1
|
Dharmarathne C, McLean DJ, Michalik P, Herberstein ME. Sperm Transfer Under Behavioral and Morphological Constraints in the Orb-Web Spider Genus Argiope. Integr Zool 2025. [PMID: 39956780 DOI: 10.1111/1749-4877.12956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/26/2024] [Accepted: 01/17/2025] [Indexed: 02/18/2025]
Abstract
Sperm transfer constraints are common phenomena in spider mating systems, influenced by both behavioral and morphological factors. Non-motile, encapsulated sperm cells must navigate through narrow male and female ducts during short (only seconds) copulations, all while under the pressure of female aggression, which can include sexual cannibalism and genital damage. However, little attention has been paid to the impact of male and female internal genital morphology on sperm transfer. In this study, we quantify the number of sperm transferred by males in five species of the genus Argiope as a direct measure of reproductive success. We explore sperm transfer in relation to copulation duration, sperm availability, sexual dimorphism, and female aggression. Additionally, we compare intra- and interspecific variation in sperm transfer by examining internal male and female genital morphological traits. Finally, we discuss the allometry of internal genital morphology in terms of sperm transfer in spiders. Our findings indicate that the occurrence of sexual cannibalism is the significant factor impacting sperm transfer in the genus Argiope. We observed a positive, albeit non-significant, correlation between sperm duct width and sperm transfer. Nonetheless, interspecific variability in allometry and methodological challenges underscore the need for continued research to fully understand the complexities of internal genital evolution in spiders.
Collapse
Affiliation(s)
| | - Donald J McLean
- School of Natural Sciences, Macquarie University, Sydney, Australia
| | - Peter Michalik
- Zoological Institute and Museum of General and Systematic Zoology, Greifswald, Germany
| | - M E Herberstein
- School of Natural Sciences, Macquarie University, Sydney, Australia
- Leibniz Institute for the Analysis of Biodiversity Change, Bonn, Germany
- Department of Biology, University of Hamburg, Hamburg, Germany
| |
Collapse
|
2
|
Kuntner M, Kuntner M, Kuntner E, Kuntner I, Faganeli Pucer J, Štrumbelj E, Li D. Nephila spider male aggregation: preference for optimal female size and web clustering. Integr Zool 2024. [PMID: 39218999 DOI: 10.1111/1749-4877.12896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Sexual size dimorphism theory predicts biased operational sex ratios (OSRs) and an uneven distribution of males among certain females. We studied this phenomenon through a field census of the giant wood spider Nephila pilipes (family Nephilidae) in Singapore, a species where females are, on average, 6.9 times larger than males. Specifically, we tested two hypotheses concerning male distribution, given their tendency to aggregate in certain female webs. The optimal female size hypothesis predicts that males would predominantly occupy webs of intermediate-sized females. The web clustering hypothesis posits that more males would be found in webs closer together compared to those farther apart. Our snapshot census revealed a female-biased OSR (females: males = 1.85) with an uneven distribution of males in female webs. Most males were found in webs of intermediate-sized females aligning with the optimal female size hypothesis. Proximity among female webs was indicative of male presence, lending support to the web clustering hypothesis. While our study's limited sample size warrants caution, we conclude that in N. pilipes, male occupation of female webs is facilitated by the clustering of webs, and males prefer to cohabit with optimally sized, receptive females.
Collapse
Affiliation(s)
- Matjaž Kuntner
- Department of Organisms and Ecosystems Research, National Institute of Biology, Ljubljana, Slovenia
- Jovan Hadži Institute of Biology, Research Centre of the Slovenian Sciences and Arts, Ljubljana, Slovenia
- State Key Laboratory of Biocatalysis and Enzyme Engineering & Centre for Behavioural Ecology & Evolution, School of Life Sciences, Hubei University, Wuhan, Hubei, China
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | | | | | | | - Jana Faganeli Pucer
- Faculty of Computer and Information Science, University of Ljubljana, Ljubljana, Slovenia
| | - Erik Štrumbelj
- Faculty of Computer and Information Science, University of Ljubljana, Ljubljana, Slovenia
| | - Daiqin Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering & Centre for Behavioural Ecology & Evolution, School of Life Sciences, Hubei University, Wuhan, Hubei, China
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
3
|
Ortiz D, Pekár S, Bilat J, Shafaie S, Alvarez N, Gauthier J. Dynamic evolution of size and colour in the highly specialized Zodarion ant-eating spiders. Proc Biol Sci 2023; 290:20230797. [PMID: 37554037 PMCID: PMC10410226 DOI: 10.1098/rspb.2023.0797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/17/2023] [Indexed: 08/10/2023] Open
Abstract
Ecological specialists constitute relevant case studies for understanding the mechanisms, potential and limitations of evolution. The species-rich and strictly myrmecophagous spiders of the genus Zodarion show diversified defence mechanisms, including myrmecomorphy of different ant species and nocturnality. Through Hybridization Capture Using RAD Probes (hyRAD), a phylogenomic technique designed for sequencing poorly preserved specimens, we reconstructed a phylogeny of Zodarion using 52 (approx. a third of the nominal) species that cover its phylogenetic and distributional diversity. We then estimated the evolution of body size and colour, traits that have diversified noticeably and are linked to defence mechanisms, across the group. Our genomic matrix of 300 loci led to a well-supported phylogenetic hypothesis that uncovered two main clades inside Zodarion. Ancestral state estimation revealed the highly dynamic evolution of body size and colour across the group, with multiple transitions and convergences in both traits, which we propose is likely indicative of multiple transitions in ant specialization across the genus. Our study will allow the informed targeted selection of Zodarion taxa of special interest for research into the group's remarkable adaptations to ant specialization. It also exemplifies the utility of hyRAD for phylogenetic studies using museum material.
Collapse
Affiliation(s)
- David Ortiz
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Stano Pekár
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Julia Bilat
- Geneva Natural History Museum, Geneva, Switzerland
| | - Sepideh Shafaie
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | | | | |
Collapse
|
4
|
Acevedo AA, Palma RE, Olalla-Tárraga MÁ. Ecological and evolutionary trends of body size in Pristimantis frogs, the world's most diverse vertebrate genus. Sci Rep 2022; 12:18106. [PMID: 36302809 PMCID: PMC9613995 DOI: 10.1038/s41598-022-22181-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 10/11/2022] [Indexed: 12/30/2022] Open
Abstract
Body size is a key organismal trait. However, the environmental and evolutionary factors that drive body size patterns at the interspecific level remain unclear. Here, we explored these relationships between phenotype-environment using neotropical frogs of Pristimantis, the world's most diverse vertebrate genus. We analyzed: (a) whether this group follows the Rensch's rule, a trend of sexual size dimorphism (SSD) to increase with size when males are the larger sex; (b) whether environmental constraints have influenced body size variation; and (c) how the rates of body size evolution have varied over time. Analyses were based on two information sources, the first one including body sizes of ~ 85% (495 species) of known species in the genus, and a second one incorporating molecular phylogenetic information for 257 species. Our results showed that all Pristimantis species exhibited marked SSD but did not follow Rensch's rule. We found that the models that best explained body size in males, females, and SSD contained environmental variations in temperature, precipitation, and elevation as predictors. In turn, body size has evolved toward an optimum, with a decelerating rate of evolution differentiated between the large Pristimantis clades.
