1
|
Clement DT, Gallinson DG, Hamede RK, Jones ME, Margres MJ, McCallum H, Storfer A. Coevolution promotes the coexistence of Tasmanian devils and a fatal, transmissible cancer. Evolution 2024; 79:100-118. [PMID: 39382349 DOI: 10.1093/evolut/qpae143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/19/2024] [Accepted: 10/04/2024] [Indexed: 10/10/2024]
Abstract
Emerging infectious diseases threaten natural populations, and data-driven modeling is critical for predicting population dynamics. Despite the importance of integrating ecology and evolution in models of host-pathogen dynamics, there are few wild populations for which long-term ecological datasets have been coupled with genome-scale data. Tasmanian devil (Sarcophilus harrisii) populations have declined range wide due to devil facial tumor disease (DFTD), a fatal transmissible cancer. Although early ecological models predicted imminent devil extinction, diseased devil populations persist at low densities, and recent ecological models predict long-term devil persistence. Substantial evidence supports the evolution of both devils and DFTD, suggesting coevolution may also influence continued devil persistence. Thus, we developed an individual-based, eco-evolutionary model of devil-DFTD coevolution parameterized with nearly 2 decades of devil demography, DFTD epidemiology, and genome-wide association studies. We characterized potential devil-DFTD coevolutionary outcomes and predicted the effects of coevolution on devil persistence and devil-DFTD coexistence. We found a high probability of devil persistence over 50 devil generations (100 years) and a higher likelihood of devil-DFTD coexistence, with greater devil recovery than predicted by previous ecological models. These novel results add to growing evidence for long-term devil persistence and highlight the importance of eco-evolutionary modeling for emerging infectious diseases.
Collapse
Affiliation(s)
- Dale T Clement
- Department of Biology, Wake Forest University, Winston-Salem, NC, United States
| | - Dylan G Gallinson
- Department of Integrative Biology, University of South Florida, Tampa, FL, United States
| | - Rodrigo K Hamede
- School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia
- CANECEV: Centre de Recherches Ecologiques et Evolutives sur le Cancer, Montpellier, France
| | - Menna E Jones
- School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia
| | - Mark J Margres
- Department of Integrative Biology, University of South Florida, Tampa, FL, United States
| | - Hamish McCallum
- Centre for Planetary Health and Food Security, Griffith University, Nathan Campus, Nathan, Queensland, Australia
| | - Andrew Storfer
- School of Biological Sciences, Washington State University, Pullman, WA, United States
| |
Collapse
|
2
|
Abou-El-Naga IF, Mogahed NMFH. Immuno-molecular profile for Biomphalaria glabrata/Schistosoma mansoni interaction. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 150:105083. [PMID: 37852455 DOI: 10.1016/j.dci.2023.105083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/14/2023] [Accepted: 10/15/2023] [Indexed: 10/20/2023]
Abstract
The complex innate immune defense of Biomphalaria glabrata, the intermediate host of Schistosoma mansoni, governs the successful development of the intramolluscan stages of the parasite. The interaction between the snail and the parasite involves a complex immune molecular crosstalk between several parasite antigens and the snail immune recognition receptors, evoking different signals and effector molecules. This work seeks to discuss the immune-related molecules that influence compatibility in Biomphalaria glabrata/Schistosoma mansoni interaction and the differential expression of these molecules between resistant and susceptible snails. It also includes the current understanding of the immune molecular determinants that govern the compatibility in sympatric and allopatric interactions, and the expression of these molecules after immune priming and the secondary immune response. Herein, the differences in the immune-related molecules in the interaction of other Biomphalaria species with Schistosoma mansoni compared to the Biomphalaria glabrata model snail are highlighted. Understanding the diverse immune molecular determinants in the snail/schistosome interaction can lead to alternative control strategies for schistosomiasis.
