1
|
Tapia-Ramírez G, Lorenzo C, Navarrete D, Carrillo-Reyes A, Retana Ó, Carrasco-Hernández R. A Review of Mammarenaviruses and Rodent Reservoirs in the Americas. ECOHEALTH 2022; 19:22-39. [PMID: 35247117 PMCID: PMC9090702 DOI: 10.1007/s10393-022-01580-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
In the Americas, infectious viral diseases caused by viruses of the genus Mammarenavirus have been reported since the 1960s. Such diseases have commonly been associated with land use changes, which favor abundance of generalist rodent species. In the Americas-where the rates of land use change are among the highest worldwide-at least 1326 of all 2277 known rodent species have been reported. We conducted a literature review of studies between 1960 and 2020, to establish the current and historical knowledge about genotypes of mammarenaviruses and their rodent reservoirs in the Americas. Our overall goal was to show the importance of focusing research efforts on the American continent, since the conditions exist for future viral hemorrhagic fever (VHF) outbreaks caused by rodent-borne viruses, in turn, carried by widely distributed rodents. We found 47 species identified down to the species level, and one species identified only down to the genus level (Oryzomys sp.), reported in the Americas as reservoirs of mammarenaviruses, most these are ecological generalists. These species associate with 29 genotypes of Mammarenavirus, seven of which have been linked to VHFs in humans. We also highlight the need to monitor these species, in order to prevent viral disease outbreaks in the region.
Collapse
Affiliation(s)
- Gloria Tapia-Ramírez
- Departamento de Conservación de la Biodiversidad, El Colegio de La Frontera Sur, Periférico Sur S/N María Auxiliadora, 29290, San Cristóbal de Las Casas, Chiapas, Mexico.
| | - Consuelo Lorenzo
- Departamento de Conservación de la Biodiversidad, El Colegio de La Frontera Sur, Periférico Sur S/N María Auxiliadora, 29290, San Cristóbal de Las Casas, Chiapas, Mexico
| | - Darío Navarrete
- Departamento de Observación de la Tierra, Atmósfera y Océano, El Colegio de La Frontera Sur, Periférico Sur S/N María Auxiliadora, 29290, San Cristóbal de Las Casas, Chiapas, Mexico
| | - Arturo Carrillo-Reyes
- Facultad de Ingeniería, Universidad de Ciencias y Artes de Chiapas, Av 1a. Sur Pte 1460, C.P., 29000, Tuxtla Gutiérrez, Chiapas, Mexico
| | - Óscar Retana
- Centro de Estudios en Desarrollo Sustentable, Universidad Autónoma de Campeche, Avenida Héroe de Nacozari 480, C.P., 24079, San Francisco de Campeche, Campeche, Mexico
| | - Rocío Carrasco-Hernández
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, Ismael Cosío Villegas, Calz. de Tlalpan 4502, C. P., 14080, Ciudad de México, Mexico
| |
Collapse
|
2
|
Rahbar MR, Jahangiri A, Khalili S, Zarei M, Mehrabani-Zeinabad K, Khalesi B, Pourzardosht N, Hessami A, Nezafat N, Sadraei S, Negahdaripour M. Hotspots for mutations in the SARS-CoV-2 spike glycoprotein: a correspondence analysis. Sci Rep 2021; 11:23622. [PMID: 34880279 PMCID: PMC8654821 DOI: 10.1038/s41598-021-01655-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 11/01/2021] [Indexed: 12/19/2022] Open
Abstract
Spike glycoprotein (Sgp) is liable for binding of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to the host receptors. Since Sgp is the main target for vaccine and drug designing, elucidating its mutation pattern could help in this regard. This study is aimed at investigating the correspondence of specific residues to the SgpSARS-CoV-2 functionality by explorative interpretation of sequence alignments. Centrality analysis of the Sgp dissects the importance of these residues in the interaction network of the RBD-ACE2 (receptor-binding domain) complex and furin cleavage site. Correspondence of RBD to threonine500 and asparagine501 and furin cleavage site to glutamine675, glutamine677, threonine678, and alanine684 was observed; all residues are exactly located at the interaction interfaces. The harmonious location of residues dictates the RBD binding property and the flexibility, hydrophobicity, and accessibility of the furin cleavage site. These species-specific residues can be assumed as real targets of evolution, while other substitutions tend to support them. Moreover, all these residues are parts of experimentally identified epitopes. Therefore, their substitution may affect vaccine efficacy. Higher rate of RBD maintenance than furin cleavage site was predicted. The accumulation of substitutions reinforces the probability of the multi-host circulation of the virus and emphasizes the enduring evolutionary events.