Collapse
Affiliation(s)
- Aldemar A. Acevedo
- grid.7870.80000 0001 2157 0406Laboratory of Evolutionary Biology, Department of Ecology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile ,grid.443909.30000 0004 0385 4466Laboratory of Genetics and Evolution, Department of Ecological Sciences, Faculty of Sciences, Universidad de Chile, Santiago, Chile ,grid.441950.d0000 0001 2107 1033Grupo de Investigación en Ecología y Biogeografía, Universidad de Pamplona, Pamplona, Colombia
| | - R. Eduardo Palma
- grid.7870.80000 0001 2157 0406Laboratory of Evolutionary Biology, Department of Ecology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Miguel Ángel Olalla-Tárraga
- grid.28479.300000 0001 2206 5938Department of Biology and Geology, Physics & Inorganic Chemistry, Universidad Rey Juan Carlos, Móstoles, Spain
| |
Collapse
|
5
|
Framenau VW, Kuntner M. The new Australian leaf-curling orb-weaving spider genus Leviana (Araneae, Araneidae). EVOLUTIONARY SYSTEMATICS 2022. [DOI: 10.3897/evolsyst.6.83573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The new Australian orb-weaving spider genus Levianagen. nov. is described to include five species, all known from both sexes: Leviana dimidiata (L. Koch, 1871) comb. nov. (type species) (= Epeira sylvicola Rainbow, 1897 syn. nov.), L. cincinnatasp. nov., L. foliumsp. nov., L. minimasp. nov. and L. mulieraria (Keyserling, 1887) comb. nov. Male pedipalp morphology, specifically the presence of a single patella spine and the median apophysis forming an arch over the radix, place Levianagen. nov. in the informal Australian ‘backobourkiine’ clade; however, the genus differs from all other genera of this group by the presence of a spine inside the basal median apophysis arch of the male pedipalp, an epigyne that is wider than long with a scape that is approximately as long as the epigyne (but often broken off) and a lack of humeral humps on the elongate ovoid abdomen. In addition, unlike any other backobourkiine, Levianagen. nov. incorporate a rolled leaf as retreat into the periphery of their web. Levianagen. nov. species exhibit only a moderate sexual size dimorphism with female to male ratios between 1.3 and 1.7. Levianagen. nov. occurs in eastern Australia from northern Queensland in the north to Victoria in the south, with a single tropical species, L. mulierariacomb. nov., spreading into northern Western Australia.
Collapse
|
6
|
Gueratto C, Benedetti A, Pinto-da-Rocha R. Phylogenetic relationships of the genus Mischonyx Bertkau, 1880, with taxonomic changes and three new species description (Opiliones: Gonyleptidae). PeerJ 2021; 9:e11682. [PMID: 34692238 PMCID: PMC8485841 DOI: 10.7717/peerj.11682] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 06/06/2021] [Indexed: 11/30/2022] Open
Abstract
The type species of Mischonyx Bertkau 1880, Mischonyx squalidus, was described based on a juvenile. The holotype is lost. Based on a revision of publications, the genus includes 12 species, all in Brazil. The objectives of this research are: to propose a phylogenetic hypothesis for Mischonyx based on Total Evidence (TE); propose taxonomic changes based on the phylogeny; and analyze the phylogenetic hypothesis biogeographically. Using the exemplar approach to taxon selection, we studied 54 specimens, 15 outgroups and 39 ingroup taxa using seven molecular markers (28S, 12S and 16S ribosomal genes, citochrome oxidase subunit I gene, carbamoyl-phosphate synthetase gene, internal transcribed spacer subunit 2 and histone H3 gene), totaling 3,742 bp, and 128 morphological characters. We analyzed the dataset under three optimality criteria: Maximum likelihood (ML), Maximum parsimony (MP) and Bayesian. We discuss the transformation of character states throughout the phylogeny, the different phylogenetic hypotheses using different datasets and the congruence of evidence between the clades obtained by the phylogenetic analysis and the biogeographical hypothesis for the Atlantic Forest areas of endemism. We estimate that Mischonyx clade diverged 50.53 Mya, and inside the genus there are two major clades. One of them cointains species from Paraná, Santa Catarina, South of São Paulo and Serra do Mar Areas of Endemism and the other has species from Espinhaço, Bocaina, South coast of Rio de Janeiro and Serra dos Órgãos Areas of Endemism. The first split inside these two clades occurred at 48.94 and 44.80 Mya, respectively. We describe three new species from Brazil: Mischonyx minimus sp. nov. (type locality: Petrópolis, Rio de Janeiro), Mischonyx intervalensis sp. nov. (type locality: Ribeirão Grande, São Paulo) and Mischonyx tinguaensis sp. nov (type locality: Nova Iguaçu, Rio de Janeiro). The genus Urodiabunus Mello-Leitão, 1935 is considered a junior synonym of Mischonyx. Weyhia spinifrons Mello-Leitão, 1923; Weyhia clavifemur Mello-Leitão, 1927 and Geraeocormobius reitzi Vasconcelos, 2005 were transferred to Mischonyx. Mischonyx cuspidatus (Roewer, 1913) is a junior synonym of M. squalidus Bertkau, 1880. In the results of the phylogenetic analyses, Gonyleptes antiquus Mello-Leitão, 1934 (former Mischonyx antiquus) does not belong in Mischonyx and its original combination is re-established. As it is now defined, Mischonyx comprises 17 species, with seven new combinations.
