1
|
Rendle D, Hughes K, Bowen M, Bull K, Cameron I, Furtado T, Peachey L, Sharpe L, Hodgkinson J. BEVA primary care clinical guidelines: Equine parasite control. Equine Vet J 2024; 56:392-423. [PMID: 38169127 DOI: 10.1111/evj.14036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/16/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND There is a lack of consensus on how best to balance our need to minimise the risk of parasite-associated disease in the individual horse, with the need to limit the use of anthelmintics in the population to preserve their efficacy through delaying further development of resistance. OBJECTIVES To develop evidence-based guidelines utilising a modified GRADE framework. METHODS A panel of veterinary scientists with relevant expertise and experience was convened. Relevant research questions were identified and developed with associated search terms being defined. Evidence in the veterinary literature was evaluated using the GRADE evidence-to-decision framework. Literature searches were performed utilising CAB abstracts and PubMed. Where there was insufficient evidence to answer the research question the panel developed practical guidance based on their collective knowledge and experience. RESULTS Search results are presented, and recommendation or practical guidance were made in response to 37 clinically relevant questions relating to the use of anthelmintics in horses. MAIN LIMITATIONS There was insufficient evidence to answer many of the questions with any degree of certainty and practical guidance frequently had to be based upon extrapolation of relevant information and the panel members' collective experience and opinions. CONCLUSIONS Equine parasite control practices and current recommendations have a weak evidence base. These guidelines highlight changes in equine parasite control that should be considered to reduce the threat of parasite-associated disease and delay the development of further anthelmintic resistance.
Collapse
Affiliation(s)
| | - Kristopher Hughes
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, New South Wales, Australia
| | - Mark Bowen
- Medicine Vet Referrals, Nottinghamshire, UK
| | - Katie Bull
- Bristol Veterinary School, University of Bristol, Bristol, UK
| | | | - Tamzin Furtado
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Neston, UK
| | - Laura Peachey
- Bristol Veterinary School, University of Bristol, Bristol, UK
| | | | - Jane Hodgkinson
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Neston, UK
| |
Collapse
|
2
|
Abbas G, Ghafar A, McConnell E, Beasley A, Bauquier J, Wilkes EJA, El-Hage C, Carrigan P, Cudmore L, Hurley J, Gauci CG, Beveridge I, Ling E, Jacobson C, Stevenson MA, Nielsen MK, Hughes KJ, Jabbar A. A national survey of anthelmintic resistance in ascarid and strongylid nematodes in Australian Thoroughbred horses. Int J Parasitol Drugs Drug Resist 2024; 24:100517. [PMID: 38064906 PMCID: PMC10757041 DOI: 10.1016/j.ijpddr.2023.11.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/19/2023] [Accepted: 11/19/2023] [Indexed: 01/02/2024]
Abstract
This study quantified the extent of anthelmintic resistance (AR) in ascarid and strongylid nematodes against commonly used anthelmintics in Australian Thoroughbred horses. Faecal egg count reduction tests (FECRTs, n = 86) and egg reappearance period (ERP) tests were conducted on 22 farms across Australia. Faecal egg counts (FECs) were determined using the modified McMaster technique, and percent faecal egg count reduction (%FECR) was calculated using the Bayesian hierarchical model and hybrid Frequentist/Bayesian analysis method. The results were interpreted using old (published in 1992) and new (2023) research guidelines of the World Association for the Advancement of Veterinary Parasitology (WAAVP). The species composition of strongylid