indexed: 12/02/2022] Open
Abstract
In the present case report a show jumping 10-year-old Sella Italiano gelding, presented with severe lameness, swelling and pain at palpation of the mid-metacarpal region of the left forelimb. Clinical and ultrasound examination diagnosed a chronic tendonitis of the central region of the superficial digital flexor tendon (SDFT). The lesion was a reoccurrence since it developed from a previously healed injury. The horse had to stop competing and was unresponsive to gold-standard treatments as Non-steroidal anti-inflammatory drugs (NSAIDs) and conservative management after 6 months of therapy. The animal was subjected to repeated intralesional injections of autologous adipose-derived mesenchymal stem cells (AD-MSCs) combined with autologous platelet-rich plasma (PRP). The combined treatment was administered twice in a 1-month interval. The healing process was assessed through clinical examination, ultrasound imaging and quantification of oxidative stress products and inflammatory mediators in blood plasma. After 2 weeks from first injection, a reduction of concentration of oxidative-derived products was observed, together with an increase of anti-inflammatory cytokines and pro-mitotic growth factors. These results were reflected clinically as the horse showed a reduction of lameness along with swelling and pain after 4 weeks. At the 1-year follow-up, the horse showed no signs of lameness and swelling. The ultrasonographic examination highlighted a compact fiber alignment with a normal echogenic tendon as observed in the sound contralateral limb. Moreover, the horse went back to the previous level of competition. Our results suggest the positive effects of a repeated intralesional injection of AD-MSCs and PRP for the treatment of a chronic tendonitis with long-term effects and an improvement for both equine quality of life and athletic performance.
Collapse
Affiliation(s)
- Luca Melotti
- Department of Comparative Biomedicine and Food Science, University of Padua–Agripolis Campus, Legnaro, Italy
| | - Anna Carolo
- Department of Comparative Biomedicine and Food Science, University of Padua–Agripolis Campus, Legnaro, Italy
| | - Noha Elshazly
- Department of Comparative Biomedicine and Food Science, University of Padua–Agripolis Campus, Legnaro, Italy
- Tissue Engineering Laboratories, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | | | - Laura Da Dalt
- Department of Comparative Biomedicine and Food Science, University of Padua–Agripolis Campus, Legnaro, Italy
| | - Gianfranco Gabai
- Department of Comparative Biomedicine and Food Science, University of Padua–Agripolis Campus, Legnaro, Italy
| | - Anna Perazzi
- Department of Animal Medicine, Production and Health, University of Padua–Agripolis Campus, Legnaro, Italy
| | - Ilaria Iacopetti
- Department of Animal Medicine, Production and Health, University of Padua–Agripolis Campus, Legnaro, Italy
| | - Marco Patruno
- Department of Comparative Biomedicine and Food Science, University of Padua–Agripolis Campus, Legnaro, Italy
- *Correspondence: Marco Patruno
| |
Collapse
|
8
|
Taguchi T, Zhang N, Angibeau D, Spivey KP, Lopez MJ. Evaluation of canine adipose-derived multipotent stromal cell differentiation to ligamentoblasts on tensioned collagen type I templates in a custom bioreactor culture system. Am J Vet Res 2021; 82:924-934. [PMID: 34669492 DOI: 10.2460/ajvr.82.11.924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To evaluate differentiation of canine adipose-derived multipotent stromal cells (ASCs) into ligamentoblasts on tensioned collagen type I (Col1) templates in a perfusion culture system. SAMPLES Infrapatellar fat pad ASCs from healthy stifle joints of 6 female mixed-breed dogs. PROCEDURES Third-passage ASCs (6 × 106 cells/template) were loaded onto suture-augmented Col1 templates under 15% static strain in perfusion bioreactors. Forty-eight ASC-Col1 constructs were incubated with ligamentogenic (ligamentogenic constructs; n = 24) or stromal medium (stromal constructs; 24) for up to 21 days. Specimens were collected from each construct after 2 hours (day 0) and 7, 14, and 21 days of culture. Cell number, viability, distribution, and morphology; construct collagen content; culture medium procollagen-I-N-terminal peptide concentration; and gene expression were compared between ligamentogenic and stromal constructs. RESULTS ASCs adhered to collagen fibers. Cell numbers increased from days 0 to 7 and days 14 to 21 for both construct types. Relative to stromal constructs, cell morphology and extracellular matrix were more mature and collagen content on day 21 and procollagen-I-N-terminal peptide concentration on days 7 and 21 were greater for ligamentogenic constructs. Ligamentogenic constructs had increased expression of the genes biglycan on day 7, decorin throughout the culture period, and Col1, tenomodulin, fibronectin, and tenascin-c on day 21; expression of Col1, tenomodulin, and tenascin-c increased between days 7 and 21. CONCLUSIONS AND CLINICAL RELEVANCE Ligamentogenic medium was superior to stromal medium for differentiation of ASCs to ligamentoblasts on suture-augmented Col1 scaffolds. Customized ligament neotissue may augment treatment options for dogs with cranial cruciate ligament rupture.