Collapse
Affiliation(s)
- Caio Gueratto
- Departamento de Zoologia/Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Alípio Benedetti
- Departamento de Zoologia/Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
- Centro Universitário Metodista Izabela Hendrix, Belo Horizonte, Minas Gerais, Brazil
| | - Ricardo Pinto-da-Rocha
- Departamento de Zoologia/Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
7
|
Golobinek R, Gregorič M, Kralj-Fišer S. Body Size, Not Personality, Explains Both Male Mating Success and Sexual Cannibalism in a Widow Spider. BIOLOGY 2021; 10:189. [PMID: 33802370 PMCID: PMC7998861 DOI: 10.3390/biology10030189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/09/2021] [Accepted: 02/24/2021] [Indexed: 11/16/2022]
Abstract
Theory suggests that consistent individual variation in behavior relates to fitness, but few studies have empirically examined the role of personalities in mate choice, male-male competition and reproductive success. We observed the Mediterranean black widow, Latrodectus tredecimguttatus, in the individual and mating context, to test how body size measures and two functionally important aggressive behaviors, i.e., male aggression towards rivals and female voracity towards prey, affect mating behaviors, mating success and sexual cannibalism. We specifically selected voracity towards prey in females to test the "aggressive spillover hypothesis", suggesting that more voracious females are more sexually cannibalistic. Both females and males exhibit consistent individual differences in the examined aggressive behaviors. While larger males win contests more often and achieve more copulations, neither male nor female size measures correlate to aggression. Female voracity does not correlate with aggression towards mates and sexual cannibalism, rejecting the "spillover hypothesis". However, occurrence of sexual cannibalism positively relates to longer insertion duration. Furthermore, the smaller the ratio between male and female body length the more likely a female attacked and cannibalized a mate. We show that individual variation in aggression levels plays no direct role in the mating behavior of the Mediterranean black widow. Instead, body size affects male mating success and occurrences of sexual cannibalism in females.
Collapse
Affiliation(s)
| | | | - Simona Kralj-Fišer
- Jovan Hadži Institute of Biology, Research Centre of the Slovenian Academy of Sciences and Arts, Novi trg 2, 1000 Ljubljana, Slovenia; (R.G.); (M.G.)
| |
Collapse
|
8
|
Abel C, Schneider JM, Kuntner M, Harms D. Phylogeography of the ‘cosmopolitan’ orb-weaver Argiope trifasciata (Araneae: Araneidae). Biol J Linn Soc Lond 2020. [DOI: 10.1093/biolinnean/blaa078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Few spider species show truly cosmopolitan distributions. Among them is the banded garden spider Argiope trifasciata, which is reported from six continents across major climatic gradients and geographical boundaries. In orb-weaver spiders, such global distributions might be a result of lively dispersal via ballooning. However, wide distributions might also be artefactual, owing to our limited understanding of species taxonomy. To test the hypothesis that A. trifasciata might be a complex of cryptic species with more limited geographical ranges, we investigated the biogeographical structure and evolutionary history of A. trifasciata through a combination of time-calibrated phylogenetic analyses (57 terminals and three genes), ancestral range reconstruction and species delimitation methods. Our results strongly suggest that A. trifasciata as currently defined is not a single species. Its populations fall into five reciprocally monophyletic clades that are genetically distinct and have evolutionary origins in the Plio-Pleistocene. These clades are confined to East Asia, temperate Australia, Hawaii, the New World and the Old World (Africa and most of the Palaearctic). Our results provide the basis for future investigation of morphological and/or ecological disparity between the populations that are likely to represent species, in addition to examinations of the attributes and dispersal modes of these species.
Collapse
Affiliation(s)
- Christoph Abel
- Zoological Museum, Center of Natural History, Universität Hamburg, Martin-Luther-King-Platz, Hamburg, Germany
- Institute of Zoology, Universität Hamburg, Martin-Luther-King-Platz, Hamburg, Germany
| | - Jutta M Schneider
- Institute of Zoology, Universität Hamburg, Martin-Luther-King-Platz, Hamburg, Germany
| | - Matjaž Kuntner
- Evolutionary Zoology Laboratory, Department of Organisms and Ecosystems Research, National Institute of Biology, Večna pot, Ljubljana, Slovenia
- Evolutionary Zoology Laboratory, Biological Institute ZRC SAZU, Novi trg, Ljubljana, Slovenia
| | - Danilo Harms
- Zoological Museum, Center of Natural History, Universität Hamburg, Martin-Luther-King-Platz, Hamburg, Germany
| |
Collapse
|
9
|
Crews SC, Esposito LA. Towards a synthesis of the Caribbean biogeography of terrestrial arthropods. BMC Evol Biol 2020; 20:12. [PMID: 31980017 PMCID: PMC6979080 DOI: 10.1186/s12862-019-1576-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 12/30/2019] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND The immense geologic and ecological complexity of the Caribbean has created a natural laboratory for interpreting when and how organisms disperse through time and space. However, competing hypotheses compounded with this complexity have resulted in a lack of unifying principles of biogeography for the region. Though new data concerning the timing of geologic events and dispersal events are emerging, powerful new analytical tools now allow for explicit hypothesis testing. Arthropods, with varying dispersal ability and high levels of endemism in the Caribbean, are an important, albeit understudied, biogeographic model system. Herein, we include a comprehensive analysis of every publicly available genetic dataset (at the time of writing) of terrestrial Caribbean arthropod groups using a statistically robust pipeline to explicitly test the current extent of biogeographic hypotheses for the region. RESULTS Our findings indicate several important biogeographic generalizations for the region: the South American continent is the predominant origin of Caribbean arthropod fauna; GAARlandia played a role for some taxa in aiding dispersal from South America to the Greater Antilles; founder event dispersal explains the majority of dispersal events by terrestrial arthropods, and distance between landmasses is important for dispersal; most dispersal events occurred via island hopping; there is evidence of 'reverse' dispersal from islands to the mainland; dispersal across the present-day Isthmus of Panama generally occurred prior to 3 mya; the Greater Antilles harbor more lineage diversity than the Lesser Antilles, and the larger Greater Antilles typically have greater lineage diversity than the smaller islands; basal Caribbean taxa are primarily distributed in the Greater Antilles, the basal-most being from Cuba, and derived taxa are mostly distributed in the Lesser Antilles; Jamaican taxa are usually endemic and monophyletic. CONCLUSIONS Given the diversity and deep history of terrestrial arthropods, incongruence of biogeographic patterns is expected, but focusing on both similarities and differences among divergent taxa with disparate life histories emphasizes the importance of particular qualities responsible for resulting diversification patterns. Furthermore, this study provides an analytical toolkit that can be used to guide researchers interested in answering questions pertaining to Caribbean biogeography using explicit hypothesis testing.