nematodes was detected utilising a DNA-metabarcoding method using pre- and post-treatment samples. Resistance was observed in strongylid nematodes to commonly used single-active and combination anthelmintics, including ivermectin (IVM %FECR range: 82%-92%; 95% lower credible interval (LCI) range: 80%-90%), abamectin (ABM: 73%-92%; 65%-88%), moxidectin (MOX: 89%-91%; 84%-89%), oxfendazole (OFZ: 0%-56%; 0%-31%) and its combination with pyrantel (OFZ + PYR: 0%-82%; 0%-78%). Resistance in Parascaris spp. was observed to IVM (10%-43%; 0%-36%), ABM (0%; 0%) and MOX (0%; 0%). When the new thresholds recommended by the WAAVP were used, AR was detected in six additional FECRTs for strongylids and three more tests for Parascaris spp., introducing resistance to OFZ and OFZ + PYR in the latter. Shortened ERPs (4-6 weeks) of strongylids were observed in 31 FECRTs in which AR was not detected at 2 weeks post-treatment for all the anthelmintics tested. Among cyathostomins, Cylicocyclus nassatus, Cylicostephanus longibursatus and Coronocyclus coronatus were the most prevalent species at 2 weeks post-treatment, whereas the main species appearing at five weeks following treatments with macrocyclic lactones were Cylicocyclus nassatus, Cylicostephanus longibursatus and Cylicocyclus ashworthi. After treatment with OFZ + PYR, the latter three, plus Coronocyclus coronatus and Cyathostomum catinatum, were detected at 5 weeks post-treatment. Overall, the study highlights the prevalence of AR in both ascarids and strongylid nematodes against commonly used anthelmintic products to control worms in Australian horses. The results indicate that ML combination products provided acceptable efficacy at 2 weeks. However, ERP calculations suggest that products work less effectively than previously measured. It is suggested to regularly monitor the efficacy of the anthelmintics and consider changing the worm control practices to better manage worms and AR in Australian horses.
Collapse
Affiliation(s)
- Ghazanfar Abbas
- Melbourne Veterinary School, The University of Melbourne, Werribee, Victoria 3030, Australia
| | - Abdul Ghafar
- Melbourne Veterinary School, The University of Melbourne, Werribee, Victoria 3030, Australia
| | - Emma McConnell
- Centre for Animal Production and Health, Murdoch University, Murdoch, Western Australia, Australia
| | - Anne Beasley
- School of Agriculture and Food Sustainability, University of Queensland, Gatton, Queensland 4343, Australia
| | - Jenni Bauquier
- Melbourne Veterinary School, The University of Melbourne, Werribee, Victoria 3030, Australia
| | | | - Charles El-Hage
- Melbourne Veterinary School, The University of Melbourne, Werribee, Victoria 3030, Australia
| | - Peter Carrigan
- Scone Equine Hospital, Scone, New South Wales 2337, Australia
| | - Lucy Cudmore
- Scone Equine Hospital, Scone, New South Wales 2337, Australia
| | - John Hurley
- Swettenham Stud, Nagambie, Victoria 3608, Australia
| | - Charles G Gauci
- Melbourne Veterinary School, The University of Melbourne, Werribee, Victoria 3030, Australia
| | - Ian Beveridge
- Melbourne Veterinary School, The University of Melbourne, Werribee, Victoria 3030, Australia
| | - Elysia Ling
- Melbourne Veterinary School, The University of Melbourne, Werribee, Victoria 3030, Australia
| | - Caroline Jacobson
- Centre for Animal Production and Health, Murdoch University, Murdoch, Western Australia, Australia
| | - Mark A Stevenson
- Melbourne Veterinary School, The University of Melbourne, Werribee, Victoria 3030, Australia
| | - Martin K Nielsen
- M.H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - Kristopher J Hughes
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, New South Wales 2650, Australia
| | - Abdul Jabbar
- Melbourne Veterinary School, The University of Melbourne, Werribee, Victoria 3030, Australia.