Collapse
|
3
|
Buckingham LJ, Ashby B. Coevolutionary theory of hosts and parasites. J Evol Biol 2022; 35:205-224. [PMID: 35030276 PMCID: PMC9305583 DOI: 10.1111/jeb.13981] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/14/2021] [Accepted: 01/05/2022] [Indexed: 11/30/2022]
Abstract
Host and parasite evolution are closely intertwined, with selection for adaptations and counter-adaptations forming a coevolutionary feedback loop. Coevolutionary dynamics are often difficult to intuit due to these feedbacks and are hard to demonstrate empirically in most systems. Theoretical models have therefore played a crucial role in shaping our understanding of host-parasite coevolution. Theoretical models vary widely in their assumptions, approaches and aims, and such variety makes it difficult, especially for non-theoreticians and those new to the field, to: (1) understand how model approaches relate to one another; (2) identify key modelling assumptions; (3) determine how model assumptions relate to biological systems; and (4) reconcile the results of different models with contrasting assumptions. In this review, we identify important model features, highlight key results and predictions and describe how these pertain to model assumptions. We carry out a literature survey of theoretical studies published since the 1950s (n = 219 papers) to support our analysis. We identify two particularly important features of models that tend to have a significant qualitative impact on the outcome of host-parasite coevolution: population dynamics and the genetic basis of infection. We also highlight the importance of other modelling features, such as stochasticity and whether time proceeds continuously or in discrete steps, that have received less attention but can drastically alter coevolutionary dynamics. We finish by summarizing recent developments in the field, specifically the trend towards greater model complexity, and discuss likely future directions for research.
Collapse
Affiliation(s)
- Lydia J. Buckingham
- Department of Mathematical SciencesUniversity of BathBathUK
- Milner Centre for EvolutionUniversity of BathBathUK
| | - Ben Ashby
- Department of Mathematical SciencesUniversity of BathBathUK
- Milner Centre for EvolutionUniversity of BathBathUK
| |
Collapse
|
4
|
Leitão AB, Bian X, Day JP, Pitton S, Demir E, Jiggins FM. Independent effects on cellular and humoral immune responses underlie genotype-by-genotype interactions between Drosophila and parasitoids. PLoS Pathog 2019; 15:e1008084. [PMID: 31589659 PMCID: PMC6797232 DOI: 10.1371/journal.ppat.1008084] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 10/17/2019] [Accepted: 09/16/2019] [Indexed: 11/18/2022] Open
Abstract
It is common to find abundant genetic variation in host resistance and parasite infectivity within populations, with the outcome of infection frequently depending on genotype-specific interactions. Underlying these effects are complex immune defenses that are under the control of both host and parasite genes. We have found extensive variation in Drosophila melanogaster's immune response against the parasitoid wasp Leptopilina boulardi. Some aspects of the immune response, such as phenoloxidase activity, are predominantly affected by the host genotype. Some, such as upregulation of the complement-like protein Tep1, are controlled by the parasite genotype. Others, like the differentiation of immune cells called lamellocytes, depend on the specific combination of host and parasite genotypes. These observations illustrate how the outcome of infection depends on independent genetic effects on different aspects of host immunity. As parasite-killing results from the concerted action of different components of the immune response, these observations provide a physiological mechanism to generate phenomena like epistasis and genotype-interactions that underlie models of coevolution.
Collapse
Affiliation(s)
| | - Xueni Bian
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Jonathan P. Day
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Simone Pitton
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Eşref Demir
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
- Antalya Bilim University, Faculty of Engineering, Department of Material Science and Nanotechnology Engineering, Dosemealti, Antalya, Turkey
| | - Francis M. Jiggins
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
5
|
Hall MD, Routtu J, Ebert D. Dissecting the genetic architecture of a stepwise infection process. Mol Ecol 2019; 28:3942-3957. [PMID: 31283079 DOI: 10.1111/mec.15166] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 02/06/2023]
Abstract
How a host fights infection depends on an ordered sequence of steps, beginning with attempts to prevent a pathogen from establishing an infection, through to steps that mitigate a pathogen's control of host resources or minimize the damage caused during infection. Yet empirically characterizing the genetic basis of these steps remains challenging. Although each step is likely to have a unique genetic and environmental signature, and may therefore respond to selection in different ways, events that occur earlier in the infection process can mask or overwhelm the contributions of subsequent steps. In this study, we dissect the genetic architecture of a stepwise infection process using a quantitative trait locus (QTL) mapping approach. We control for variation at the first line of defence against a bacterial pathogen and expose downstream genetic variability related to the host's ability to mitigate the damage pathogens cause. In our model, the water-flea Daphnia magna, we found a single major effect QTL, explaining 64% of the variance, that is linked to the host's ability to completely block pathogen entry by preventing their attachment to the host oesophagus; this is consistent with the detection of this locus in previous studies. In susceptible hosts allowing attachment, however, a further 23 QTLs, explaining between 5% and 16% of the variance, were mapped to traits related to the expression of disease. The general lack of pleiotropy and epistasis for traits related to the different stages of the infection process, together with the wide distribution of QTLs across the genome, highlights the modular nature of a host's defence portfolio, and the potential for each different step to evolve independently. We discuss how isolating the genetic basis of individual steps can help to resolve discussion over the genetic architecture of host resistance.
