1
|
Alfieri JM, Hingoranee R, Athrey GN, Blackmon H. Domestication is associated with increased interspecific hybrid compatibility in landfowl (order: Galliformes). J Hered 2024; 115:1-10. [PMID: 37769441 PMCID: PMC10838130 DOI: 10.1093/jhered/esad059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/15/2023] [Accepted: 09/26/2023] [Indexed: 09/30/2023] Open
Abstract
Some species are able to hybridize despite being exceptionally diverged. The causes of this variation in accumulation of reproductive isolation remain poorly understood, and domestication as an impetus or hindrance to reproductive isolation remains to be characterized. In this study, we investigated the role of divergence time, domestication, and mismatches in morphology, habitat, and clutch size among hybridizing species on reproductive isolation in the bird order Galliformes. We compiled and analyzed hybridization occurrences from literature and recorded measures of postzygotic reproductive isolation. We used a text-mining approach leveraging a historical aviculture magazine to quantify the degree of domestication across species. We obtained divergence time, morphology, habitat, and clutch size data from open sources. We found 123 species pairs (involving 77 species) with known offspring fertility (sterile, only males fertile, or both sexes fertile). We found that divergence time and clutch size were significant predictors of reproductive isolation (McFadden's Pseudo-R2 = 0.59), but not habitat or morphological mismatch. Perhaps most interesting, we found a significant relationship between domestication and reproductive compatibility after correcting for phylogeny, removing extreme values, and addressing potential biases (F1,74 = 5.43, R2 = 0.06, P-value = 0.02). We speculate that the genetic architecture and disruption in selective reproductive regimes associated with domestication may impact reproductive isolation, causing domesticated species to be more reproductively labile.
Collapse
Affiliation(s)
- James M Alfieri
- Interdisciplinary Program in Ecology and Evolutionary Biology, Texas A&M University, College Station, TX, USA
- Department of Poultry Science, Texas A&M University, College Station, TX, USA
- Department of Biology, Texas A&M University, College Station, TX, USA
| | - Reina Hingoranee
- Department of Epidemiology and Biostatistics, Texas A&M University, College Station, TX, USA
| | - Giridhar N Athrey
- Interdisciplinary Program in Ecology and Evolutionary Biology, Texas A&M University, College Station, TX, USA
- Department of Poultry Science, Texas A&M University, College Station, TX, USA
| | - Heath Blackmon
- Interdisciplinary Program in Ecology and Evolutionary Biology, Texas A&M University, College Station, TX, USA
- Department of Biology, Texas A&M University, College Station, TX, USA
| |
Collapse
|
2
|
Playing to the crowd: Using Drosophila to dissect mechanisms underlying plastic male strategies in sperm competition games. ADVANCES IN THE STUDY OF BEHAVIOR 2023. [DOI: 10.1016/bs.asb.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
3
|
Marquez‐Rosado A, Garcia‐Co C, Londoño‐Nieto C, Carazo P. No evidence that relatedness or familiarity modulates male harm in Drosophila melanogaster flies from a wild population. Ecol Evol 2022; 12:e8803. [PMID: 35432938 PMCID: PMC8995922 DOI: 10.1002/ece3.8803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/07/2022] [Accepted: 02/14/2022] [Indexed: 01/06/2023] Open
Abstract
Sexual selection frequently promotes the evolution of aggressive behaviors that help males compete against their rivals, but which may harm females and hamper their fitness. Kin selection theory predicts that optimal male-male competition levels can be reduced when competitors are more genetically related to each other than to the population average, contributing to resolve this sexual conflict. Work in Drosophila melanogaster has spearheaded empirical tests of this idea, but studies so far have been conducted in laboratory-adapted populations in homogeneous rearing environments that may hamper kin recognition, and used highly skewed sex ratios that may fail to reflect average natural conditions. Here, we performed a fully factorial design with the aim of exploring how rearing environment (i.e., familiarity) and relatedness affect male-male aggression, male harassment, and overall male harm levels in flies from a wild population of Drosophila melanogaster, under more natural conditions. Namely, we (a) manipulated relatedness and familiarity so that larvae reared apart were raised in different environments, as is common in the wild, and (b) studied the effects of relatedness and familiarity under average levels of male-male competition in the field. We show that, contrary to previous findings, groups of unrelated-unfamiliar males were as likely to fight with each other and harass females than related-familiar males and that overall levels of male harm to females were similar across treatments. Our results suggest that the role of kin selection in modulating sexual conflict is yet unclear in Drosophila melanogaster, and call for further studies that focus on natural populations and realistic socio-sexual and ecological environments.