| |
Collapse
|
3
|
Abbas G, Bauquier J, Beasley A, Jacobson C, El-Hage C, Wilkes EJA, Carrigan P, Cudmore L, Hurley J, Beveridge I, Nielsen MK, Hughes KJ, Stevenson MA, Jabbar A. Worm control practices used by Thoroughbred horse managers in Australia: A national survey. Vet Parasitol 2024; 327:110116. [PMID: 38244523 DOI: 10.1016/j.vetpar.2024.110116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/22/2024]
Abstract
This study assessed worm control practices used by Australian Thoroughbred farm managers with an online questionnaire survey. The questionnaire comprised 52 questions (close-ended: 44; open-ended: 8) about farm demography and general husbandry practices, farm managers' knowledge of gastrointestinal nematodes (GIN) and their importance, diagnosis, worm control strategies and anthelmintics, anthelmintic resistance (AR) and grazing management. Following the pilot survey, the link for the questionnaire survey was sent to all (n = 657) registered members of the Thoroughbred Breeders Australia on 12th April 2020. The response rate for the questionnaire was 18.5% (122 of 675). The farm managers reported a good understanding of GIN and their importance in different age groups of horses as most respondents (70% of 122) perceived worm-related illness to be more important in young (i.e., foals, weanlings and yearlings) than adult (> 3 years old) horses. Although most respondents (93%, 113 of 122) used anthelmintics prophylactically to control GIN, only 15% (18 of 122) observed worm-related illness in their horses. Just under 40% of respondents were performing faecal egg counts, with less than 20% using the results of faecal egg counts to guide deworming decisions. The interval-based deworming strategy was the most common method (≥55% of 122 respondents) to control GIN in all age groups of horses. Macrocyclic lactones were the first choice of anthelmintics for all age groups of horses. Although the majority of respondents (88%, 107 of 122) perceived resistance in GIN against commonly used anthelmintics as an important issue in managing worms in horses, only 29% assessed the efficacy of anthelmintics and 91% (111 of 122) were unaware of AR on their properties. Grazing management practices, such as manure removal, were more frequently performed on smaller paddocks (<0.20 ha: 58%) than on larger paddocks (>0.20 ha: 18%). Multiple correspondence analyses showed that the likelihood of suboptimal worm control practices on small farms (n = ≤50 horses) was greater than that of medium (n = 51-100) and large (n = >100) farms. This study provides insights into the demography of Thoroughbred farms in Australia, husbandry practices used by stud managers and their knowledge about worms, control options and AR concerns, thereby paving the way for taking any initiatives to address the problem of AR in GIN of Australian Thoroughbred horses.
Collapse
Affiliation(s)
- Ghazanfar Abbas
- Melbourne Veterinary School, The University of Melbourne, Werribee, Victoria 3030, Australia
| | - Jenni Bauquier
- Melbourne Veterinary School, The University of Melbourne, Werribee, Victoria 3030, Australia
| | - Anne Beasley
- School of Agriculture and Food Sustainability, University of Queensland, Gatton, Queensland, Australia
| | - Caroline Jacobson
- Centre for Animal Production and Health, Murdoch University, Murdoch, Western Australia, Australia
| | - Charles El-Hage
- Melbourne Veterinary School, The University of Melbourne, Werribee, Victoria 3030, Australia
| | | | - Peter Carrigan
- Scone Equine Hospital, Scone, New South Wales, Australia
| | - Lucy Cudmore
- Scone Equine Hospital, Scone, New South Wales, Australia
| | - John Hurley
- Swettenham Stud, Nagambie, Victoria, Australia
| | - Ian Beveridge
- Melbourne Veterinary School, The University of Melbourne, Werribee, Victoria 3030, Australia
| | - Martin K Nielsen
- M.H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - Kristopher J Hughes
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, New South Wales, Australia
| | - Mark A Stevenson
- Melbourne Veterinary School, The University of Melbourne, Werribee, Victoria 3030, Australia
| | - Abdul Jabbar
- Melbourne Veterinary School, The University of Melbourne, Werribee, Victoria 3030, Australia.