Collapse
Affiliation(s)
- Sarah C Crews
- California Academy of Sciences, Institute for Biodiversity Science and Sustainability, 55 Music Concourse Drive, San Francisco, CA, 94118, USA
| | - Lauren A Esposito
- California Academy of Sciences, Institute for Biodiversity Science and Sustainability, 55 Music Concourse Drive, San Francisco, CA, 94118, USA.
| |
Collapse
|
10
|
Kuntner M, Coddington JA. Sexual Size Dimorphism: Evolution and Perils of Extreme Phenotypes in Spiders. ANNUAL REVIEW OF ENTOMOLOGY 2020; 65:57-80. [PMID: 31573828 DOI: 10.1146/annurev-ento-011019-025032] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Sexual size dimorphism is one of the most striking animal traits, and among terrestrial animals, it is most extreme in certain spider lineages. The most extreme sexual size dimorphism (eSSD) is female biased. eSSD itself is probably an epiphenomenon of gendered evolutionary drivers whose strengths and directions are diverse. We demonstrate that eSSD spider clades are aberrant by sampling randomly across all spiders to establish overall averages for female (6.9 mm) and male (5.6 mm) size. At least 16 spider eSSD clades exist. We explore why the literature does not converge on an overall explanation for eSSD and propose an equilibrium model featuring clade- and context-specific drivers of gender size variation. eSSD affects other traits such as sexual cannibalism, genital damage, emasculation, and monogyny with terminal investment. Coevolution with these extreme sexual phenotypes is termed eSSD mating syndrome. Finally, as costs of female gigantism increase with size, eSSD may represent an evolutionary dead end.
Collapse
Affiliation(s)
- Matjaž Kuntner
- Evolutionary Zoology Laboratory, Department of Organisms and Ecosystems Research, National Institute of Biology, SI-1000 Ljubljana, Slovenia;
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560-0105, USA;
- Evolutionary Zoology Laboratory, Institute of Biology ZRC SAZU, SI-1001 Ljubljana, Slovenia
| | - Jonathan A Coddington
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560-0105, USA;
| |
Collapse
|
11
|
Kallal RJ, Hormiga G. Phylogenetic placement of the stone-nest orb-weaving spider Nemoscolus Simon, 1895 (Araneae : Araneidae) and the description of the first species from Australia. INVERTEBR SYST 2020. [DOI: 10.1071/is20035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The spider genus Nemoscolus Simon, 1895 (Araneidae) has been neglected taxonomically despite the unique retreat that several species construct in their horizontal orb-webs, composed of pebbles and other detritus. The distribution of Nemoscolus is poorly known and the genus includes species from Africa and Europe. Nemoscolus is placed in Simon’s Cycloseae species group along with Cyclosa Menge, 1866, Acusilas Simon, 1895, Arachnura Vinson, 1863, Witica O. Pickard-Cambridge, 1895, among others. Here we describe a new species from Queensland, Australia, N. sandersi, sp. nov., drastically expanding the distribution range of the genus. We use nucleotide sequence data to phylogenetically place Nemoscolus using model-based inference methods within Araneidae and to explore its affinities to Simon’s Cycloseae. The data support propinquity of Nemoscolus with Acusilas and Arachnura but not with Cyclosa. Our analyses suggest that Cycloseae is not a clade, with Cyclosa, Acusilas, Witica and Nemoscolus not sharing a recent common ancestor. This use of an integrated granular retreat represents at least the second independent evolution of such a structure within Araneidae. These results improve our understanding of both phylogeny and retreat evolution in araneid spiders.
Collapse
|
12
|
Cabra-García J, Hormiga G. Exploring the impact of morphology, multiple sequence alignment and choice of optimality criteria in phylogenetic inference: a case study with the Neotropical orb-weaving spider genus Wagneriana (Araneae: Araneidae). Zool J Linn Soc 2019. [DOI: 10.1093/zoolinnean/zlz088] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Abstract
We present a total evidence phylogenetic analysis of the Neotropical orb-weaving spider genus Wagneriana and discuss the phylogenetic impacts of methodological choices. We analysed 167 phenotypic characters and nine loci scored for 115 Wagneriana and outgroups, including 46 newly sequenced species. We compared total evidence analyses and molecular-only analyses to evaluate the impact of phenotypic evidence, and we performed analyses using the programs POY, TNT, RAxML, GARLI, IQ-TREE and MrBayes to evaluate the effects of multiple sequence alignment and optimality criteria. In all analyses, Wagneriana carimagua and Wagneriana uropygialis were nested in the genera Parawixia and Alpaida, respectively, and the remaining species of Wagneriana fell into three main clades, none of which formed a pair of sister taxa. However, sister-group relationships among the main clades and their internal relationships were strongly influenced by methodological choices. Alignment methods had comparable topological effects to those of optimality criteria in terms of ‘subtree pruning and regrafting’ moves. The inclusion of phenotypic evidence, 2.80–3.05% of the total evidence matrices, increased support irrespective of the optimality criterion used. The monophyly of some groups was recovered only after the addition of morphological characters. A new araneid genus, Popperaneus gen. nov., is erected, and Paraverrucosa is resurrected. Four new synonymies and seven new combinations are proposed.