Collapse
Affiliation(s)
- Takashi Taguchi
- From the Laboratory for Equine and Comparative Orthopedic Research, Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803
| | - Nan Zhang
- From the Laboratory for Equine and Comparative Orthopedic Research, Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803
| | - Dominique Angibeau
- From the Laboratory for Equine and Comparative Orthopedic Research, Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803
| | - Kathryn P Spivey
- From the Laboratory for Equine and Comparative Orthopedic Research, Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803
| | - Mandi J Lopez
- From the Laboratory for Equine and Comparative Orthopedic Research, Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803
| |
Collapse
|
9
|
Al Naem M, Bourebaba L, Kucharczyk K, Röcken M, Marycz K. Therapeutic mesenchymal stromal stem cells: Isolation, characterization and role in equine regenerative medicine and metabolic disorders. Stem Cell Rev Rep 2021; 16:301-322. [PMID: 31797146 DOI: 10.1007/s12015-019-09932-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mesenchymal stromal cells (MSC) have become a popular treatment modality in equine orthopaedics. Regenerative therapies are especially interesting for pathologies like complicated tendinopathies of the distal limb, osteoarthritis, osteochondritis dissecans (OCD) and more recently metabolic disorders. Main sources for MSC harvesting in the horse are bone marrow, adipose tissue and umbilical cord blood. While the acquisition of umbilical cord blood is fairly easy and non-invasive, extraction of bone marrow and adipose tissue requires more invasive techniques. Characterization of the stem cells as a result of any isolation method, is also a crucial step for the confirmation of the cells' stemness properties; thus, three main characteristics must be fulfilled by these cells, namely: adherence, expression of a series of well-defined differentiation clusters as well as pluripotency. EVs, resulting from the paracrine action of MSCs, also play a key role in the therapeutic mechanisms mediated by stem cells; MSC-EVs are thus largely implicated in the regulation of proliferation, maturation, polarization and migration of various target cells. Evidence that EVs alone represent a complex network 0involving different soluble factors and could then reflect biophysical characteristics of parent cells has fuelled the importance of developing highly specific techniques for their isolation and analysis. All these aspects related to the functional and technical understanding of MSCs will be discussed and summarized in this review.
Collapse
Affiliation(s)
- Mohamad Al Naem
- Faculty of Veterinary Medicine, Equine Clinic - Equine Surgery, Justus-Liebig-University, 35392, Gießen, Germany
| | - Lynda Bourebaba
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375, Wrocław, Poland.,International Institute of Translational Medicine, Jesionowa, 11, Malin, 55-114, Wisznia Mała, Poland
| | - Katarzyna Kucharczyk
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375, Wrocław, Poland
| | - Michael Röcken
- Faculty of Veterinary Medicine, Equine Clinic - Equine Surgery, Justus-Liebig-University, 35392, Gießen, Germany
| | - Krzysztof Marycz
- Faculty of Veterinary Medicine, Equine Clinic - Equine Surgery, Justus-Liebig-University, 35392, Gießen, Germany. .,Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375, Wrocław, Poland. .,International Institute of Translational Medicine, Jesionowa, 11, Malin, 55-114, Wisznia Mała, Poland.
| |
Collapse
|
10
|
Gugjoo MB, Hussain S, Amarpal, Shah RA, Dhama K. Mesenchymal Stem Cell-Mediated Immuno-Modulatory and Anti- Inflammatory Mechanisms in Immune and Allergic Disorders. ACTA ACUST UNITED AC 2020; 14:3-14. [PMID: 32000656 PMCID: PMC7509741 DOI: 10.2174/1872213x14666200130100236] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 01/25/2020] [Accepted: 01/25/2020] [Indexed: 02/06/2023]
Abstract
Background: Mesenchymal Stem Cells (MSCs) are present in almost all the tissues of the body and act as the backbone of the internal tissue homeostasis. Among their various characteristic features, immuno-modulatory and/ anti-inflammatory properties play an important role in therapeutics. Objective: The current topic focuses on the characterization and immuno-modulatory and/ anti-inflammatory properties of MSCs. To present and discuss the current status of MSCs immuno-modulatory properties. Methods: Available literature on MSCs properties and patents have been detailed, critically interpreted, and discussed based upon available literature. The main focus has been on their characteristic immuno-modulatory and anti-inflammatory properties though some of the basic characterization markers have also been detailed. The databases searched for the literature include PubMed, Med Line, PubMed Central, Science Direct and a few other scientific databases. Results: MSCs are present in a very limited concentration in the tissues, and as such their culture expansion becomes imperative. MSCs immuno-modulatory and anti-inflammatory roles are achieved through direct cell-cell contact and / by the release of certain factors. Such properties are controlled by micro-environment upon which currently very limited control can be exerted. Besides, further insights in the xeno-protein free culture media as against the fetal bovine serum is required. Conclusion: MSCs have been well-isolated, cultured and characterized from numerous tissues of the body. The majority of the studies have shown MSCs as immuno-compromised with immunomodulatory and / or anti-inflammatory properties except some of the latest studies that have failed to achieve the desired results and thus, demand further research. Further research is required in the area to translate the results into clinical application.