| |
Collapse
|
4
|
Abbas G, Stevenson MA, Bauquier J, Beasley A, Jacobson C, El-Hage C, Wilkes EJA, Carrigan P, Cudmore L, Hurley J, Beveridge I, Nielsen MK, Hughes KJ, Jabbar A. Assessment of worm control practices recommended by equine veterinarians in Australia. Front Vet Sci 2023; 10:1305360. [PMID: 38026649 PMCID: PMC10654783 DOI: 10.3389/fvets.2023.1305360] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
This study aimed to assess Australian veterinarians' knowledge, perceptions and treatment strategies for worm control in horses with an online questionnaire. The questionnaire comprised 64 questions covering various aspects of: (i) veterinary practice; (ii) the veterinarian's knowledge of gastrointestinal nematodes (GINs) and the importance of parasites in different age groups of horses; (iii) the diagnosis and control of worms; (iv) anthelmintics and anthelmintic resistance (AR); (v) grazing management; and (vi) the means of communication and the discussion between veterinarians and their clients regarding worm control. Following a pilot survey, a link for the questionnaire survey was sent to all (n = 1,148) registered members of Equine Veterinarians Australia in April 2020. The response rate for the questionnaire was 10% (118 of 1,148). The findings of this study illustrate veterinarians' good understanding of aspects of equine parasites, including control. However, respondents mainly recommended frequent, interval-based prophylactic deworming in young horses, and only 40% (96 of 239) diagnosed GIN infections based on faecal egg count (FEC) results in all age groups of horses. Furthermore, only 27% (88 of 330) of the respondents made deworming decisions based on FECs. Most of the respondents recommended macrocyclic lactones (MLs) for all age groups of horses (71%, 481 of 677), and the most frequently used method to calculate the dose of anthelmintics was by estimating the weight of animals visually (53%, 63 of 118). Although the majority of respondents (97%, 115 of 118) perceived AR to be a critical issue in managing worms in horses, 58% (67 of 118) of them were unaware of the status of AR on their clients' properties. Forty-two percent (50 of 118) of the respondents perceived the presence of AR in worms, including pinworms (16%), strongylins (15%), species of Draschia and Habronema (6%), Strongyloides westeri (2%) and tapeworms (1%). Twenty-seven percent (32 of 118) of the respondents rarely discussed equine worm control practices with their clients. This study provides insights into the perception and worm control practices recommended by Australian veterinarians to manage equine parasites. The findings highlight the importance of continued education and awareness of AR, and the use of non-chemical methods as well as consideration of the legislation of prescription-only use of anthelmintics based on FECs to achieve sustainable control of GINs in Australian horses.
Collapse
Affiliation(s)
- Ghazanfar Abbas
- Melbourne Veterinary School, The University of Melbourne, Werribee, VIC, Australia
| | - Mark A. Stevenson
- Melbourne Veterinary School, The University of Melbourne, Werribee, VIC, Australia
| | - Jenni Bauquier
- Melbourne Veterinary School, The University of Melbourne, Werribee, VIC, Australia
| | - Anne Beasley
- School of Agriculture and Food Sustainability, University of Queensland, Gatton, QLD, Australia
| | - Caroline Jacobson
- Centre for Animal Production and Health, Murdoch University, Murdoch, WA, Australia
| | - Charles El-Hage
- Melbourne Veterinary School, The University of Melbourne, Werribee, VIC, Australia
| | | | | | | | | | - Ian Beveridge
- Melbourne Veterinary School, The University of Melbourne, Werribee, VIC, Australia
| | - Martin K. Nielsen
- M.H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, United States
| | - Kristopher J. Hughes
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Abdul Jabbar
- Melbourne Veterinary School, The University of Melbourne, Werribee, VIC, Australia
| |
Collapse
|
5
|
Abbas G, Ghafar A, Bauquier J, Beasley A, Ling E, Gauci CG, El-Hage C, Wilkes EJA, McConnell E, Carrigan P, Cudmore L, Hurley J, Beveridge I, Nielsen MK, Stevenson MA, Jacobson C, Hughes KJ, Jabbar A. Prevalence and diversity of ascarid and strongylid nematodes in Australian Thoroughbred horses using next-generation sequencing and bioinformatic tools. Vet Parasitol 2023; 323:110048. [PMID: 37844388 DOI: 10.1016/j.vetpar.2023.110048] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/06/2023] [Accepted: 10/07/2023] [Indexed: 10/18/2023]