Collapse
Affiliation(s)
- Jimmy Cabra-García
- Departamento de Biología, Universidad del Valle, Cali, AA, Colombia
- Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Gustavo Hormiga
- The George Washington University, Department of Biological Sciences, Washington, DC, USA
| |
Collapse
|
13
|
The Shape of Weaver: Investigating Shape Disparity in Orb-Weaving Spiders (Araneae, Araneidae) Using Geometric Morphometrics. Evol Biol 2019. [DOI: 10.1007/s11692-019-09482-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
14
|
Assis BA, Foellmer MW. Optimal ultra-short copulation duration in a sexually cannibalistic spider. Behav Ecol Sociobiol 2019. [DOI: 10.1007/s00265-019-2733-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Kuntner M, Hamilton CA, Cheng RC, Gregorič M, Lupše N, Lokovšek T, Lemmon EM, Lemmon AR, Agnarsson I, Coddington JA, Bond JE. Golden Orbweavers Ignore Biological Rules: Phylogenomic and Comparative Analyses Unravel a Complex Evolution of Sexual Size Dimorphism. Syst Biol 2019; 68:555-572. [PMID: 30517732 PMCID: PMC6568015 DOI: 10.1093/sysbio/syy082] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 11/20/2018] [Accepted: 11/26/2018] [Indexed: 11/14/2022] Open
Abstract
Instances of sexual size dimorphism (SSD) provide the context for rigorous tests of biological rules of size evolution, such as Cope's rule (phyletic size increase), Rensch's rule (allometric patterns of male and female size), as well as male and female body size optima. In certain spider groups, such as the golden orbweavers (Nephilidae), extreme female-biased SSD (eSSD, female:male body length $\ge$2) is the norm. Nephilid genera construct webs of exaggerated proportions, which can be aerial, arboricolous, or intermediate (hybrid). First, we established the backbone phylogeny of Nephilidae using 367 anchored hybrid enrichment markers, then combined these data with classical markers for a reference species-level phylogeny. Second, we used the phylogeny to test Cope and Rensch's rules, sex specific size optima, and the coevolution of web size, type, and features with female and male body size and their ratio, SSD. Male, but not female, size increases significantly over time, and refutes Cope's rule. Allometric analyses reject the converse, Rensch's rule. Male and female body sizes are uncorrelated. Female size evolution is random, but males evolve toward an optimum size (3.2-4.9 mm). Overall, female body size correlates positively with absolute web size. However, intermediate sized females build the largest webs (of the hybrid type), giant female Nephila and Trichonephila build smaller webs (of the aerial type), and the smallest females build the smallest webs (of the arboricolous type). We propose taxonomic changes based on the criteria of clade age, monophyly and exclusivity, classification information content, and diagnosability. Spider families, as currently defined, tend to be between 37 million years old and 98 million years old, and Nephilidae is estimated at 133 Ma (97-146), thus deserving family status. We, therefore, resurrect the family Nephilidae Simon 1894 that contains Clitaetra Simon 1889, the Cretaceous GeratonephilaPoinar and Buckley (2012), Herennia Thorell 1877, IndoetraKuntner 2006, new rank, Nephila Leach 1815, Nephilengys L. Koch 1872, Nephilingis Kuntner 2013, Palaeonephila Wunderlich 2004 from Tertiary Baltic amber, and TrichonephilaDahl 1911, new rank. We propose the new clade Orbipurae to contain Araneidae Clerck 1757, Phonognathidae Simon 1894, new rank, and Nephilidae. Nephilid female gigantism is a phylogenetically ancient phenotype (over 100 Ma), as is eSSD, though their magnitudes vary by lineage.
Collapse
Affiliation(s)
- Matjaž Kuntner
- Evolutionary Zoology Laboratory, Department of Organisms and Ecosystems Research, National Institute of Biology, Večna pot 111, SI-1000 Ljubljana, Slovenia
- Evolutionary Zoology Laboratory, Biological Institute ZRC SAZU, Novi trg 2, SI-1001 Ljubljana, Slovenia
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, 10th and Constitution, NW, Washington, DC 20560-0105, USA
- Centre for Behavioural Ecology and Evolution, College of Life Sciences, Hubei University, 368 Youyi Road, Wuhan, Hubei 430062, China
| | - Chris A Hamilton
- Department of Entomology, Plant Pathology, & Nematology, University of Idaho, 875 Perimeter Dr. MS 2329, Moscow, ID 83844-2329, USA
| | - Ren-Chung Cheng
- Evolutionary Zoology Laboratory, Biological Institute ZRC SAZU, Novi trg 2, SI-1001 Ljubljana, Slovenia
- Department of Life Sciences, National Chung Hsing University, No.145 Xingda Rd., South Dist., Taichung City 402, Taiwan
| | - Matjaž Gregorič
- Evolutionary Zoology Laboratory, Biological Institute ZRC SAZU, Novi trg 2, SI-1001 Ljubljana, Slovenia
| | - Nik Lupše
- Evolutionary Zoology Laboratory, Biological Institute ZRC SAZU, Novi trg 2, SI-1001 Ljubljana, Slovenia
- Division of Animal Evolutionary Biology, Department of Zoology, Faculty of Science, Charles University, Viničná 7, 128 44 Prague, Czech Republic
| | - Tjaša Lokovšek
- Evolutionary Zoology Laboratory, Biological Institute ZRC SAZU, Novi trg 2, SI-1001 Ljubljana, Slovenia
| | - Emily Moriarty Lemmon
- Department of Biological Science, Florida State University, 319 Stadium Dr., Tallahassee, FL 32306-4295, USA
| | - Alan R Lemmon
- Department of Scientific Computing, Florida State University, 400 Dirac Science Library, Tallahassee, FL 32306-4120, USA
| | - Ingi Agnarsson
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, 10th and Constitution, NW, Washington, DC 20560-0105, USA
- Department of Biology, University of Vermont, 316 Marsh Life Science Building, 109 Carrigan Drive, Burlington, VT 05405-0086, USA
| | - Jonathan A Coddington
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, 10th and Constitution, NW, Washington, DC 20560-0105, USA
| | - Jason E Bond
- Department of Entomology and Nematology, University of California Davis, 1 Shields Drive, Davis, CA 95616, USA
| |
Collapse
|
16
|
Sõber V, Sandre SL, Esperk T, Teder T, Tammaru T. Ontogeny of sexual size dimorphism revisited: Females grow for a longer time and also faster. PLoS One 2019; 14:e0215317. [PMID: 31013286 PMCID: PMC6478289 DOI: 10.1371/journal.pone.0215317] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 03/29/2019] [Indexed: 11/18/2022] Open
Abstract
Sex-specific mechanisms of the determination of insect body sizes are insufficiently understood. Here we use the common heath moth, Ematurga atomaria (Lepidoptera: Geometridae) to examine how larval growth trajectories differ between males and females. We monitored the development of 1379 larvae in controlled laboratory conditions. Sexually dimorphic development times during the first four instars were associated with sexual size dimorphism (SSD) in the beginning of the fifth (last) instar, when females were on average 15% heavier than males. Similarly, the duration of the last instar was about 13% longer in females. Further, we specifically focussed on the estimates of differential (instantaneous) growth rates of the larvae based on 24h mass increments of the 2nd, 3rd, 4th and 5th day in the beginning of the last instar. We calculated ‘allometric’ differential growth rates as the per-day increase in cube-root-transformed mass of the larvae. We found that allometric growth rates were slightly but significantly larger in females than in males. As this measure of growth rate (in contrast to the relative growth rate, based on the ratio of masses recorded at consecutive measurements) did not depend on body size, it allows an unambiguous separation of the effects of sex and size. We conclude that in accordance with an emerging general pattern, larger female body size in E. atomaria is achieved primarily by means of a longer growth period. Furthermore, our study shows that the differential growth rate can also be sexually dimorphic and contribute to SSD. This contribution, however, is lower than that of the development time by an order of magnitude. In addition to development periods and growth rates, other parameters of the non-linear growth curves of insect larvae also need to be considered in the context of SSD determination. In particular, weight loss prior to pupation was shown to be considerably larger in females than in males.