Collapse
Affiliation(s)
- Mudasir B Gugjoo
- Division of Veterinary Clinical Complex, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST, Shuhama, Srinagar-190006, Jammu and Kashmir, India
| | - Shahid Hussain
- Division of Veterinary Clinical Complex, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST, Shuhama, Srinagar-190006, Jammu and Kashmir, India
| | - Amarpal
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243 122, Uttar Pradesh, India
| | - Riaz A Shah
- Divison of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST, Shuhama, Srinagar-190006, Jammu and Kashmir, India
| | - Kuldeep Dhama
- Division of Pathology, ICARIndian Veterinary Research Institute, Izatnagar, Bareilly, 243 122, Uttar Pradesh, India
| |
Collapse
|
11
|
Homing and Engraftment of Intravenously Administered Equine Cord Blood-Derived Multipotent Mesenchymal Stromal Cells to Surgically Created Cutaneous Wound in Horses: A Pilot Project. Cells 2020; 9:cells9051162. [PMID: 32397125 PMCID: PMC7290349 DOI: 10.3390/cells9051162] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/28/2020] [Accepted: 05/06/2020] [Indexed: 12/15/2022] Open
Abstract
Limb wounds on horses are often slow to heal and are prone to developing exuberant granulation tissue (EGT) and close primarily through epithelialization, which results in a cosmetically inferior and non-durable repair. In contrast, wounds on the body heal rapidly and primarily through contraction and rarely develop EGT. Intravenous (IV) multipotent mesenchymal stromal cells (MSCs) are promising. They home and engraft to cutaneous wounds and promote healing in laboratory animals, but this has not been demonstrated in horses. Furthermore, the clinical safety of administering >1.00 × 108 allogeneic MSCs IV to a horse has not been determined. A proof-of-principle pilot project was performed with two horses that were administered 1.02 × 108 fluorescently labeled allogeneic cord blood-derived MSCs (CB-MSCs) following wound creation on the forelimb and thorax. Wounds and contralateral non-wounded skin were sequentially biopsied on days 0, 1, 2, 7, 14, and 33 and evaluated with confocal microscopy to determine presence of homing and engraftment. Results confirmed preferential homing and engraftment to wounds with persistence of CB-MSCs at 33 days following wound creation, without clinically adverse reactions to the infusion. The absence of overt adverse reactions allows further studies to determine effects of IV CB-MSCs on equine wound healing.
Collapse
|
12
|
Chapman HS, Gale AL, Dodson ME, Linardi RL, Ortved KF. Autologous Platelet Lysate Does Not Enhance Chondrogenic Differentiation of Equine Bone Marrow-Derived Mesenchymal Stromal Cells Despite Increased TGF-β1 Concentration. Stem Cells Dev 2020; 29:144-155. [PMID: 31802705 DOI: 10.1089/scd.2019.0239] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Bone marrow-derived mesenchymal stromal cells (BM-MSCs) are being investigated for their potential in the treatment of musculoskeletal injuries, including tendon and ligament lesions, and cartilage lesions. Culture expansion of cells has traditionally been performed in medium supplemented with fetal bovine serum (FBS), however, concerns regarding the antigenicity and potential viral or prion contamination of FBS have prompted interest in alternative medium supplements. Platelet lysate (PL) contains elevated concentrations of growth factors, including transforming growth factor-β (TGF-β), platelet-derived growth factors, and fibroblast growth factor, released from the α-granules of platelets; therefore, PL could be an ideal medium supplement. The effect of PL on mesenchymal stromal cell (MSC) growth and differentiation has not been fully elucidated. We hypothesized that PL medium would contain significantly higher amounts of TGF-β1 than FBS medium and would be associated with enhanced osteogenic and chondrogenic differentiation. MSCs were isolated from bone marrow collected from five adult horses. Cells were cultured in traditional medium supplemented with FBS or in medium supplemented with fibrinogen depleted-PL (FD-PL). Immunophenotyping was performed using flow cytometry. Trilineage differentiation was assessed through histology and gene expression analysis using quantitative reverse transcription-polymerase chain reaction. TGF-β1 was quantified in both medium types. The immunophenotypes of BM-MSCs cultured in FBS and FD-PL medium were similar with both culture types containing cells positive for stromal cell markers [cluster of differentiation 29 (CD29), CD44, CD90, CD105, and major histocompatibility complex I (MHCI)] and negative for exclusion markers (CD45, CD79α, and MHCII). Despite significantly higher TGF-β1 concentration in FD-PL medium, chondrogenic and osteogenic differentiation were not significantly different between FBS and FD-PL supplemented cultures. PL is an appropriate alternative medium supplement for the culture of equine BM-MSCs up to passage 3. However, despite increased TGF-β1 concentration in FD-PL medium, significant changes in chondrogenic differentiation compared with FBS medium should not be expected.
Collapse
Affiliation(s)
| | - Alexis L Gale
- Department of Clinical Studies, New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, Pennsylvania
| | - Michael E Dodson
- Department of Clinical Studies, New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, Pennsylvania
| | - Renata L Linardi
- Department of Clinical Studies, New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, Pennsylvania
| | - Kyla F Ortved
- Department of Clinical Studies, New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, Pennsylvania
| |
Collapse
|
13
|
Pessôa LVDF, Bressan FF, Freude KK. Induced pluripotent stem cells throughout the animal kingdom: Availability and applications. World J Stem Cells 2019; 11:491-505. [PMID: 31523369 PMCID: PMC6716087 DOI: 10.4252/wjsc.v11.i8.491] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 06/18/2019] [Accepted: 06/20/2019] [Indexed: 02/06/2023] Open
Abstract
Up until the mid 2000s, the capacity to generate every cell of an organism was exclusive to embryonic stem cells. In 2006, researchers Takahashi and Yamanaka developed an alternative method of generating embryonic-like stem cells from adult cells, which they coined induced pluripotent stem cells (iPSCs). Such iPSCs possess most of the advantages of embryonic stem cells without the ethical stigma associated with derivation of the latter. The possibility of generating “custom-made” pluripotent cells, ideal for patient-specific disease models, alongside their possible applications in regenerative medicine and reproduction, has drawn a lot of attention to the field with numbers of iPSC studies published growing exponentially. IPSCs have now been generated for a wide variety of species, including but not limited to, mouse, human, primate, wild felines, bovines, equines, birds and rodents, some of which still lack well-established embryonic stem cell lines. The paucity of robust characterization of some of these iPSC lines as well as the residual expression of transgenes involved in the reprogramming process still hampers the use of such cells in species preservation or medical research, underscoring the requirement for further investigations. Here, we provide an extensive overview of iPSC generated from a broad range of animal species including their potential applications and limitations.