Abstract
The study presents the results of a cross-sectional survey to describe the epidemiology of ascarid and strongylid nematodes in horses, the impact of diverse climatic conditions on parasite diversity and the levels of faecal egg shedding in different age groups of managed Thoroughbred horses. Individual faecal samples (n = 1377) collected from 62 Thoroughbred farms across four climatic zones in Australia were analysed using the modified McMaster technique for faecal egg counts (FECs) and strongylid nematodes were identified utilising PCR-directed next-generation sequencing (NGS) of the second internal transcribed spacer of the nuclear ribosomal DNA (ITS-2). Across all age groups, the prevalence of ascarid and strongylid nematodes was 12% (95% confidence interval 10-14%) and 72% (70-74%), respectively. Based on strongylid FECs, yearlings had the highest prevalence (89%) followed by weanlings (83%), foals (79%), wet mares (61%), dry mares (59%) and stallions (54%). However, for Parascaris spp., foals had the highest prevalence (46%) followed by weanlings (32%) and yearlings (13%). The highest mean FECs for Parascaris spp. were observed in foals (418 eggs per gram [EPG] of faeces) while those for strongylids were in yearlings (1002 EPG). Of the adult horses (mares and stallions), 67% (489 of 729) and 11% (77 of 729) were low (i.e., ≤250 EPG) and moderate (i.e., 251-500 EPG) strongylid egg-shedders, respectively. Strongylid egg shedding varied across climatic zones, with the highest mean FECs in the summer rainfall (723 EPG) followed by non-seasonal rainfall (629 EPG), winter rainfall (613 EPG), and Mediterranean (606 EPG) rainfall zones. Twenty-three nematode species were detected using NGS, with Cylicostephanus longibursatus (28%), Cylicocyclus nassatus (23%) and Coronocyclus coronatus (23%), being the most abundant species. Three species of Strongylus (i.e., S. vulgaris, S. equinus and S. edentatus) were also detected. The nemabiome composition, species richness and relative abundance varied within horse age and between climatic zones. These empirical findings provide a comprehensive understanding of the prevalence of parasites within horse populations and the multifaceted factors that influence their occurrence, thereby allowing for the formulation of tailored strategies aimed at parasite control in domestic horses.
Collapse
Affiliation(s)
- Ghazanfar Abbas
- Melbourne Veterinary School, The University of Melbourne, Werribee, Victoria 3030, Australia
| | - Abdul Ghafar
- Melbourne Veterinary School, The University of Melbourne, Werribee, Victoria 3030, Australia
| | - Jenni Bauquier
- Melbourne Veterinary School, The University of Melbourne, Werribee, Victoria 3030, Australia
| | - Anne Beasley
- School of Agriculture and Food Sustainability, University of Queensland, Gatton, Queensland 4343, Australia
| | - Elysia Ling
- Melbourne Veterinary School, The University of Melbourne, Werribee, Victoria 3030, Australia
| | - Charles G Gauci
- Melbourne Veterinary School, The University of Melbourne, Werribee, Victoria 3030, Australia
| | - Charles El-Hage
- Melbourne Veterinary School, The University of Melbourne, Werribee, Victoria 3030, Australia
| | | | - Emma McConnell
- Centre for Animal Production and Health, Murdoch University, Murdoch, Western Australia 6150, Australia
| | - Peter Carrigan
- Scone Equine Hospital, Scone, New South Wales 2337, Australia
| | - Lucy Cudmore
- Scone Equine Hospital, Scone, New South Wales 2337, Australia
| | - John Hurley
- Swettenham Stud, Nagambie, Victoria 3608, Australia
| | - Ian Beveridge
- Melbourne Veterinary School, The University of Melbourne, Werribee, Victoria 3030, Australia
| | - Martin K Nielsen
- M.H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - Mark A Stevenson
- Melbourne Veterinary School, The University of Melbourne, Werribee, Victoria 3030, Australia
| | - Caroline Jacobson
- Centre for Animal Production and Health, Murdoch University, Murdoch, Western Australia 6150, Australia
| | - Kristopher J Hughes
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, New South Wales, Australia
| | - Abdul Jabbar
- Melbourne Veterinary School, The University of Melbourne, Werribee, Victoria 3030, Australia.
