1
|
Jiang Y, Jiang A, Ren G, Wang L, Xin X, Yuan Z, Liu J, Li Z, Sun Y, Zhou S, Lu G, Huang H, Zhao W. Cross-species transmission of Cryptosporidium in wild rodents from the southern region of Zhejiang Province of China and its possible impact on public health. Parasite 2024; 31:34. [PMID: 38949636 PMCID: PMC11216159 DOI: 10.1051/parasite/2024033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/31/2024] [Indexed: 07/02/2024] Open
Abstract
Wild rodents serve as reservoirs for Cryptosporidium and are overpopulated globally. However, genetic data regarding Cryptosporidium in these animals from China are limited. Here, we have determined the prevalence and genetic characteristics of Cryptosporidium among 370 wild rodents captured from three distinct locations in the southern region of Zhejiang Province, China. Fresh feces were collected from the rectum of each rodent, and DNA was extracted from them. The rodent species was identified by PCR amplifying the vertebrate cytochrome b gene. Cryptosporidium was detected by PCR amplification and amplicon sequencing the small subunit of ribosomal RNA gene. Positive samples of C. viatorum and C. parvum were further subtyped by analyzing the 60-kDa glycoprotein gene. A positive Cryptosporidium result was found in 7% (26/370) of samples, involving five rodent species: Apodemus agrarius (36), Niviventer niviventer (75), Rattus losea (18), R. norvegicus (155), and R. tanezumi (86). Their respective Cryptosporidium positive rates were 8.3%, 5.3%, 11.1%, 7.1%, and 7.0%. Sequence analysis confirmed the presence of three Cryptosporidium species: C. parvum (4), C. viatorum (1), and C. muris (1), and two genotypes: Cryptosporidium rat genotype IV (16) and C. mortiferum-like (4). Additionally, two subtypes of C. parvum (IIdA15G1 and IIpA19) and one subtype of C. viatorum (XVdA3) were detected. These results demonstrate that various wild rodent species in Zhejiang were concurrently infected with rodent-adapted and zoonotic species/genotypes of Cryptosporidium, indicating that these rodents can play a role in maintaining and dispersing this parasite into the environment and other hosts, including humans.
Collapse
Affiliation(s)
- Yanyan Jiang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, NHC Key Laboratory of Parasite and Vector Biology, National Center for International Research on Tropical Diseases, WHO Collaborating Centre for Tropical Diseases 200025 Shanghai China
| | - Aiying Jiang
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University Wenzhou Zhejiang 325035 China
| | - Guangxu Ren
- Department of Pathogenic Biology, Hainan Medical University Haikou Hainan China
- Hainan Medical University – The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University Haikou Hainan China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University Haikou 571199 China
| | - Long Wang
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University Wenzhou Zhejiang 325035 China
| | - Xianming Xin
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University Wenzhou Zhejiang 325035 China
| | - Zhongying Yuan
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, NHC Key Laboratory of Parasite and Vector Biology, National Center for International Research on Tropical Diseases, WHO Collaborating Centre for Tropical Diseases 200025 Shanghai China
| | - Jiani Liu
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University Wenzhou Zhejiang 325035 China
| | - Zhen Li
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, NHC Key Laboratory of Parasite and Vector Biology, National Center for International Research on Tropical Diseases, WHO Collaborating Centre for Tropical Diseases 200025 Shanghai China
| | - Yanbin Sun
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University Wenzhou Zhejiang 325035 China
| | - Shanshan Zhou
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, NHC Key Laboratory of Parasite and Vector Biology, National Center for International Research on Tropical Diseases, WHO Collaborating Centre for Tropical Diseases 200025 Shanghai China
| | - Gang Lu
- Department of Pathogenic Biology, Hainan Medical University Haikou Hainan China
- Hainan Medical University – The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University Haikou Hainan China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University Haikou 571199 China
| | - Huicong Huang
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University Wenzhou Zhejiang 325035 China
| | - Wei Zhao
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University Wenzhou Zhejiang 325035 China
| |
Collapse
|
2
|
Li J, Yuan Z, Xu J, Xin X, Liu J, Zhang X, Zhou S, Li Z, Chen S, Huang H, Zhao W, Jiang Y. Molecular detection and genetic variability of Cryptosporidium spp. in wild Asian house shrews ( Suncus murinus) from southern Zhejiang province, China. Heliyon 2024; 10:e33334. [PMID: 39021918 PMCID: PMC11252936 DOI: 10.1016/j.heliyon.2024.e33334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 07/20/2024] Open
Abstract
Shrews play a crucial role as repositories for diverse pathogens linked to zoonotic infectious diseases. However, the genetic information regarding Cryptosporidium in Chinese shrews remains unexplored. The objectives of this study were twofold: to determine the occurrence rate of Cryptosporidium spp. in wild shrews residing in the southern part of Zhejiang Province, China, and to investigate their genetic characteristics. A total of 282 wild shrews were captured between April and October of 2023. The detection of Cryptosporidium in fecal samples, collected from each animal's rectum, was performed using PCR and sequencing of the partial small subunit of ribosomal RNA (SSU rRNA) gene. The 60-kDa glycoprotein (gp60) gene was utilized to further subtype the positive samples of C. viatorum and C. parvum. All animals were identified as Suncus murinus, and a positive result for Cryptosporidium was obtained in 14.2 % (40/282) of the samples. The following species and genotypes were identified: C. ratti (n = 19), C. parvum (n = 2), C. viatorum (n = 1), Cryptosporidium rat genotype IV (n = 13), and Cryptosporidium skunk genotype (n = 5). Furthermore, the subtypes IIdA15G1 and XVdA3 were detected within C. parvum and C. viatorum, respectively. Molecular evidence indicates that S. murinus is concurrently infected with rodent-adapted and zoonotic species/genotypes, actively contributing to the dissemination of cryptosporidiosis.