Collapse
Affiliation(s)
- Virve Sõber
- Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
- * E-mail:
| | - Siiri-Lii Sandre
- Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Toomas Esperk
- Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Tiit Teder
- Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Toomas Tammaru
- Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| |
Collapse
|
17
|
Scharff N, Coddington JA, Blackledge TA, Agnarsson I, Framenau VW, Szűts T, Hayashi CY, Dimitrov D. Phylogeny of the orb‐weaving spider family Araneidae (Araneae: Araneoidea). Cladistics 2019; 36:1-21. [DOI: 10.1111/cla.12382] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2019] [Indexed: 11/29/2022] Open
Affiliation(s)
- Nikolaj Scharff
- Center for Macroecology, Evolution and Climate Natural History Museum of Denmark University of Copenhagen Copenhagen Denmark
- Smithsonian Institution National Museum of Natural History 10th and Constitution NW Washington DC 20560‐0105 USA
| | - Jonathan A. Coddington
- Smithsonian Institution National Museum of Natural History 10th and Constitution NW Washington DC 20560‐0105 USA
| | - Todd A. Blackledge
- Integrated Bioscience Program Department of Biology University of Akron Akron OH USA
| | - Ingi Agnarsson
- Smithsonian Institution National Museum of Natural History 10th and Constitution NW Washington DC 20560‐0105 USA
- Department of Biology University of Vermont 109 Carrigan Drive Burlington VT 05405‐0086 USA
| | - Volker W. Framenau
- Department of Terrestrial Zoology Western Australian Museum Locked Bag 49 Welshpool DC WA 6986 Australia
- School of Animal Biology University of Western Australia Crawley WA 6009 Australia
- Harry Butler Institute Murdoch University 90 South St. Murdoch WA 6150 Australia
| | - Tamás Szűts
- Center for Macroecology, Evolution and Climate Natural History Museum of Denmark University of Copenhagen Copenhagen Denmark
- Department of Ecology University of Veterinary Medicine Budapest H1077 Budapest Hungary
| | - Cheryl Y. Hayashi
- Division of Invertebrate Zoology and Sackler Institute for Comparative Genomics American Museum of Natural History New York NY 10024 USA
| | - Dimitar Dimitrov
- Center for Macroecology, Evolution and Climate Natural History Museum of Denmark University of Copenhagen Copenhagen Denmark
- Natural History Museum University of Oslo PO Box 1172, Blindern NO‐0318 Oslo Norway
- Department of Natural History University Museum of Bergen University of Bergen Bergen Norway
| |
Collapse
|
18
|
Sexual size dimorphism, allometry and fecundity in a lineage of South American viviparous lizards (Liolaemidae: Phymaturus). ZOOL ANZ 2019. [DOI: 10.1016/j.jcz.2019.02.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Andrade MC. Sexual selection and social context: Web-building spiders as emerging models for adaptive plasticity. ADVANCES IN THE STUDY OF BEHAVIOR 2019. [DOI: 10.1016/bs.asb.2019.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
20
|
Kallal RJ, Hormiga G. Systematics, phylogeny and biogeography of the Australasian leaf-curling orb-weaving spiders (Araneae: Araneidae: Zygiellinae), with a comparative analysis of retreat evolution. Zool J Linn Soc 2018. [DOI: 10.1093/zoolinnean/zly014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Robert J Kallal
- The George Washington University, Department of Biological Sciences, Washington, D.C., USA
| | - Gustavo Hormiga
- The George Washington University, Department of Biological Sciences, Washington, D.C., USA
| |
Collapse
|
21
|
Turk E, Kuntner M, Kralj-Fišer S. Cross-sex genetic correlation does not extend to sexual size dimorphism in spiders. Naturwissenschaften 2017; 105:1. [DOI: 10.1007/s00114-017-1529-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 11/23/2017] [Accepted: 11/27/2017] [Indexed: 12/22/2022]
|
22
|
García-Navas V, Noguerales V, Cordero PJ, Ortego J. Ecological drivers of body size evolution and sexual size dimorphism in short-horned grasshoppers (Orthoptera: Acrididae). J Evol Biol 2017; 30:1592-1608. [PMID: 28609564 DOI: 10.1111/jeb.13131] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 05/26/2017] [Accepted: 06/05/2017] [Indexed: 02/03/2023]
Abstract
Sexual size dimorphism (SSD) is widespread and variable in nature. Although female-biased SSD predominates among insects, the proximate ecological and evolutionary factors promoting this phenomenon remain largely unstudied. Here, we employ modern phylogenetic comparative methods on eight subfamilies of Iberian grasshoppers (85 species) to examine the validity of different models of evolution of body size and SSD and explore how they are shaped by a suite of ecological variables (habitat specialization, substrate use, altitude) and/or constrained by different evolutionary pressures (female fecundity, strength of sexual selection, length of the breeding season). Body size disparity primarily accumulated late in the history of the group and did not follow a Brownian motion pattern, indicating the existence of directional evolution for this trait. We found support for the converse of Rensch's rule (i.e. females are proportionally bigger than males in large species) across all taxa but not within the two most speciose subfamilies (Gomphocerinae and Oedipodinae), which showed an isometric pattern. Our results do not provide support for the fecundity or sexual selection hypotheses, and we did not find evidence for significant effects of habitat use. Contrary to that expected, we found that species with narrower reproductive window are less dimorphic in size than those that exhibit a longer breeding cycle, suggesting that male protandry cannot solely account for the evolution of female-biased SSD in Orthoptera. Our study highlights the need to consider alternatives to the classical evolutionary hypotheses when trying to explain why in certain insect groups males remain small.