Collapse
Affiliation(s)
- Mohammad Reza Rahbar
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abolfazl Jahangiri
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Saeed Khalili
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran
| | - Mahboubeh Zarei
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kamran Mehrabani-Zeinabad
- Department of Biostatistics, Faculty of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bahman Khalesi
- Department of Research and Production of Poultry Viral Vaccine, Razi Vaccine, and Serum Research Institute, Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Navid Pourzardosht
- Cellular and Molecular Research Center, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Biochemistry Department, Guilan University of Medical Sciences, Rasht, Iran
| | - Anahita Hessami
- School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Navid Nezafat
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saman Sadraei
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Manica Negahdaripour
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, P.O. Box 71345-1583, Shiraz, Iran.
| |
Collapse
|
3
|
D'Bastiani E, Campião KM. Disentangling the beta-diversity in anuran parasite communities. Parasitology 2021; 148:327-332. [PMID: 33092668 PMCID: PMC11010044 DOI: 10.1017/s0031182020002061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/12/2020] [Accepted: 10/15/2020] [Indexed: 11/05/2022]
Abstract
There is great heterogeneity in parasite communities among hosts, understanding the nature and drivers of such variations is still a great scientific quest. Here, we analyse the variation in parasite communities by addressing the following questions: (i) What is the beta-diversity component (nestedness or turnover) that most contributes to beta diversity in parasite communities among anuran species? (ii) Does the beta diversity of parasite communities follow a non-random pattern? (iii) Is the dissimilarity in composition of parasite communities related to the phylogenetic or functional dissimilarity among hosts? We found that turnover in parasite assemblages was the main component of beta diversity, but the variation observed both in the total beta diversity and in its components did not differ from the respective null models. The dissimilarity among parasite communities was not related to the phylogenetic species variability or functional dissimilarity among anuran species for most localities. In short, our findings may indicate a process of resource tracking by the parasite species, in which the resource may not necessarily be conserved phylogenetically in their hosts.
Collapse
Affiliation(s)
- Elvira D'Bastiani
- Postgraduate Program in Ecology and Conservation, Federal University of Paraná, Laboratory of Biological Interaction – Biological Sciences, Caixa Postal (P.O. Box) 19031, CEP (Postal Code) 81531-990, Curitiba, PR, Brazil
| | - Karla M. Campião
- Department of Zoology, Federal University of Paraná, Laboratory of Biological Interaction – Biological Sciences, Caixa Postal (P.O. Box) 19031, CEP (Postal Code) 81531-990, Curitiba, PR, Brazil
| |
Collapse
|
4
|
Geng Y, Shen F, Wu W, Zhang L, Luo L, Fan Z, Hou R, Yue B, Zhang X. First demonstration of giant panda's immune response to canine distemper vaccine. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 102:103489. [PMID: 31473266 DOI: 10.1016/j.dci.2019.103489] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 08/28/2019] [Accepted: 08/28/2019] [Indexed: 06/10/2023]
Abstract
The Canine Distemper Virus (CDV) is a high fatal virus to the giant panda (Ailuropoda melanoleuca), where CDV vaccination is a key preventative measure in captive giant pandas. However, the immune response of giant pandas to CDV vaccination has been little studied. In this study, we investigated the blood transcriptome expression profiles of five giant panda cubs after three inoculations, 21 days apart. Blood samples were collected before vaccination (0 Day), and 24 h after each of the three inoculations; defined here as 1 Day, 21 Day, and 42 Day. Compared to 0 Day, we obtained 1262 differentially expressed genes (DEGs) during inoculations. GO and KEGG pathways enrichment analysis of these DEGs found 222 GO terms and 40 pathways. The maximum immune-related terms were enriched by DEGs from comparisons of 21 Day and 0 Day. In the PPI analysis, we identified RSAD2, IL18, ISG15 immune-related