Collapse
Affiliation(s)
- Laís Vicari de Figueiredo Pessôa
- Group of Stem Cell Models for Studies of Neurodegenerative Diseases, Section for Pathobiological Sciences, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg 1870, Denmark
| | - Fabiana Fernandes Bressan
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga 13635-000, São Paulo, Brazil
| | - Kristine Karla Freude
- Group of Stem Cell Models for Studies of Neurodegenerative Diseases, Section for Pathobiological Sciences, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg 1870, Denmark
| |
Collapse
|
14
|
Gugjoo MB, Amarpal, Makhdoomi DM, Sharma GT. Equine Mesenchymal Stem Cells: Properties, Sources, Characterization, and Potential Therapeutic Applications. J Equine Vet Sci 2018; 72:16-27. [PMID: 30929778 DOI: 10.1016/j.jevs.2018.10.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 09/06/2018] [Accepted: 10/05/2018] [Indexed: 02/07/2023]
Abstract
Properties like sustained multiplication and self-renewal, and homing and multilineage differentiation to undertake repair of the damaged tissues make stem cells the lifeline for any living system. Therefore, stem cell therapy is regarded to carry immense therapeutic potential. Though the dearth of understanding about the basic biological properties and pathways involved in therapeutic benefits currently limit the application of stem cells in humans as well as animals, there are innumerable reports that suggest clinical benefits of stem cell therapy in equine. Among various stem cell sources, currently adult mesenchymal stem cells (MSCs) are preferred for therapeutic application in horse owing to their easy availability, capacity to modulate inflammation, and promote healing. Also the cells carry very limited teratogenic risk compared to the pluripotent stem cells. Mesenchymal stem cells were earlier considered mainly for musculoskeletal tissues, but now may also be utilized in other diverse clinical problems in horse, and the results may be extrapolated even for human medicine. The current review highlights biological properties, sources, mechanisms, and potential therapeutic applications of stem cells in equine practice.
Collapse
Affiliation(s)
- Mudasir Bashir Gugjoo
- Division of Surgery, Indian Veterinary Research Institute-Izatnagar, Bareilly, UP, India.
| | - Amarpal
- Division of Surgery, Indian Veterinary Research Institute-Izatnagar, Bareilly, UP, India
| | - Dil Mohammad Makhdoomi
- Division of Surgery, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, SKUAST-Kashmir, Srinagar, J&K, India
| | - Gutulla Taru Sharma
- Division of Physiology and Climatology, Indian Veterinary Research Institute-Izatnagar, Bareilly, UP, India
| |
Collapse
|
15
|
Winter RL, Seeto WJ, Tian Y, Caldwell FJ, Lipke EA, Wooldridge AA. Growth and function of equine endothelial colony forming cells labeled with semiconductor quantum dots. BMC Vet Res 2018; 14:247. [PMID: 30139355 PMCID: PMC6107939 DOI: 10.1186/s12917-018-1572-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 08/16/2018] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Endothelial progenitor cells (EPCs) contribute to neovascularization and vascular repair in vivo and are attractive for clinical use in ischemic disease. Tracking of stem and progenitor cells is essential to determine engraftment after administration. Semiconductor quantum dots (QD) are promising for cell labeling due to their ease of uptake by many cell lines and their continued presence after many cell generations. The purpose of this study was to evaluate function and growth of equine EPCs after QD labeling. Additionally, this study evaluated the duration of QD label retention and mechanisms of QD label loss. RESULTS Endothelial colony forming cells (ECFCs) from adult horses (N = 3) were employed for this study, with QD labeled and unlabeled ECFCs tested from each horse. Cell proliferation of ECFCs labeled with QD at 20 nM was quantified by comparing the number of cell doublings per day (NCD) and the population doubling time (PDT) in labeled and unlabeled cells. Function of labeled and unlabeled ECFCs was assessed by comparing uptake of acetylated low-density lipoprotein (DiO-Ac-LDL) and tubule formation on growth factor containing matrix. Cell proliferation was not impacted by QD labeling; both NCD (p = 0. 95) and PDT (P = 0. 91) did not differ between unlabeled and QD labeled cells. Function of ECFCs assessed by DiO-Ac-LDL and tubule formation was also not different between unlabeled and QD labeled cells (P = 0. 33 and P = 0. 52, respectively). ECFCs retained their QD labeling over 7 passages with both 5 nM and 20 nM label concentrations. Reduction in label intensity was observed over time, and the mechanism was determined to be cell division. CONCLUSIONS Equine ECFCs are effectively labeled with QD, and QD concentrations up to 20 nM do not affect cell growth or function. QD label loss is a result of cell division. The use of QD labeling with equine EPCs may be an ideal way to track engraftment of EPCs for in vivo applications.
Collapse
Affiliation(s)
- Randolph L Winter
- Department of Clinical Sciences, Auburn University, College of Veterinary Medicine, Auburn, AL, USA
| | - Wen J Seeto
- Department of Chemical Engineering, Auburn University, Auburn, AL, USA
| | - Yuan Tian
- Department of Chemical Engineering, Auburn University, Auburn, AL, USA
| | - Fred J Caldwell
- Department of Clinical Sciences, Auburn University, College of Veterinary Medicine, Auburn, AL, USA
| | - Elizabeth A Lipke
- Department of Chemical Engineering, Auburn University, Auburn, AL, USA
| | - Anne A Wooldridge
- Department of Clinical Sciences, Auburn University, College of Veterinary Medicine, Auburn, AL, USA.