Collapse
Affiliation(s)
- V García-Navas
- Department of Integrative Ecology, Estación Biológica de Doñana (EBD-CSIC), Seville, Spain
| | - V Noguerales
- Grupo de Investigación de la Biodiversidad Genética y Cultural, Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ciudad Real, Spain
| | - P J Cordero
- Grupo de Investigación de la Biodiversidad Genética y Cultural, Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ciudad Real, Spain
| | - J Ortego
- Department of Integrative Ecology, Estación Biológica de Doñana (EBD-CSIC), Seville, Spain
| |
Collapse
|
23
|
Vienneau-Hathaway JM, Brassfield ER, Lane AK, Collin MA, Correa-Garhwal SM, Clarke TH, Schwager EE, Garb JE, Hayashi CY, Ayoub NA. Duplication and concerted evolution of MiSp-encoding genes underlie the material properties of minor ampullate silks of cobweb weaving spiders. BMC Evol Biol 2017; 17:78. [PMID: 28288560 PMCID: PMC5348893 DOI: 10.1186/s12862-017-0927-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 02/24/2017] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Orb-web weaving spiders and their relatives use multiple types of task-specific silks. The majority of spider silk studies have focused on the ultra-tough dragline silk synthesized in major ampullate glands, but other silk types have impressive material properties. For instance, minor ampullate silks of orb-web weaving spiders are as tough as draglines, due to their higher extensibility despite lower strength. Differences in material properties between silk types result from differences in their component proteins, particularly members of the spidroin (spider fibroin) gene family. However, the extent to which variation in material properties within a single silk type can be explained by variation in spidroin sequences is unknown. Here, we compare the minor ampullate spidroins (MiSp) of orb-weavers and cobweb weavers. Orb-web weavers use minor ampullate silk to form the auxiliary spiral of the orb-web while cobweb weavers use it to wrap prey, suggesting that selection pressures on minor ampullate spidroins (MiSp) may differ between the two groups. RESULTS We report complete or nearly complete MiSp sequences from five cobweb weaving spider species and measure material properties of minor ampullate silks in a subset of these species. We also compare MiSp sequences and silk properties of our cobweb weavers to published data for orb-web weavers. We demonstrate that all our cobweb weavers possess multiple MiSp loci and that one locus is more highly expressed in at least two species. We also find that the proportion of β-spiral-forming amino acid motifs in MiSp positively correlates with minor ampullate silk extensibility across orb-web and cobweb weavers. CONCLUSIONS MiSp sequences vary dramatically within and among spider species, and have likely been subject to multiple rounds of gene duplication and concerted evolution, which have contributed to the diverse material properties of minor ampullate silks. Our sequences also provide templates for recombinant silk proteins with tailored properties.
Collapse
Affiliation(s)
| | | | - Amanda Kelly Lane
- Department of Biology, Washington and Lee University, Lexington, VA USA
| | | | | | - Thomas H. Clarke
- Department of Biology, Washington and Lee University, Lexington, VA USA
- Department of Biology, University of California, Riverside, CA USA
| | - Evelyn E. Schwager
- Department of Biological Sciences, University of Massachusetts, Lowell, MA USA
| | - Jessica E. Garb
- Department of Biological Sciences, University of Massachusetts, Lowell, MA USA
| | | | - Nadia A. Ayoub
- Department of Biology, Washington and Lee University, Lexington, VA USA
| |
Collapse
|
24
|
Herberstein ME, Painting CJ, Holwell GI. Scramble Competition Polygyny in Terrestrial Arthropods. ADVANCES IN THE STUDY OF BEHAVIOR 2017. [DOI: 10.1016/bs.asb.2017.01.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
25
|
Tan J, Chan ZY, Lim PE, Koh JKH, Yong HS. A multigene approach to determine the molecular phylogeography of Argiope mangal and Argiope dang (Araneae: Araneidae) and their genetic relationships with the Argiope aetherea species group. BIOCHEM SYST ECOL 2016. [DOI: 10.1016/j.bse.2016.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
26
|
Emerson BC, Casquet J, López H, Cardoso P, Borges PAV, Mollaret N, Oromí P, Strasberg D, Thébaud C. A combined field survey and molecular identification protocol for comparing forest arthropod biodiversity across spatial scales. Mol Ecol Resour 2016; 17:694-707. [PMID: 27768248 DOI: 10.1111/1755-0998.12617] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 09/02/2016] [Accepted: 09/16/2016] [Indexed: 11/28/2022]
Abstract
Obtaining fundamental biodiversity metrics such as alpha, beta and gamma diversity for arthropods is often complicated by a lack of prior taxonomic information and/or taxonomic expertise, which can result in unreliable morphologically based estimates. We provide a set of standardized ecological and molecular sampling protocols that can be employed by researchers whose taxonomic skills may be limited, and where there may be a lack of robust a priori information regarding the regional pool of species. These protocols combine mass sampling of arthropods, classification of samples into parataxonomic units (PUs) and selective sampling of individuals for mtDNA sequencing to infer biological species. We sampled ten lowland rainforest plots located on the volcanic oceanic island of Réunion (Mascarene archipelago) for spiders, a group with limited taxonomic and distributional data for this region. We classified adults and juveniles into PUs and then demonstrated the reconciliation of these units with presumed biological species using mtDNA sequence data, ecological data and distributional data. Because our species assignment protocol is not reliant upon prior taxonomic information, or taxonomic expertise, it minimizes the problem of the Linnean shortfall to yield diversity estimates that can be directly compared across independent studies. Field sampling can be extended to other arthropod groups and habitats by adapting our field sampling protocol accordingly.
Collapse
Affiliation(s)
- Brent C Emerson
- Island Ecology and Evolution Research Group, Instituto de Productos Naturales y Agrobiología, C/Astrofísico Francisco Sánchez 3, La Laguna, Tenerife, Canary Islands, 38206, Spain.,School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Juliane Casquet
- Laboratoire Evolution & Diversité Biologique, UMR 5174 CNRS-Université Paul Sabatier-ENFA, 31062, Toulouse Cedex 9, France
| | - Heriberto López
- Island Ecology and Evolution Research Group, Instituto de Productos Naturales y Agrobiología, C/Astrofísico Francisco Sánchez 3, La Laguna, Tenerife, Canary Islands, 38206, Spain
| | - Pedro Cardoso
- Finnish Museum of Natural History, University of Helsinki, P.O. Box 17, 00014, Helsinki, Finland.,Azorean Biodiversity Group, Departamento de Ciências e Engenharia do Ambiente, CE3C - Centre for Ecology, Evolution and Environmental Changes, Universidade dos Açores, Rua Capitão João d'Ávila s/n, 9700-042, Angra do Heroísmo, Açores, Portugal
| | - Paulo A V Borges
- Azorean Biodiversity Group, Departamento de Ciências e Engenharia do Ambiente, CE3C - Centre for Ecology, Evolution and Environmental Changes, Universidade dos Açores, Rua Capitão João d'Ávila s/n, 9700-042, Angra do Heroísmo, Açores, Portugal
| | - Noémy Mollaret