hub genes from 1 Day and 21 Day comparison. Compared to 0 Day, innate immune-related genes, TLR4 and TLR8, were up-regulated at 1 Day, and the expressions of IRF1, RSAD2, MX1, and OAS2 were highest at 21 Day. Of the adaptive immune-related genes, IL15, promoting T cell differentiation into CD8+T cells, was up-regulated after the first two inoculations, IL12β, promoting T cell differentiation into memory cells, and IL10, promoting B cell proliferation and differentiation, were down-regulated during three inoculations. Our results indicated that the immune response of five giant panda cubs was strongest after the second inoculation, most likely protected against CDV infection through innate immunity and T cells, but did not produce enough memory cells to maintain long-term immunity after CDV vaccination.
Collapse
Affiliation(s)
- Yang Geng
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610064, China.
| | - Fujun Shen
- The Sichuan Key Laboratory for Conservation Biology of Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, 610081, China.
| | - Wei Wu
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610064, China.
| | - Liang Zhang
- The Sichuan Key Laboratory for Conservation Biology of Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, 610081, China.
| | - Li Luo
- The Sichuan Key Laboratory for Conservation Biology of Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, 610081, China.
| | - Zhenxin Fan
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, 610064, PR China.
| | - Rong Hou
- The Sichuan Key Laboratory for Conservation Biology of Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, 610081, China.
| | - Bisong Yue
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, 610064, PR China.
| | - Xiuyue Zhang
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
5
|
Abstract
Strategies to manage plant disease-from use of resistant varieties to crop rotation, elimination of reservoirs, landscape planning, surveillance, quarantine, risk modeling, and anticipation of disease emergences-all rely on knowledge of pathogen host range. However, awareness of the multitude of factors that influence the outcome of plant-microorganism interactions, the spatial and temporal dynamics of these factors, and the diversity of any given pathogen makes it increasingly challenging to define simple, all-purpose rules to circumscribe the host range of a pathogen. For bacteria, fungi, oomycetes, and viruses, we illustrate that host range is often an overlapping continuum-more so than the separation of discrete pathotypes-and that host jumps are common. By setting the mechanisms of plant-pathogen interactions into the scales of contemporary land use and Earth history, we propose a framework to assess the frontiers of host range for practical applications and research on pathogen evolution.
Collapse
Affiliation(s)
| | - Benoît Moury
- Pathologie Végétale, INRA, 84140, Montfavet, France;
| |
Collapse
|
6
|
Engelstädter J, Fortuna NZ. The dynamics of preferential host switching: Host phylogeny as a key predictor of parasite distribution. Evolution 2019; 73:1330-1340. [PMID: 30847894 DOI: 10.1111/evo.13716] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 02/06/2019] [Indexed: 12/17/2022]
Abstract
Parasites often jump to and become established in a new host species. There is much evidence that the probability of such host shifts decreases with increasing phylogenetic distance between donor and recipient hosts, but the consequences of such preferential host switching remain little explored. We develop a computational model to investigate the dynamics of parasite host shifts in the presence of this phylogenetic distance effect. In this model, a clade of parasites evolves on an evolving clade of host species where parasites can cospeciate with their hosts, switch to new hosts, speciate within hosts or become extinct. Our model predicts that host phylogenies are major determinants of parasite distributions across trees. In particular, we predict that trees consisting of few large clades of host species and those with fast species turnover should harbor more parasites than trees with many small clades and those that diversify more slowly. Within trees, large clades are predicted to exhibit a higher fraction of infected species than small clades. We discuss our results in the light of recent cophylogenetic studies in a wide range of host-parasite systems.