| |
Collapse
|
16
|
Ursini TL, Amelse LL, Elkhenany HA, Odoi A, Carter-Arnold JL, Adair HS, Dhar MS. Retrospective analysis of local injection site adverse reactions associated with 230 allogenic administrations of bone marrow-derived mesenchymal stem cells in 164 horses. Equine Vet J 2018; 51:198-205. [PMID: 29992618 DOI: 10.1111/evj.12992] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 07/09/2018] [Indexed: 12/25/2022]
Abstract
BACKGROUND Bone marrow-derived mesenchymal stem cells (BM-MSCs) are frequently used in the treatment of musculoskeletal injuries. Fully characterised cells that are readily available for use is optimum. Allogenic BM-MSCs can satisfy the need for rapid treatment, however, their safety has been questioned. OBJECTIVES Objectives were to characterise BM-MSCs from an adult donor horse, in vitro, and to identify and describe adverse reactions that occurred following their injection into other horses. We hypothesised that BM-MSCs capable of proliferation, differentiation and lacking MHC II from one donor could be implanted into another individual without significant adverse reactions and the frequency of adverse reactions in clinical cases would be similar to that previously reported for autologous BM-MSCs. STUDY DESIGN Retrospective clinical study. METHODS BM-MSCs were proliferated and characterised from one donor and cryopreserved for clinical use. Medical records for horses injected with allogenic BM-MSCs from this donor at a single hospital were used. After routine lameness exam, lesions were identified using diagnostic ultrasound or MRI. Post injection reaction was defined as increased pain, swelling, or heat at or near injection site, or increased lameness. Treatments required for each reaction were noted. RESULTS BM-MSCs proliferated and underwent differentiation. Cells were found to be negative for MHC-II (<2%) and were viable after cryopreservation and shipping. Ten of 230 (4.35%) injections were noted to be associated with an adverse reaction. Adverse reactions occurred in synovial structures (n = 3) and in soft tissues (n = 7). MAIN LIMITATIONS This investigation could underestimate the number and severity of reactions. Mild reactions, such as synovitis, may have been missed. Also, anti-inflammatory drugs could overshadow mild reactions, making them less likely to be detected. CONCLUSIONS Fully characterised allogenic BM-MSCs originating from a single donor horse can be administered to horses with soft tissue injuries with a low rate of adverse reaction. The Summary is available in Portuguese - see Supporting Information.
Collapse
Affiliation(s)
- T L Ursini
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, USA
| | - L L Amelse
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, USA
| | - H A Elkhenany
- Department of Surgery, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - A Odoi
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, USA
| | | | - H S Adair
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, USA
| | - M S Dhar
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
17
|
Duan W, Chen C, Haque M, Hayes D, Lopez MJ. Polymer-mineral scaffold augments in vivo equine multipotent stromal cell osteogenesis. Stem Cell Res Ther 2018. [PMID: 29523214 PMCID: PMC5845133 DOI: 10.1186/s13287-018-0790-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Background Use of bioscaffolds to direct osteogenic differentiation of adult multipotent stromal cells (MSCs) without exogenous proteins is a contemporary approach to bone regeneration. Identification of in vivo osteogenic contributions of exogenous MSCs on bioscaffolds after long-term implantation is vital to understanding cell persistence and effect duration. Methods This study was designed to quantify in vivo equine MSC osteogenesis on synthetic polymer scaffolds with distinct mineral combinations 9 weeks after implantation in a murine model. Cryopreserved, passage (P)1, equine bone marrow-derived MSCs (BMSC) and adipose tissue-derived MSCs (ASC) were culture expanded to P3 and immunophenotyped with flow cytometry. They were then loaded by spinner flask on to scaffolds composed of tricalcium phosphate (TCP)/hydroxyapatite (HA) (40:60; HT), polyethylene glycol (PEG)/poly-l-lactic acid (PLLA) (60:40; GA), or PEG/PLLA/TCP/HA (36:24:24:16; GT). Scaffolds with and without cells were maintained in static culture for up to 21 days or implanted subcutaneously in athymic mice that were radiographed every 3 weeks up to 9 weeks. In vitro cell viability and proliferation were determined. Explant composition (double-stranded (ds)DNA, collagen, sulfated glycosaminoglycan (sGAG), protein), equine and murine osteogenic target gene expression, microcomputed tomography (μCT) mineralization, and light microscopic structure were assessed. Results The ASC and BMSC number increased significantly in HT constructs between 7 and 21 days of culture, and BMSCs increased similarly in GT constructs. Radiographic opacity increased with time in GT-BMSC constructs. Extracellular matrix (ECM) components and dsDNA increased significantly in GT compared to HT constructs. Equine and murine osteogenic gene expression was highest in BMSC constructs with mineral-containing scaffolds. The HT constructs with either cell type had the highest mineral deposition based on μCT. Regardless of composition, scaffolds with cells had more ECM than those without, and osteoid was apparent in all BMSC constructs. Conclusions In this study, both exogenous and host MSCs appear to contribute to in vivo osteogenesis. Addition of mineral to polymer scaffolds enhances equine MSC osteogenesis over polymer alone, but pure mineral scaffold provides superior osteogenic support. These results emphasize the need for bioscaffolds that provide customized osteogenic direction of both exo- and endogenous MSCs for the best regenerative potential.