- Direction des collections, Invertébrés marins, Muséum National d'Histoire Naturelle, CP53, 61 rue Buffon, 75231, Paris Cedex 05, France
| | - Pedro Oromí
- Departamento de Biología Animal, Edafología y Geología, Universidad de La Laguna, C/Astrofísico Francisco Sánchez, 38206, La Laguna, Tenerife, Canary Islands, Spain
| | - Dominique Strasberg
- UMR PVBMT, Peuplements Végétaux et Bio-agresseurs en Milieu Tropical, Université de La Réunion, 15 Avenue René Cassin, CS 93002, 97 744, Saint Denis, Cedex 9, Reunion Island, France
| | - Christophe Thébaud
- Laboratoire Evolution & Diversité Biologique, UMR 5174 CNRS-Université Paul Sabatier-ENFA, 31062, Toulouse Cedex 9, France
| |
Collapse
|
27
|
Agnarsson I, LeQuier SM, Kuntner M, Cheng RC, Coddington JA, Binford G. Phylogeography of a good Caribbean disperser: Argiope argentata (Araneae, Araneidae) and a new 'cryptic' species from Cuba. Zookeys 2016:25-44. [PMID: 27833425 PMCID: PMC5096361 DOI: 10.3897/zookeys.625.8729] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 10/07/2016] [Indexed: 11/28/2022] Open
Abstract
The Caribbean islands harbor rich biodiversity with high levels of single island endemism. Stretches of ocean between islands represent significant barriers to gene-flow. Yet some native species are widespread, indicating dispersal across oceans, even in wingless organisms like spiders. Argiopeargentata (Fabricius, 1775) is a large, charismatic, and widespread species of orb-weaving spider ranging from the United States to Argentina and is well known to balloon. Here we explore the phylogeography of Argiopeargentata in the Caribbean as a part of the multi-lineage CarBio project, through mtDNA haplotype and multi-locus phylogenetic analyses. The history of the Argiopeargentata lineage in the Caribbean goes back 3-5 million years and is characterized by multiple dispersal events and isolation-by-distance. We find a highly genetically distinct lineage on Cuba which we describe as Argiopebutchkosp. n. While the argentata lineage seems to readily balloon shorter distances, stretches of ocean still act as filters for among-island gene-flow as evidenced by distinct haplotypes on the more isolated islands, high FST values, and strong correlation between intraspecific (but not interspecific) genetic and geographic distances. The new species described here is clearly genetically diagnosable, but morphologically cryptic, at least with reference to the genitalia that typically diagnose spider species. Our results are consistent with the intermediate dispersal model suggesting that good dispersers, such as our study species, limit the effect of oceanic barriers and thus diversification and endemism.
Collapse
Affiliation(s)
- Ingi Agnarsson
- Department of Biology, University of Vermont, Burlington, VT, USA; Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | | | - Matjaž Kuntner
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA; Evolutionary Zoology Laboratory, Biological Institute ZRC SAZU, Ljubljana, Slovenia
| | - Ren-Chung Cheng
- Evolutionary Zoology Laboratory, Biological Institute ZRC SAZU, Ljubljana, Slovenia
| | - Jonathan A Coddington
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Greta Binford
- Department of Biology, Lewis and Clark College, Portland, OR, USA
| |
Collapse
|
28
|
Lupše N, Cheng RC, Kuntner M. Coevolution of female and male genital components to avoid genital size mismatches in sexually dimorphic spiders. BMC Evol Biol 2016; 16:161. [PMID: 27535025 PMCID: PMC4989301 DOI: 10.1186/s12862-016-0734-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 08/05/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In most animal groups, it is unclear how body size variation relates to genital size differences between the sexes. While most morphological features tend to scale with total somatic size, this does not necessarily hold for genitalia because divergent evolution in somatic size between the sexes would cause genital size mismatches. Theory predicts that the interplay of female-biased sexual size dimorphism (SSD) and sexual genital size dimorphism (SGD) should adhere to the 'positive genital divergence', the 'constant genital divergence', or the 'negative genital divergence' model, but these models remain largely untested. We test their validity in the spider family Nephilidae known for the highest degrees of SSD among terrestrial animals. RESULTS Through comparative analyses of sex-specific somatic and genital sizes, we first demonstrate that 99 of the 351 pairs of traits are phylogenetically correlated. Through factor analyses we then group these traits for MCMCglmm analyses that test broader correlation patterns, and these reveal significant correlations in 10 out of the 36 pairwise comparisons. Both types of analyses agree that female somatic and internal genital sizes evolve independently. While sizes of non-intromittent male genital parts coevolve with male body size, the size of the intromittent male genital parts is independent of the male somatic size. Instead, male intromittent genital size coevolves with female (external and, in part, internal) genital size. All analyses also agree that SGD and SSD evolve independently. CONCLUSIONS Internal dimensions of female genitalia evolve independently of female body size in nephilid spiders, and similarly, male intromittent genital size evolves independently of the male body size. The size of the male intromittent organ (the embolus) and the sizes of female internal and external genital components thus seem to respond to selection against genital size mismatches. In accord with these interpretations, we reject the validity of the existing theoretical models of genital and somatic size dimorphism in spiders.
Collapse
Affiliation(s)
- Nik Lupše
- Institute of Biology, Research Centre of the Slovenian Academy of Sciences and Arts, Ljubljana, Slovenia
| | - Ren-Chung Cheng
- Institute of Biology, Research Centre of the Slovenian Academy of Sciences and Arts, Ljubljana, Slovenia
| | - Matjaž Kuntner
- Institute of Biology, Research Centre of the Slovenian Academy of Sciences and Arts, Ljubljana, Slovenia. .,Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20013-7012, USA.
| |
Collapse
|
29
|
Assis BA, Foellmer MW. One size fits all? Determinants of sperm transfer in a highly dimorphic orb-web spider. J Evol Biol 2016; 29:1106-20. [DOI: 10.1111/jeb.12848] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 02/02/2016] [Indexed: 11/28/2022]
Affiliation(s)
- B. A. Assis
- Department of Biology; Adelphi University; 1 South Ave. Garden City NY 11530 USA
| | - M. W. Foellmer
- Department of Biology; Adelphi University; 1 South Ave. Garden City NY 11530 USA
| |
Collapse
|
30
|
Chelini MC, Hebets EA. Absence of Mate Choice and Postcopulatory Benefits in a Species with Extreme Sexual Size Dimorphism. Ethology 2016. [DOI: 10.1111/eth.12449] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Eileen A. Hebets
- School of Biological Sciences; University of Nebraska -Lincoln; Lincoln NE USA
| |
Collapse
|
31
|
Evolutionary Pathways Maintaining Extreme Female-Biased Sexual Size Dimorphism: Convergent Spider Cases Defy Common Patterns. Evol Biol 2016. [DOI: 10.1007/978-3-319-41324-2_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
32
|
Patterns of secondary sexual size dimorphism in New WorldMyotisand a test of Rensch’s rule. J Mammal 2015. [DOI: 10.1093/jmammal/gyv120] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
33
|
|