Collapse
Affiliation(s)
- Jan Engelstädter
- School of Biological Sciences, The University of Queensland, Brisbane, Australia
| | - Nicole Z Fortuna
- School of Biological Sciences, The University of Queensland, Brisbane, Australia
| |
Collapse
|
7
|
Abstract
Computer-assisted technologies of the genomic structure, biological function, and evolution of viruses remain a largely neglected area of research. The attention of bioinformaticians to this challenging field is currently unsatisfying in respect to its medical and biological importance. The power of new genome sequencing technologies, associated with new tools to handle "big data", provides unprecedented opportunities to address fundamental questions in virology. Here, we present an overview of the current technologies, challenges, and advantages of Next-Generation Sequencing (NGS) in relation to the field of virology. We present how viral sequences can be detected de novo out of current short-read NGS data. Furthermore, we discuss the challenges and applications of viral quasispecies and how secondary structures, commonly shaped by RNA viruses, can be computationally predicted. The phylogenetic analysis of viruses, as another ubiquitous field in virology, forms an essential element of describing viral epidemics and challenges current algorithms. Recently, the first specialized virus-bioinformatic organizations have been established. We need to bring together virologists and bioinformaticians and provide a platform for the implementation of interdisciplinary collaborative projects at local and international scales. Above all, there is an urgent need for dedicated software tools to tackle various challenges in virology.
Collapse
Affiliation(s)
- Martin Hölzer
- RNA Bioinformatics and High Throughput Analysis, Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, Jena, Germany; European Virus Bioinformatics Center (EVBC), Jena, Germany
| | - Manja Marz
- RNA Bioinformatics and High Throughput Analysis, Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, Jena, Germany; European Virus Bioinformatics Center (EVBC), Jena, Germany; FLI Leibniz Institute for Age Research, Jena, Germany.
| |
Collapse
|
8
|
Hoyal Cuthill JF, Sewell KB, Cannon LRG, Charleston MA, Lawler S, Littlewood DTJ, Olson PD, Blair D. Australian spiny mountain crayfish and their temnocephalan ectosymbionts: an ancient association on the edge of coextinction? Proc Biol Sci 2017; 283:rspb.2016.0585. [PMID: 27226467 DOI: 10.1098/rspb.2016.0585] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 04/27/2016] [Indexed: 12/29/2022] Open
Abstract
Australian spiny mountain crayfish (Euastacus, Parastacidae) and their ecotosymbiotic temnocephalan flatworms (Temnocephalida, Platyhelminthes) may have co-occurred and interacted through deep time, during a period of major environmental change. Therefore, reconstructing the history of their association is of evolutionary, ecological, and conservation significance. Here, time-calibrated Bayesian phylogenies of Euastacus species and their temnocephalans (Temnohaswellia and Temnosewellia) indicate near-synchronous diversifications from the Cretaceous. Statistically significant cophylogeny correlations between associated clades suggest linked evolutionary histories. However, there is a stronger signal of codivergence and greater host specificity in Temnosewellia, which co-occurs with Euastacus across its range. Phylogeography and analyses of evolutionary distinctiveness (ED) suggest that regional differences in the impact of climate warming and drying had major effects both on crayfish and associated temnocephalans. In particular, Euastacus and Temnosewellia show strong latitudinal gradients in ED and, conversely, in geographical range size, with the most distinctive, northern lineages facing the greatest risk of extinction. Therefore, environmental change has, in some cases, strengthened ecological and evolutionary associations, leaving host-specific temnocephalans vulnerable to coextinction with endangered hosts. Consequently, the extinction of all Euastacus species currently endangered (75%) predicts coextinction of approximately 60% of the studied temnocephalans, with greatest loss of the most evolutionarily distinctive lineages.