Collapse
Affiliation(s)
- Matthew D Hall
- Department of Environmental Sciences, Zoology, University of Basel, Basel, Switzerland.,School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Jarkko Routtu
- Department of Environmental Sciences, Zoology, University of Basel, Basel, Switzerland.,Molecular Ecology, Martin-Luther-Universität, Halle-Wittenberg, Germany
| | - Dieter Ebert
- Department of Environmental Sciences, Zoology, University of Basel, Basel, Switzerland
| |
Collapse
|
6
|
Yoder JB, Tiffin P. Sanctions, Partner Recognition, and Variation in Mutualism. Am Nat 2017; 190:491-505. [DOI: 10.1086/693472] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
7
|
Galinier R, Roger E, Moné Y, Duval D, Portet A, Pinaud S, Chaparro C, Grunau C, Genthon C, Dubois E, Rognon A, Arancibia N, Dejean B, Théron A, Gourbal B, Mitta G. A multistrain approach to studying the mechanisms underlying compatibility in the interaction between Biomphalaria glabrata and Schistosoma mansoni. PLoS Negl Trop Dis 2017; 11:e0005398. [PMID: 28253264 PMCID: PMC5349689 DOI: 10.1371/journal.pntd.0005398] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 03/14/2017] [Accepted: 02/07/2017] [Indexed: 12/03/2022] Open
Abstract
In recent decades, numerous studies have sought to better understand the mechanisms underlying the compatibility between Biomphalaria glabrata and Schistosoma mansoni. The developments of comparative transcriptomics, comparative genomics, interactomics and more targeted approaches have enabled researchers to identify a series of candidate genes. However, no molecular comparative work has yet been performed on multiple populations displaying different levels of compatibility. Here, we seek to fill this gap in the literature. We focused on B. glabrata FREPs and S. mansoni SmPoMucs, which were previously demonstrated to be involved in snail/schistosome compatibility. We studied the expression and polymorphisms of these factors in combinations of snail and schistosome isolates that display different levels of compatibility. We found that the polymorphism and expression levels of FREPs and SmPoMucs could be linked to the compatibility level of S. mansoni. These data and our complementary results obtained by RNA-seq of samples from various snail strains indicate that the mechanism of compatibility is much more complex than previously thought, and that it is likely to be highly variable within and between populations. This complexity must be taken into account if we hope to identify the molecular pathways that are most likely to be good targets for strategies aimed at blocking transmission of the parasite through the snail intermediate host. Schistosomiasis is the second most widespread human tropical parasitic disease after malaria. It is caused by flatworms of the genus Schistosoma, and poses a considerable threat for human health in numerous Asian, African and South American countries. The World Health Organization has set the goal of eradicating schistosomiasis by 2025. However, no vaccine is available, and we currently have only one drug (praziquantel) that can effectively and efficiently treat the disease. As treatment by mass drug administration would enhance the risk of drug resistance in schistosome parasites, complementary strategies to fight this parasitic disease are urgently needed. Freshwater snails of the Biomphalaria genus act as intermediate hosts in the transmission of the schistosome species. Thus, learning more about the mechanisms of the interaction between these snails and the schistosomes could critically facilitate the identification of potential new candidate molecules that may be targeted to prevent schistosome transmission in the field.