Collapse
Affiliation(s)
- Wei Duan
- Laboratory for Equine and Comparative Orthopedic Research, Louisiana State University, Baton Rouge, LA, USA
| | - Cong Chen
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA
| | - Masudul Haque
- Laboratory for Equine and Comparative Orthopedic Research, Louisiana State University, Baton Rouge, LA, USA
| | - Daniel Hayes
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA
| | - Mandi J Lopez
- Laboratory for Equine and Comparative Orthopedic Research, Louisiana State University, Baton Rouge, LA, USA.
| |
Collapse
|
18
|
Veron AD, Bienboire-Frosini C, Feron F, Codecasa E, Deveze A, Royer D, Watelet P, Asproni P, Sadelli K, Chabaud C, Stamegna JC, Fagot J, Khrestchatisky M, Cozzi A, Roman FS, Pageat P, Mengoli M, Girard SD. Isolation and characterization of olfactory ecto-mesenchymal stem cells from eight mammalian genera. BMC Vet Res 2018; 14:17. [PMID: 29343270 PMCID: PMC5772688 DOI: 10.1186/s12917-018-1342-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 01/11/2018] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Stem cell-based therapies are an attractive option to promote regeneration and repair defective tissues and organs. Thanks to their multipotency, high proliferation rate and the lack of major ethical limitations, "olfactory ecto-mesenchymal stem cells" (OE-MSCs) have been described as a promising candidate to treat a variety of damaged tissues. Easily accessible in the nasal cavity of most mammals, these cells are highly suitable for autologous cell-based therapies and do not face issues associated with other stem cells. However, their clinical use in humans and animals is limited due to a lack of preclinical studies on autologous transplantation and because no well-established methods currently exist to cultivate these cells. Here we evaluated the feasibility of collecting, purifying and amplifying OE-MSCs from different mammalian genera with the goal of promoting their interest in veterinary regenerative medicine. Biopsies of olfactory mucosa from eight mammalian genera (mouse, rat, rabbit, sheep, dog, horse, gray mouse lemur and macaque) were collected, using techniques derived from those previously used in humans and rats. The possibility of amplifying these cells and their stemness features and differentiation capability were then evaluated. RESULTS Biopsies were successfully performed on olfactory mucosa without requiring the sacrifice of the donor animal, except mice. Cell populations were rapidly generated from olfactory mucosa explants. These cells displayed similar key features of their human counterparts: a fibroblastic morphology, a robust expression of nestin, an ability to form spheres and similar expression of surface markers (CD44, CD73). Moreover, most of them also exhibited high proliferation rates and clonogenicity with genus-specific properties. Finally, OE-MSCs also showed the ability to differentiate into mesodermal lineages. CONCLUSIONS This article describes for the first time how millions of OE-MSCs can be quickly and easily obtained from different mammalian genera through protocols that are well-suited for autologous transplantations. Moreover, their multipotency makes them relevant to evaluate therapeutic application in a wide variety of tissue injury models. This study paves the way for the development of new fundamental and clinical studies based on OE-MSCs transplantation and suggests their interest in veterinary medicine.
Collapse
Affiliation(s)
- Antoine D Veron
- IRSEA, Research Institute in Semiochemistry and Applied Ethology, Quartier Salignan, 84400, Apt, France. .,Aix Marseille Univ, CNRS, NICN, Marseille, France.
| | - Cécile Bienboire-Frosini
- IRSEA, Research Institute in Semiochemistry and Applied Ethology, Quartier Salignan, 84400, Apt, France
| | - François Feron
- Aix Marseille Univ, CNRS, NICN, Marseille, France.,Inserm CBT 1409, Centre d'Investigations Cliniques en Biothérapie, Marseille, France
| | - Elisa Codecasa
- IRSEA, Research Institute in Semiochemistry and Applied Ethology, Quartier Salignan, 84400, Apt, France
| | - Arnaud Deveze
- Département ORL, Hôpital Universitaire Nord, AP-HM, Marseille, France.,Aix-Marseille Univ, IFSTTAR, LBA, Marseille, France
| | - Dany Royer
- Centre Hospitalier Vétérinaire Pommery, 51100, Reims, France
| | - Paul Watelet
- Société Hippique Le frigouyé, 30650, Saze, France
| | - Pietro Asproni
- IRSEA, Research Institute in Semiochemistry and Applied Ethology, Quartier Salignan, 84400, Apt, France
| | | | - Camille Chabaud
- IRSEA, Research Institute in Semiochemistry and Applied Ethology, Quartier Salignan, 84400, Apt, France
| | | | - Joël Fagot
- Aix-Marseille Univ, CNRS, LPC, Marseille, France
| | | | - Alessandro Cozzi
- IRSEA, Research Institute in Semiochemistry and Applied Ethology, Quartier Salignan, 84400, Apt, France
| | | | - Patrick Pageat
- IRSEA, Research Institute in Semiochemistry and Applied Ethology, Quartier Salignan, 84400, Apt, France
| | - Manuel Mengoli
- IRSEA, Research Institute in Semiochemistry and Applied Ethology, Quartier Salignan, 84400, Apt, France
| | - Stéphane D Girard
- Aix Marseille Univ, CNRS, NICN, Marseille, France.,Present address: Vect-Horus S.A.S., Faculté de Médecine Secteur Nord, CS80011, Boulevard Pierre Dramard, 13344, Marseille, Cedex 15, France
| |
Collapse
|
19
|
Nazm Bojnordi M. The applications and recovery outcome of spermatogonia stem cells in regenerative medicine. MIDDLE EAST FERTILITY SOCIETY JOURNAL 2017. [DOI: 10.1016/j.mefs.2017.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