Collapse
Affiliation(s)
- Jennifer F Hoyal Cuthill
- Department of Earth Sciences, University of Cambridge, Cambridge CB2 3EQ, UK Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - Kim B Sewell
- Centre for Microscopy and Microanalysis (CMM), The University of Queensland, St Lucia, Queensland 4072, Australia
| | | | | | - Susan Lawler
- Department of Ecology, Environment and Evolution, La Trobe University, Wodonga, Victoria 3690, Australia
| | | | - Peter D Olson
- Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - David Blair
- College of Marine and Environmental Sciences, James Cook University, Townsville, Queensland 4811, Australia
| |
Collapse
|
9
|
Olival KJ, Hosseini PR, Zambrana-Torrelio C, Ross N, Bogich TL, Daszak P. Host and viral traits predict zoonotic spillover from mammals. Nature 2017. [PMID: 28636590 DOI: 10.103/nature22975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
The majority of human emerging infectious diseases are zoonotic, with viruses that originate in wild mammals of particular concern (for example, HIV, Ebola and SARS). Understanding patterns of viral diversity in wildlife and determinants of successful cross-species transmission, or spillover, are therefore key goals for pandemic surveillance programs. However, few analytical tools exist to identify which host species are likely to harbour the next human virus, or which viruses can cross species boundaries. Here we conduct a comprehensive analysis of mammalian host-virus relationships and show that both the total number of viruses that infect a given species and the proportion likely to be zoonotic are predictable. After controlling for research effort, the proportion of zoonotic viruses per species is predicted by phylogenetic relatedness to humans, host taxonomy and human population within a species range-which may reflect human-wildlife contact. We demonstrate that bats harbour a significantly higher proportion of zoonotic viruses than all other mammalian orders. We also identify the taxa and geographic regions with the largest estimated number of 'missing viruses' and 'missing zoonoses' and therefore of highest value for future surveillance. We then show that phylogenetic host breadth and other viral traits are significant predictors of zoonotic potential, providing a novel framework to assess if a newly discovered mammalian virus could infect people.
Collapse
Affiliation(s)
- Kevin J Olival
- EcoHealth Alliance, 460 West 34th Street, New York, New York 10001, USA
| | | | | | - Noam Ross
- EcoHealth Alliance, 460 West 34th Street, New York, New York 10001, USA
| | - Tiffany L Bogich
- EcoHealth Alliance, 460 West 34th Street, New York, New York 10001, USA
| | - Peter Daszak
- EcoHealth Alliance, 460 West 34th Street, New York, New York 10001, USA
| |
Collapse
|
10
|
Olival KJ, Hosseini PR, Zambrana-Torrelio C, Ross N, Bogich TL, Daszak P. Host and viral traits predict zoonotic spillover from mammals. Nature 2017. [PMID: 28636590 PMCID: PMC5570460 DOI: 10.1038/nature22975] [Citation(s) in RCA: 601] [Impact Index Per Article: 85.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Analysis of a comprehensive database of mammalian host–virus relationships reveals that both the total number of viruses that infect a given species and the proportion likely to be zoonotic are predictable and that this enables identification of mammalian species and geographic locations where novel zoonoses are likely to be found. Zoonotic viruses, many originating in wild mammals, pose a serious threat to global public health. Peter Daszak and colleagues create a comprehensive database of mammalian host–virus relationships, which they analyse to determine patterns of virus and zoonotic virus distribution in mammals. They identify various factors that influence the number and diversity of viruses that infect a given species as well as factors that predict the proportion of zoonotic viruses per species. In doing so, they identify mammalian species and geographic locations where novel zoonoses are likely to be found. The majority of human emerging infectious diseases are zoonotic, with viruses that originate in wild mammals of particular concern (for example, HIV, Ebola and SARS)1,2,3. Understanding patterns of viral diversity in wildlife and determinants of successful cross-species transmission, or spillover, are therefore key goals for pandemic surveillance programs4. However, few analytical tools exist to identify which host species are likely to harbour the next human virus, or which viruses can cross species boundaries5,6,7. Here we conduct a comprehensive analysis of mammalian host–virus relationships and show that both the total number of viruses that infect a given species and the proportion likely to be zoonotic are predictable. After controlling for research effort, the proportion of zoonotic viruses per species is predicted by phylogenetic relatedness to humans, host taxonomy and human population within a species range—which may reflect human–wildlife contact. We demonstrate that bats harbour a significantly higher proportion of zoonotic viruses than all other mammalian orders. We also identify the taxa and geographic regions with the largest estimated number of ‘missing viruses’ and ‘missing zoonoses’ and therefore of highest value for future surveillance. We then show that phylogenetic host breadth and other viral traits are significant predictors of zoonotic potential, providing a novel framework to assess if a newly discovered mammalian virus could infect people.