Collapse
Affiliation(s)
- Jiangfeng Li
- Wenzhou Center for Disease Control and Prevention, Wenzhou, Zhejiang, 325000, China
| | - Zhongying Yuan
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, NHC Key Laboratory of Parasite and Vector Biology, National Center for International Research on Tropical Diseases, WHO Collaborating Centre for Tropical Diseases, 200025, Shanghai, China
| | - Junchen Xu
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xianming Xin
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Jiani Liu
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xinrui Zhang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Shanshan Zhou
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, NHC Key Laboratory of Parasite and Vector Biology, National Center for International Research on Tropical Diseases, WHO Collaborating Centre for Tropical Diseases, 200025, Shanghai, China
| | - Zhen Li
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, NHC Key Laboratory of Parasite and Vector Biology, National Center for International Research on Tropical Diseases, WHO Collaborating Centre for Tropical Diseases, 200025, Shanghai, China
| | - Shuai Chen
- Wenzhou Center for Disease Control and Prevention, Wenzhou, Zhejiang, 325000, China
| | - Huicong Huang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Wei Zhao
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yanyan Jiang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, NHC Key Laboratory of Parasite and Vector Biology, National Center for International Research on Tropical Diseases, WHO Collaborating Centre for Tropical Diseases, 200025, Shanghai, China
| |
Collapse
|
3
|
Alruhaili MH, Marzok M, Gattan HS, Salem M, Kandeel M, Selim A. Prevalence and potential risk factors for Cryptosporidium spp. infection in horses from Egypt. Comp Immunol Microbiol Infect Dis 2024; 106:102140. [PMID: 38350247 DOI: 10.1016/j.cimid.2024.102140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/30/2024] [Accepted: 02/07/2024] [Indexed: 02/15/2024]
Abstract
Cryptosporidium is an intestinal protozoan that cause diarrhea in livestock all over the world and have zoonotic importance. The present study aimed to determine the prevalence of Cryptosporidium spp. in horses in Egypt and evaluate the associated risk factors. A total of 420 fecal samples were collected from three governorates (Giza, Kafr ElSheikh and Qalyubia) and examined microscopically using Ziehl-Neelsen staining method. The overall prevalence of Cryptosporidium spp. was 29% and Kafr ElSheikh governorate had the highest rate in comparison to other areas. The prevalence of Cryptosporidium spp. in examined horses had significant association with sex, age, type of management, absence of bedding and presence of dogs. The higher prevalence rate was observed in females (32.2%), age group less than two years (43.2%), mixed (grazing and stable) horses (36.1%), animals had history of diarrhea (33%), absence of bedding (35.1%) and contact with dogs (35.7%). These findings give baseline data for further research. It is necessary to establish control strategy for Cryptosporidium spp. infection in order to lower the risk of infection in animals and human.
Collapse
Affiliation(s)
- Mohammed H Alruhaili
- Special Infectious Agents Unit, King Fahad Medical Research Center, King AbdulAziz University, Jeddah, Saudi Arabia; Department of Clinical Microbiology and Immunology, Faculty of Medicine, King AbdulAziz University, Jeddah, Saudi Arabia
| | - Mohamed Marzok
- Department of Clinical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia; Department of Surgery, Faculty of Veterinary Medicine, Kafr El Sheikh University, Kafr El Sheikh, Egypt
| | - Hattan S Gattan
- Special Infectious Agents Unit, King Fahad Medical Research Center, King AbdulAziz University, Jeddah, Saudi Arabia; Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohamed Salem
- Department of Clinical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia; Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Cairo 12613, Egypt
| | - Mahmoud Kandeel
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafr Elsheikh University, Kafrelsheikh, Egypt; Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Abdelfattah Selim
- Department of Animal Medicine (Infectious Diseases), Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt.