20
|
Barrachina L, Remacha AR, Romero A, Vázquez FJ, Albareda J, Prades M, Gosálvez J, Roy R, Zaragoza P, Martín-Burriel I, Rodellar C. Priming Equine Bone Marrow-Derived Mesenchymal Stem Cells with Proinflammatory Cytokines: Implications in Immunomodulation–Immunogenicity Balance, Cell Viability, and Differentiation Potential. Stem Cells Dev 2017; 26:15-24. [DOI: 10.1089/scd.2016.0209] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Laura Barrachina
- Laboratorio de Genetica Bioquimica LAGENBIO (Universidad de Zaragoza), Instituto Agroalimentario de Aragon– IA2 – (Universidad de Zaragoza-CITA), Instituto de Investigacion Sanitaria de Aragon (IIS), Zaragoza, Spain
- Servicio de Cirugía y Medicina Equina, Hospital Veterinario, Universidad de Zaragoza, Zaragoza, Spain
| | - Ana Rosa Remacha
- Laboratorio de Genetica Bioquimica LAGENBIO (Universidad de Zaragoza), Instituto Agroalimentario de Aragon– IA2 – (Universidad de Zaragoza-CITA), Instituto de Investigacion Sanitaria de Aragon (IIS), Zaragoza, Spain
| | - Antonio Romero
- Laboratorio de Genetica Bioquimica LAGENBIO (Universidad de Zaragoza), Instituto Agroalimentario de Aragon– IA2 – (Universidad de Zaragoza-CITA), Instituto de Investigacion Sanitaria de Aragon (IIS), Zaragoza, Spain
- Servicio de Cirugía y Medicina Equina, Hospital Veterinario, Universidad de Zaragoza, Zaragoza, Spain
| | - Francisco José Vázquez
- Laboratorio de Genetica Bioquimica LAGENBIO (Universidad de Zaragoza), Instituto Agroalimentario de Aragon– IA2 – (Universidad de Zaragoza-CITA), Instituto de Investigacion Sanitaria de Aragon (IIS), Zaragoza, Spain
- Servicio de Cirugía y Medicina Equina, Hospital Veterinario, Universidad de Zaragoza, Zaragoza, Spain
| | - Jorge Albareda
- Laboratorio de Genetica Bioquimica LAGENBIO (Universidad de Zaragoza), Instituto Agroalimentario de Aragon– IA2 – (Universidad de Zaragoza-CITA), Instituto de Investigacion Sanitaria de Aragon (IIS), Zaragoza, Spain
- Servicio de Cirugía Ortopédica y Traumatología, Hospital Clínico Universitario Lozano Blesa, Zaragoza, Zaragoza, Spain
| | - Marta Prades
- Laboratorio de Genetica Bioquimica LAGENBIO (Universidad de Zaragoza), Instituto Agroalimentario de Aragon– IA2 – (Universidad de Zaragoza-CITA), Instituto de Investigacion Sanitaria de Aragon (IIS), Zaragoza, Spain
- Departament de Medicina i Cirugia Animal, Universidad Autónoma de Barcelona, Barcelona, Spain
| | - Jaime Gosálvez
- Departamento de Biología, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, Madrid, Spain
| | - Rosa Roy
- Departamento de Biología, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, Madrid, Spain
| | - Pilar Zaragoza
- Laboratorio de Genetica Bioquimica LAGENBIO (Universidad de Zaragoza), Instituto Agroalimentario de Aragon– IA2 – (Universidad de Zaragoza-CITA), Instituto de Investigacion Sanitaria de Aragon (IIS), Zaragoza, Spain
| | - Inmaculada Martín-Burriel
- Laboratorio de Genetica Bioquimica LAGENBIO (Universidad de Zaragoza), Instituto Agroalimentario de Aragon– IA2 – (Universidad de Zaragoza-CITA), Instituto de Investigacion Sanitaria de Aragon (IIS), Zaragoza, Spain
| | - Clementina Rodellar
- Laboratorio de Genetica Bioquimica LAGENBIO (Universidad de Zaragoza), Instituto Agroalimentario de Aragon– IA2 – (Universidad de Zaragoza-CITA), Instituto de Investigacion Sanitaria de Aragon (IIS), Zaragoza, Spain
| |
Collapse
|
21
|
Hoffman AM, Dow SW. Concise Review: Stem Cell Trials Using Companion Animal Disease Models. Stem Cells 2016; 34:1709-29. [PMID: 27066769 DOI: 10.1002/stem.2377] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 03/26/2016] [Indexed: 12/13/2022]
Abstract
Studies to evaluate the therapeutic potential of stem cells in humans would benefit from more realistic animal models. In veterinary medicine, companion animals naturally develop many diseases that resemble human conditions, therefore, representing a novel source of preclinical models. To understand how companion animal disease models are being studied for this purpose, we reviewed the literature between 2008 and 2015 for reports on stem cell therapies in dogs and cats, excluding laboratory animals, induced disease models, cancer, and case reports. Disease models included osteoarthritis, intervertebral disc degeneration, dilated cardiomyopathy, inflammatory bowel diseases, Crohn's fistulas, meningoencephalomyelitis (multiple sclerosis-like), keratoconjunctivitis sicca (Sjogren's syndrome-like), atopic dermatitis, and chronic (end-stage) kidney disease. Stem cells evaluated in these studies included mesenchymal stem-stromal cells (MSC, 17/19 trials), olfactory ensheathing cells (OEC, 1 trial), or neural lineage cells derived from bone marrow MSC (1 trial), and 16/19 studies were performed in dogs. The MSC studies (13/17) used adipose tissue-derived MSC from either allogeneic (8/13) or autologous (5/13) sources. The majority of studies were open label, uncontrolled studies. Endpoints and protocols were feasible, and the stem cell therapies were reportedly safe and elicited beneficial patient responses in all but two of the trials. In conclusion, companion animals with naturally occurring diseases analogous to human conditions can be recruited into clinical trials and provide realistic insight into feasibility, safety, and biologic activity of novel stem cell therapies. However, improvements in the rigor of manufacturing, study design, and regulatory compliance will be needed to better utilize these models. Stem Cells 2016;34:1709-1729.