Collapse
Affiliation(s)
- Kevin J Olival
- EcoHealth Alliance, 460 West 34th Street, New York, New York 10001, USA
| | | | | | - Noam Ross
- EcoHealth Alliance, 460 West 34th Street, New York, New York 10001, USA
| | - Tiffany L Bogich
- EcoHealth Alliance, 460 West 34th Street, New York, New York 10001, USA
| | - Peter Daszak
- EcoHealth Alliance, 460 West 34th Street, New York, New York 10001, USA
| |
Collapse
|
11
|
Host and Parasite Evolution in a Tangled Bank. Trends Parasitol 2016; 32:863-873. [PMID: 27599631 DOI: 10.1016/j.pt.2016.08.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 08/04/2016] [Accepted: 08/04/2016] [Indexed: 01/29/2023]
Abstract
Most hosts and parasites exist in diverse communities wherein they interact with other species, spanning the parasite-mutualist continuum. These additional interactions have the potential to impose selection on hosts and parasites and influence the patterns and processes of their evolution. Yet, host-parasite interactions are almost exclusively studied in species pairs. A wave of new research has incorporated a multispecies community context, showing that additional ecological interactions can alter components of host and parasite fitness, as well as interaction specificity and virulence. Here, we synthesize these findings to assess the effects of increased species diversity on the patterns and processes of host and parasite evolution. We argue that our understanding of host-parasite interactions would benefit from a richer biotic perspective.
Collapse
|
12
|
Birnbaum SSL, Gerardo NM. Patterns of Specificity of the Pathogen Escovopsis across the Fungus-Growing Ant Symbiosis. Am Nat 2016; 188:52-65. [PMID: 27322121 DOI: 10.1086/686911] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Parasites evolve within complex abiotic and biotic environments. Because of this, it is often challenging to ascertain how evolutionary and ecological processes together affect parasite specialization. Here, we use the fungus-growing ant system, which consists of ancient, likely coevolved, complex communities, to explore the ecological and evolutionary forces shaping host-parasite specificity. We use a comparative phylogenetic framework to determine whether patterns of specificity between the fungal parasite Escovopsis and its host fungi at fine phylogenetic scales reflect patterns of specificity at broader phylogenetic levels. In other words, we ask whether parasite specificity across broad host phylogenetic relationships is maintained by specificity toward more closely related hosts. We couple this exploration with manipulations of the community context within which host-parasite interactions are taking place to evaluate how community complexity alters parasite specificity. Regardless of host community complexity, parasites displayed a consistent pattern of specialization on native hosts, that is, those that they are found attacking in nature, with the potential for occasional switching to hosts distantly related to their native hosts. These results suggest that, even within a complex community context, pairwise host and parasite adaptation and coadaptation can be the primary drivers of the evolution and maintenance of parasite specificity.