Collapse
Affiliation(s)
- Richard Galinier
- Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
| | - Emmanuel Roger
- Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
| | - Yves Moné
- Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
| | - David Duval
- Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
| | - Anaïs Portet
- Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
| | - Silvain Pinaud
- Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
| | - Cristian Chaparro
- Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
| | - Christoph Grunau
- Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
| | - Clémence Genthon
- MGX-Montpellier GenomiX, Montpellier Genomics and Bioinformatics Facility, Montpellier, France
| | - Emeric Dubois
- MGX-Montpellier GenomiX, Montpellier Genomics and Bioinformatics Facility, Montpellier, France
| | - Anne Rognon
- Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
| | - Nathalie Arancibia
- Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
| | - Bernard Dejean
- Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
| | - André Théron
- Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
| | - Benjamin Gourbal
- Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
- * E-mail: (BG); (GM)
| | - Guillaume Mitta
- Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
- * E-mail: (BG); (GM)
| |
Collapse
|
8
|
Weber JN, Kalbe M, Shim KC, Erin NI, Steinel NC, Ma L, Bolnick DI. Resist Globally, Infect Locally: A Transcontinental Test of Adaptation by Stickleback and Their Tapeworm Parasite. Am Nat 2017; 189:43-57. [DOI: 10.1086/689597] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
9
|
Survey of Global Genetic Diversity Within the Drosophila Immune System. Genetics 2016; 205:353-366. [PMID: 27815361 DOI: 10.1534/genetics.116.195016] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 10/28/2016] [Indexed: 11/18/2022] Open
Abstract
Numerous studies across a wide range of taxa have demonstrated that immune genes are routinely among the most rapidly evolving genes in the genome. This observation, however, does not address what proportion of immune genes undergo strong selection during adaptation to novel environments. Here, we determine the extent of very recent divergence in genes with immune function across five populations of Drosophila melanogaster and find that immune genes do not show an overall trend of recent rapid adaptation. Our population-based approach uses a set of carefully matched control genes to account for the effects of demography and local recombination rate, allowing us to identify whether specific immune functions are putative targets of strong selection. We find evidence that viral-defense genes are rapidly evolving in Drosophila at multiple timescales. Local adaptation to bacteria and fungi is less extreme and primarily occurs through changes in recognition and effector genes rather than large-scale changes to the regulation of the immune response. Surprisingly, genes in the Toll pathway, which show a high rate of adaptive substitution between the D. melanogaster and D. simulans lineages, show little population differentiation. Quantifying the flies for resistance to a generalist Gram-positive bacterial pathogen, we found that this genetic pattern of low population differentiation was recapitulated at the phenotypic level. In sum, our results highlight the complexity of immune evolution and suggest that Drosophila immune genes do not follow a uniform trajectory of strong directional selection as flies encounter new environments.
Collapse
|
10
|
Yoder JB. Understanding the coevolutionary dynamics of mutualism with population genomics. AMERICAN JOURNAL OF BOTANY 2016; 103:1742-1752. [PMID: 27756732 DOI: 10.3732/ajb.1600154] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 09/06/2016] [Indexed: 06/06/2023]
Abstract
Decades of research on the evolution of mutualism has generated a wealth of possible ways whereby mutually beneficial interactions between species persist in spite of the apparent advantages to individuals that accept the benefits of mutualism without reciprocating - but identifying how any particular empirical system is stabilized against cheating remains challenging. Different hypothesized models of mutualism stability predict different forms of coevolutionary selection, and emerging high-throughput sequencing methods allow examination of the selective histories of mutualism genes and, thereby, the form of selection acting on those genes. Here, I review the evolutionary theory of mutualism stability and identify how differing models make contrasting predictions for the population genomic diversity and geographic differentiation of mutualism-related genes. As an example of the possibilities offered by genomic data, I analyze genes with roles in the symbiosis of Medicago truncatula and nitrogen-fixing rhizobial bacteria, the first classic mutualism in which extensive genomic resources have been developed for both partners. Medicago truncatula symbiosis genes, as a group, differ from the rest of the genome, but they vary in the form of selection indicated by their diversity and differentiation - some show signs of selection expected from roles in sanctioning noncooperative symbionts, while others show evidence of balancing selection expected from coevolution with symbiont signaling factors. I then assess the current state of development for similar resources in other mutualistic interactions and look ahead to identify ways in which modern sequencing technology can best inform our understanding of mutualists and mutualism.
Collapse
Affiliation(s)
- Jeremy B Yoder
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z4 Canada
| |
Collapse
|