| |
Collapse
|
6
|
Elghandour MMMY, Maggiolino A, Vázquez-Mendoza P, Alvarado-Ramírez ER, Cedillo-Monroy J, De Palo P, Salem AZM. Moringa oleifera as a Natural Alternative for the Control of Gastrointestinal Parasites in Equines: A Review. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091921. [PMID: 37176979 PMCID: PMC10181162 DOI: 10.3390/plants12091921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/25/2023] [Accepted: 05/07/2023] [Indexed: 05/15/2023]
Abstract
Studies have shown a wide variety of parasites that infect horses, causing major gastrointestinal damage that can lead to death, and although the main method of control has been synthetic anthelmintics, there are parasites that have developed resistance to these drugs. For generations, plants have been used throughout the world as a cure or treatment for countless diseases and their symptoms, as is the case of Moringa oleifera, a plant native to the western region. In all its organs, mainly in leaves, M. oleifera presents a diversity of bioactive compounds, including flavonoids, tannins, phenolic acids, saponins, and vitamins, which provide antioxidant power to the plant. The compounds with the greatest antiparasitic activity are tannins and saponins, and they affect both the larvae and the oocytes of various equine gastrointestinal parasites. Therefore, M. oleifera is a promising source for the natural control of gastrointestinal parasites in horses.
Collapse
Affiliation(s)
| | - Aristide Maggiolino
- Department of Veterinary Medicine, University of Bari A. Moro, Valenzano, 70010 Bari, Italy
| | - Paulina Vázquez-Mendoza
- Facultad Maya de Estudios Agropecuarios, Universidad Autónoma de Chiapas, Catazajá 29980, Chiapas, Mexico
| | | | - José Cedillo-Monroy
- Temascaltepec University Center, Autonomous University of the State of Mexico, Temascaltepec 51300, Estado de México, Mexico
| | - Pasquale De Palo
- Department of Veterinary Medicine, University of Bari A. Moro, Valenzano, 70010 Bari, Italy
| | - Abdelfattah Zeidan Mohamed Salem
- Faculty of Veterinary Medicine and Zootechnics, Autonomous University of the State of Mexico, Toluca 50295, Estado de México, Mexico
| |
Collapse
|
7
|
Furtado T, Rendle D. To improve welfare in the equine species should we place greater emphasis on understanding our own? Equine Vet J 2022; 54:1001-1004. [PMID: 36196749 DOI: 10.1111/evj.13869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/04/2022] [Indexed: 11/26/2022]
Affiliation(s)
- Tamzin Furtado
- Department of Livestock and One Health, University of Liverpool, Neston, UK
| | | |
Collapse
|
8
|
Positivity Rate Investigation and Anthelmintic Resistance Analysis of Gastrointestinal Nematodes in Sheep and Cattle in Ordos, China. Animals (Basel) 2022; 12:ani12070891. [PMID: 35405881 PMCID: PMC8997026 DOI: 10.3390/ani12070891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/24/2022] [Accepted: 03/30/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary In order to understand the positivity rates of gastrointestinal nematodes in cattle and sheep in Ordos, and the effects of different pasture types on the distribution of gastrointestinal nematodes, we conducted an epidemiological investigation and analysis in four banner districts of Ordos. The results showed that the positive rates of sheep and cattle were 38.84% and 4.48%, respectively. The anthelmintic resistance analysis revealed that the nematode population in the area was severely resistant to ivermectin and albendazole, and resistance to levamisole, nitroxynil and closantel was suspected. Abstract Gastrointestinal nematodes (GINs), such as Trichostrongylidae, are important pathogens in small ruminants, causing significant losses in these livestock species. Despite their veterinary importance, GINs have not been studied in certain regions of the world. Therefore, much of their epidemiology and economic impact on production remain unknown. In the present study, a systematic epidemiological survey based on the modified McMaster technique was conducted to investigate the type and infection of GINs in sheep and cattle. In 9622 fecal samples from 491 sampling sites in the four main banner districts of Ordos, the prevalence of GIN infection was found to be 38.84% and 4.48% in sheep and cattle, respectively. At the same time, the effects of four pasture types on the distribution of GINs were analyzed. This study also found severe resistance to ivermectin and albendazole in GINs and suspected anthelmintic resistance in nitroxynil, levamisole and closantel. We report the type and infection of GINs in Ordos, with the aim to help the prevention and control of GINs. Based on the results of the questionnaire survey and GIN resistance test, we found several reasons for the anthelmintic resistance of GINs, consequently providing new ideas for controlling the occurrence of anthelmintic resistance.