Collapse
|
13
|
Abstract
Emerging viral diseases are often the product of a host shift, where a pathogen jumps from its original host into a novel species. Phylogenetic studies show that host shifts are a frequent event in the evolution of most pathogens, but why pathogens successfully jump between some host species but not others is only just becoming clear. The susceptibility of potential new hosts can vary enormously, with close relatives of the natural host typically being the most susceptible. Often, pathogens must adapt to successfully infect a novel host, for example by evolving to use different cell surface receptors, to escape the immune response, or to ensure they are transmitted by the new host. In viruses there are often limited molecular solutions to achieve this, and the same sequence changes are often seen each time a virus infects a particular host. These changes may come at a cost to other aspects of the pathogen's fitness, and this may sometimes prevent host shifts from occurring. Here we examine how these evolutionary factors affect patterns of host shifts and disease emergence.
Collapse
Affiliation(s)
- Ben Longdon
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| | | | - Colin A. Russell
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - John J. Welch
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Francis M. Jiggins
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
14
|
Vander Wal E, Garant D, Calmé S, Chapman CA, Festa-Bianchet M, Millien V, Rioux-Paquette S, Pelletier F. Applying evolutionary concepts to wildlife disease ecology and management. Evol Appl 2014; 7:856-68. [PMID: 25469163 PMCID: PMC4227862 DOI: 10.1111/eva.12168] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 04/08/2014] [Indexed: 12/17/2022] Open
Abstract
Existing and emerging infectious diseases are among the most pressing global threats to biodiversity, food safety and human health. The complex interplay between host, pathogen and environment creates a challenge for conserving species, communities and ecosystem functions, while mediating the many known ecological and socio-economic negative effects of disease. Despite the clear ecological and evolutionary contexts of host-pathogen dynamics, approaches to managing wildlife disease remain predominantly reactionary, focusing on surveillance and some attempts at eradication. A few exceptional studies have heeded recent calls for better integration of ecological concepts in the study and management of wildlife disease; however, evolutionary concepts remain underused. Applied evolution consists of four principles: evolutionary history, genetic and phenotypic variation, selection and eco-evolutionary dynamics. In this article, we first update a classical framework for understanding wildlife disease to integrate better these principles. Within this framework, we explore the evolutionary implications of environment-disease interactions. Subsequently, we synthesize areas where applied evolution can be employed in wildlife disease management. Finally, we discuss some future directions and challenges. Here, we underscore that despite some evolutionary principles currently playing an important role in our understanding of disease in wild animals, considerable opportunities remain for fostering the practice of evolutionarily enlightened wildlife disease management.
Collapse
Affiliation(s)
- Eric Vander Wal
- Département de biologie, Université de SherbrookeSherbrooke, QC, Canada
| | - Dany Garant
- Département de biologie, Université de SherbrookeSherbrooke, QC, Canada
| | - Sophie Calmé
- Département de biologie, Université de SherbrookeSherbrooke, QC, Canada
- El Colegio de la Frontera SurChetumal, Quintana Roo, Mexico
| | - Colin A Chapman
- Department of Anthropology and McGill School of Environment, McGill UniversityMontreal, QC, Canada
- Wildlife Conservation SocietyBronx, New York, NY, USA
| | | | | | | | - Fanie Pelletier
- Département de biologie, Université de SherbrookeSherbrooke, QC, Canada
| |
Collapse
|
15
|
Waxman D, Weinert LA, Welch JJ. Inferring host range dynamics from comparative data: the protozoan parasites of new world monkeys. Am Nat 2014; 184:65-74. [PMID: 24921601 DOI: 10.1086/676589] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Uncovering the ecological determinants of parasite host range is a central goal of comparative parasitology and infectious disease ecology. But while parasites are often distributed nonrandomly across the host phylogeny, such patterns are difficult to interpret without a genealogy for the parasite samples and without knowing what sorts of ecological dynamics might lead to what sorts of nonrandomness. We investigated inferences from comparative data, using presence/absence records from protozoan parasites of the New World monkeys. We first demonstrate several distinct types of phylogenetic signal in these data, showing, for example, that parasite species are clustered on the host tree and that closely related host species harbor similar numbers of parasite species. We then show that all of these patterns can be generated by a single, simple dynamical model, in which parasite host range changes more rapidly than host speciation/extinction and parasites preferentially colonize uninfected host species that are closely related to their existing hosts. Fitting this model to data, we then estimate its parameters. Finally, we caution that quite different ecological processes can lead to similar signatures but show how phylogenetic variation in host susceptibility can be distinguished from a tendency for parasites to colonize closely related hosts. Our new process-based analyses, which estimate meaningful parameters, should be useful for inferring the determinants of parasite host range and transmission success.