| |
Collapse
|
4
|
Salem SE, Abd El-Ghany AM, Elsheikh HA, Abdel-Ghany EM, Ras R. Prevalence of Cryptosporidium spp. infection in a working horse population in Egypt. Trop Anim Health Prod 2023; 55:361. [PMID: 37851181 PMCID: PMC10584700 DOI: 10.1007/s11250-023-03773-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 09/12/2023] [Indexed: 10/19/2023]
Abstract
Working horses support the livelihoods of smallholder farmers in Egypt. No previous study has investigated the prevalence of cryptosporidiosis in working horses in Egypt. Faecal samples were collected from 607 working horses recruited from thirty-seven villages/areas in two Egyptian governorates and examined for Cryptosporidium spp. infection using the modified Zielh-Neelsen staining technique. Data on signalment, history of recent diarrhoea, and strongyle burden were collected. The prevalence of Cryptosporidium spp. infection was calculated using a bootstrap method and potential risk factors for infection were investigated using mixed-effects logistic regression models that included sampling location as a random-effects variable. The prevalence of Cryptosporidium spp. infection was 28.7% (95% confidence interval = 23.5-33.9). None of the variables investigated, which include age, sex of the animals, and strongyle burden, were associated with risk of infection. This study provided evidence-based information on the prevalence of Cryptosporidium spp. infection in the study area. However, the potential zoonotic risk of Cryptosporidium cannot be confirmed until further studies are conducted to genotype these parasites.
Collapse
Affiliation(s)
- Shebl E Salem
- Department of Surgery, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt.
| | - Amany M Abd El-Ghany
- Department of Parasitology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Hussein A Elsheikh
- The Veterinary Clinic, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Enas M Abdel-Ghany
- Genetic and Cytology Department, Biotechnology Research Institute, National Research Centre, Giza, Egypt
| | - Refaat Ras
- Department of Parasitology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
- Department of Microbiology and Parasitology, Faculty of Veterinary Medicine, Badr University in Cairo (BUC), Badr City, Cairo, Egypt
| |
Collapse
|
5
|
Huang J, Chen M, He Y, Chen H, Huang M, Li N, Ryan U, Kváč M, Feng Y, Xiao L, Guo Y. Cryptosporidium equi n. sp. (Apicomplexa: Cryptosporidiidae): biological and genetic characterisations. Int J Parasitol 2023:S0020-7519(23)00091-7. [PMID: 37150475 DOI: 10.1016/j.ijpara.2023.02.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 05/09/2023]
Abstract
The horse genotype is one of three common Cryptosporidium spp. in equine animals and has been identified in some human cases. The species status of Cryptosporidium horse genotype remains unclear due to the lack of extensive morphological, biological, and genetic data. In the present study, we have conducted biological and whole genome sequence analyses of an isolate of the genotype from hedgehogs and proposed to name it Cryptosporidium equi n. sp. to reflect its common occurrence in equine animals. Oocysts of C. equi measured 5.12 ± 0.36 μm × 4.46 ± 0.21 μm with a shape index of 1.15 ± 0.08 (n = 50). Cryptosporidium equi was infectious to 3-week-old four-toed hedgehogs (Atelerix albiventris) and mice, with a prepatent period of 2-9 days and a patent period of 30-40 days in hedgehogs. It was not infectious to rats and rabbits. Phylogenetic analyses of small subunit rRNA, 70 kDa heat shock protein, actin, 60 kDa glycoprotein and 100 other orthologous genes revealed that C. equi is genetically distinct from other known Cryptosporidium species and genotypes. The sequence identity between C. equi and Cryptosporidium parvum genomes is 97.9%. Compared with C. parvum, C. equi has lost two MEDLE genes and one insulinase-like protease gene and gained one SKSR gene. In addition, 60 genes have highly divergent sequences (sequence differences ≥ 5.0%), including those encoding mucin-like glycoproteins, insulinase-like peptidases, and MEDLE and SKSR proteins. The genetic uniqueness of C. equi supports its increasing host range and the naming of it as a valid Cryptosporidium species. This is the first known use of whole genome sequence data in delineating new Cryptosporidium species.
Collapse
Affiliation(s)
- Jianbo Huang
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Ming Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yongli He
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Haoyu Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Mingming Huang
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Na Li
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Una Ryan
- Harry Butler Institute, Vector- and Water-Borne Pathogen Research Group, Murdoch University, Murdoch, Western Australia 6150, Australia
| | - Martin Kváč
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice 37005, Czech Republic
| | - Yaoyu Feng
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Lihua Xiao
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Yaqiong Guo
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|