Collapse
|
9
|
A Survey of Control Strategies for Equine Small Strongyles in Lithuania. Helminthologia 2021; 58:225-232. [PMID: 34934386 PMCID: PMC8647954 DOI: 10.2478/helm-2021-0031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/29/2021] [Indexed: 11/24/2022] Open
Abstract
Anthelmintic resistance (AR) in equine cyathostomins is being reported all over the world. In Lithuania, however, the last study on this subject was published more than fifteen years ago, thus little is known about the current situation. The aim of this study was to determine the factors that may associated with the development of AR on equine studs in Lithuania. A questionnaire containing seven open-ended and nine closed multiple-choice questions about worm control strategies, use of anthelmintic substances and stable management practices was posted to 71 randomly selected horse establishments in Lithuania. Replies were obtained from a total of 59 stables, representing 83 % of officially established stud farms in Lithuania. The results showed that more than 80 % of these establishments performed pasture management practices such as excrement removal from stables and pasture, 56 % mowed their pasture, 31 % practised mixed or rotational grazing with other species, and 97 % of the horses were routinely dewormed. Macrocyclic lactones (ML) (58 %, n=33) were the most commonly used drugs, followed by benzimidazoles (BZ) (24 %, n=14) and tetrahydropyrimidines (THP) (19 %, n=10). The majority of farms (60 %) treated horses four times per year and 68 % estimated the weight of the horses by eye before treatment. About 36 % of respondents had heard of faecal egg counts (FEC), but only 17 % used the test and as few as 9 % had tested their herds for AR with faecal egg count reduction tests (FECRT). The results demonstrate that there is scope for improving routines for worm control in many horse establishments in Lithuania. In order to increase knowledge and reduce the risk of the spread of AR, diagnostic methods should be adopted in a collaboration between stud farms and veterinary practitioners.
Collapse
|
10
|
Helminth infections in Italian donkeys: Strongylus vulgaris more common than Dictyocaulus arnfieldi. J Helminthol 2021; 95:e4. [PMID: 33536094 DOI: 10.1017/s0022149x20001017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Donkeys have been used as working animals for transport and farm activities worldwide. Recently, in European countries, there has been an increasing interest in donkeys due to their use as pets, onotherapy or milk production. During 2014-2016, a countrywide survey was conducted to determine prevalence and risk factors of principal helminth infections in 1775 donkeys in 77 Italian farms. A questionnaire on management and parasite control practices was filled out for each farm. Faecal samples were examined using a modified McMaster technique, a centrifugation/flotation method and a sedimentation technique. Pooled coprocultures were performed for differentiation of strongylid eggs. Strongyles were the most common parasites detected (84.9%), followed by Dictyocaulus arnfieldi (6.9%), Oxyuris equi (5.8%), Parascaris spp. (3.6%), Anoplocephala spp. (1.0%), Strongyloides westeri (0.3%). Coprocultures revealed an omnipresence of cyathostomins (100%), followed by Strongylus vulgaris (31.0%), Poteriostomum spp. (25.0%), Triodontophorus spp. (9.0%), Strongylus edentatus (7.0%), Strongylus equinus (5.0%). Logistic regression analysis identified breed, co-pasture with horses, living area, herd size and number of treatments as significantly associated with strongyles. Sex, age, living area and herd size were significantly associated with Parascaris spp. Dictyocaulus arnfieldi was significantly associated with sex, grass, co-pasture with horses, living area and herd size. Strongylus vulgaris was significantly associated with living area and herd size. The mean number of anthelmintic treatments/year was 1.4; most of the donkeys (71.8%) were dewormed using an ivermectin drug. It is important to design parasite programs to specifically address both D. arnfieldi and S. vulgaris in donkeys, and this is especially important if donkeys co-graze with horses.
Collapse
|