Collapse
Affiliation(s)
- David Waxman
- Centre for Computational Systems Biology, Fudan University, Shanghai 200433, People's Republic of China
| | | | | |
Collapse
|
16
|
Estrada-Peña A, Ostfeld RS, Peterson AT, Poulin R, de la Fuente J. Effects of environmental change on zoonotic disease risk: an ecological primer. Trends Parasitol 2014; 30:205-14. [PMID: 24636356 DOI: 10.1016/j.pt.2014.02.003] [Citation(s) in RCA: 163] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 02/08/2014] [Accepted: 02/11/2014] [Indexed: 12/27/2022]
Abstract
Impacts of environmental changes on zoonotic disease risk are the subject of speculation, but lack a coherent framework for understanding environmental drivers of pathogen transmission from animal hosts to humans. We review how environmental factors affect the distributions of zoonotic agents and their transmission to humans, exploring the roles they play in zoonotic systems. We demonstrate the importance of capturing the distributional ecology of any species involved in pathogen transmission, defining the environmental conditions required, and the projection of that niche onto geography. We further review how environmental changes may alter the dispersal behaviour of populations of any component of zoonotic disease systems. Such changes can modify relative importance of different host species for pathogens, modifying contact rates with humans.
Collapse
Affiliation(s)
- Agustín Estrada-Peña
- Department of Animal Pathology, Faculty of Veterinary Medicine, Miguel Servet, 177, 50013-Zaragoza, Spain.
| | | | - A Townsend Peterson
- The University of Kansas Biodiversity Institute, Lawrence, KS 66045-7593, USA
| | - Robert Poulin
- Department of Zoology, University of Otago, Dunedin 9016, New Zealand
| | - José de la Fuente
- SaBio, IREC, Ronda de Toledo s/n, 13071 Ciudad Real, Spain; Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
17
|
Characterization of a novel betacoronavirus related to middle East respiratory syndrome coronavirus in European hedgehogs. J Virol 2013; 88:717-24. [PMID: 24131722 DOI: 10.1128/jvi.01600-13] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Bats are known to host viruses closely related to important human coronaviruses (HCoVs), such as HCoV-229E, severe-acute respiratory syndrome coronavirus (SARS-CoV), and Middle East respiratory syndrome CoV (MERS-CoV). As RNA viruses may coevolve with their hosts, we sought to investigate the closest sister taxon to bats, the Eulipotyphla, and screened European hedgehogs (Erinaceus europaeus) from Germany for CoV by nested reverse transcriptase PCR. A novel betacoronavirus species in a phylogenetic sister relationship to MERS-CoV and clade c bat CoVs was detected and characterized on the whole-genome level. A total of 58.9% of hedgehog fecal specimens were positive for the novel CoV (EriCoV) at 7.9 log10 mean RNA copies per ml. EriCoV RNA concentrations were higher in the intestine than in other solid organs, blood, or urine. Detailed analyses of the full hedgehog intestine showed the highest EriCoV concentrations in lower gastrointestinal tract specimens, compatible with viral replication in the lower intestine and fecal-oral transmission. Thirteen of 27 (48.2%) hedgehog sera contained non-neutralizing antibodies against MERS-CoV. The animal origins of this betacoronavirus clade that includes MERS-CoV may thus include both bat and nonbat hosts.
Collapse
|