Collapse
Affiliation(s)
- Andrew M Hoffman
- Regenerative Medicine Laboratory, Department of Clinical Sciences, Cummings School of Veterinary Medicine, Tufts University, Grafton, Massachusetts, USA
| | - Steven W Dow
- Center for Immune and Regenerative Medicine, Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
22
|
Geburek F, Lietzau M, Beineke A, Rohn K, Stadler PM. Effect of a single injection of autologous conditioned serum (ACS) on tendon healing in equine naturally occurring tendinopathies. Stem Cell Res Ther 2015; 6:126. [PMID: 26113022 PMCID: PMC4513386 DOI: 10.1186/s13287-015-0115-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 02/27/2015] [Accepted: 06/11/2015] [Indexed: 11/29/2022] Open
Abstract
Introduction Autologous blood-derived biologicals, including autologous conditioned serum (ACS), are frequently used to treat tendinopathies in horses despite limited evidence for their efficacy. The purpose of this study was to describe the effect of a single intralesional injection of ACS in naturally occurring tendinopathies of the equine superficial digital flexor tendon (SDFT) on clinical, ultrasonographic, and histological parameters. Methods Fifteen horses with 17 naturally occurring tendinopathies of forelimb SDFTs were examined clinically and ultrasonographically (day 0). Injured tendons were randomly assigned to the ACS-treated group (n = 10) receiving a single intralesional ACS injection or included as controls (n = 7) which were either untreated or injected with saline on day 1. All horses participated in a gradually increasing exercise programme and were re-examined nine times at regular intervals until day 190. Needle biopsies were taken from the SDFTs on days 0, 36 and 190 and examined histologically and for the expression of collagen types I and III by immunohistochemistry. Results In ACS-treated limbs lameness decreased significantly until day 10 after treatment. Swelling (scores) of the SDFT region decreased within the ACS group between 50 and 78 days after treatment. Ultrasonographically, the percentage of the lesion in the tendon was significantly lower and the echogenicity of the lesion (total echo score) was significantly higher 78 and 106 days after intralesional ACS injection compared to controls. Histology revealed that, compared to controls, tenocyte nuclei were more spindle-shaped 36 days after ACS injection. Immunohistochemistry showed that collagen type I expression significantly increased between days 36 and 190 after ACS injection. Conclusions Single intralesional ACS injection of equine SDFTs with clinical signs of acute tendinopathy contributes to an early significant reduction of lameness and leads to temporary improvement of ultrasonographic parameters of repair tissue. Intralesional ACS treatment might decrease proliferation of tenocytes 5 weeks after treatment and increase their differentiation as demonstrated by elevated collagen type I expression in the remodelling phase. Potential enhancement of these effects by repeated injections should be tested in future controlled clinical investigations.
Collapse
Affiliation(s)
- Florian Geburek
- Equine Clinic, University of Veterinary Medicine Hannover, Foundation, Bünteweg 9, 30559, Hannover, Germany.
| | - Maren Lietzau
- Equine Clinic, University of Veterinary Medicine Hannover, Foundation, Bünteweg 9, 30559, Hannover, Germany.
| | - Andreas Beineke
- Institute for Pathology, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, 30559, Hannover, Germany.
| | - Karl Rohn
- Institute for Biometry, Epidemiology and Information Processing, University of Veterinary Medicine Hannover, Foundation, Bünteweg 2, 30559, Hannover, Germany.
| | - Peter M Stadler
- Equine Clinic, University of Veterinary Medicine Hannover, Foundation, Bünteweg 9, 30559, Hannover, Germany.
| |
Collapse
|
23
|
Advanced knee osteoarthritis in an active male: biologics or total knee replacement. PM R 2015; 7:S60-S65. [PMID: 25864662 DOI: 10.1016/j.pmrj.2015.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 02/17/2015] [Indexed: 11/24/2022]
|
24
|
Marx C, Silveira MD, Beyer Nardi N. Adipose-derived stem cells in veterinary medicine: characterization and therapeutic applications. Stem Cells Dev 2015; 24:803-13. [PMID: 25556829 DOI: 10.1089/scd.2014.0407] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells, considered one of the most promising cell types for therapeutic applications due to their capacity to secrete regenerative bioactive molecules, are present in all tissues. Stem cells derived from the adipose tissue have been increasingly used for cell therapy in humans and animals, both as freshly isolated, stromal vascular fraction (SVF) cells, or as cultivated adipose-derived stem cells (ASCs). ASCs have been characterized in different animal species for proliferation, differentiation potential, immunophenotype, gene expression, and potential for tissue engineering. Whereas canine and equine ASCs are well studied, feline cells are still poorly known. Many companies around the world offer ASC therapy for dogs, cats, and horses, although in most countries these activities are not yet controlled by regulatory agencies. This is the first study to review the characterization and clinical use of SVF and ASCs in spontaneously occurring diseases in veterinary patients. Although a relatively large number of studies investigating ASC therapy in induced lesions are available in the literature, a surprisingly small number of reports describe ASC therapy for naturally affected dogs, cats, and horses. A total of seven studies were found with dogs, only two studies in cats, and four in horses. Taken as a whole, the results do not allow a conclusion on the effect of this therapy, due to the generally small number of patients included, diversity of cell populations used, and lack of adequate controls. Further controlled studies are clearly needed to establish the real potential of ASC in veterinary medicine.
Collapse
Affiliation(s)
- Camila Marx
- 1 Laboratory of Stem Cells and Tissue Engineering, Universidade Luterana do Brasil , Canoas, RS, Brazil
| | | | | |
Collapse
|