Collapse
Affiliation(s)
- Ana Marquez‐Rosado
- Ethology LabCavanilles Institute of Biodiversity and Evolutionary BiologyUniversity of ValenciaValenciaSpain
| | - Clara Garcia‐Co
- Ethology LabCavanilles Institute of Biodiversity and Evolutionary BiologyUniversity of ValenciaValenciaSpain
| | - Claudia Londoño‐Nieto
- Ethology LabCavanilles Institute of Biodiversity and Evolutionary BiologyUniversity of ValenciaValenciaSpain
| | - Pau Carazo
- Ethology LabCavanilles Institute of Biodiversity and Evolutionary BiologyUniversity of ValenciaValenciaSpain
| |
Collapse
|
4
|
Hitchcock TJ, Gardner A. Sex-biased demography modulates male harm across the genome. Proc Biol Sci 2021; 288:20212237. [PMID: 34933602 PMCID: PMC8692969 DOI: 10.1098/rspb.2021.2237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/26/2021] [Indexed: 11/22/2022] Open
Abstract
Recent years have seen an explosion of theoretical and empirical interest in the role that kin selection plays in shaping patterns of sexual conflict, with a particular focus on male harming traits. However, this work has focused solely on autosomal genes, and as such it remains unclear how demography modulates the evolution of male harm loci occurring in other portions of the genome, such as sex chromosomes and cytoplasmic elements. To investigate this, we extend existing models of sexual conflict for application to these different modes of inheritance. We first analyse the general case, revealing how sex-specific relatedness, reproductive value and the intensity of local competition combine to determine the potential for male harm. We then analyse a series of demographically explicit models, to assess how dispersal, overlapping generations, reproductive skew and the mechanism of population regulation affect sexual conflict across the genome, and drive conflict between nuclear and cytoplasmic genes. We then explore the effects of sex biases in these demographic parameters, showing how they may drive further conflicts between autosomes and sex chromosomes. Finally, we outline how different crossing schemes may be used to identify signatures of these intragenomic conflicts.
Collapse
Affiliation(s)
| | - Andy Gardner
- School of Biology, University of St Andrews, St Andrews KY16 9TH, UK
| |
Collapse
|
5
|
Faria GS, Gardner A, Carazo P. Kin discrimination and demography modulate patterns of sexual conflict. Nat Ecol Evol 2020; 4:1141-1148. [PMID: 32451427 PMCID: PMC7610387 DOI: 10.1038/s41559-020-1214-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 04/23/2020] [Indexed: 11/28/2022]
Abstract
Recent years have seen an explosion of interest in the overlap between kin selection and sexual selection, particularly concerning how kin selection can put the brakes on harmful sexual conflict. However, there remains a significant disconnect between theory and empirical research. Whilst empirical work has focused on kin-discriminating behaviour, theoretical models have assumed indiscriminating behaviour. Additionally, theoretical work makes particular demographic assumptions that constrain the relationship between genetic relatedness and the scale of competition, and it is not clear that these assumptions reflect the natural setting in which sexual conflict has been empirically studied. Here, we plug this gap between current theoretical and empirical understanding by developing a mathematical model of sexual conflict that incorporates kin discrimination and different patterns of dispersal. We find that kin discrimination and group dispersal inhibit harmful male behaviours at an individual level, but kin discrimination intensifies sexual conflict at the population level.
Collapse
Affiliation(s)
- Gonçalo S Faria
- School of Biology, University of St Andrews, St Andrews, UK. .,Institute for Advanced Study in Toulouse, Université Toulouse 1 Capitole, Toulouse, France.
| | - Andy Gardner
- School of Biology, University of St Andrews, St Andrews, UK
| | - Pau Carazo
- Ethology lab, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Valencia, Spain
| |
Collapse
|
6
|
Lymbery SJ, Simmons LW. Gustatory cues to kinship among males moderate the productivity of females. Behav Ecol 2019. [DOI: 10.1093/beheco/arz158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AbstractMales of many species harm females as a byproduct of intrasexual competition, but this harm can be reduced if males are less competitive in the presence of familiar relatives. We determined the cue males use to identify competitors in this context. We assessed genetic variance in a putative kin recognition trait (cuticular hydrocarbons) in male seed beetles Callosobruchus maculatus and found that five hydrocarbons had significant components of additive genetic variance and could serve as relatedness cues. Next, we tested whether hydrocarbons were the mechanism males use to distinguish the social identities of competitors when strategically adjusting their competitiveness/harmfulness. Pairs of female and male C. maculatus were mated in the presence of hydrocarbons extracted from males that differed in their relatedness and familiarity to the focal male. Females were more productive after mating in the presence of extracts from the focal male’s nonrelatives, if those extracts were also unfamiliar to the focal male. Relatedness had no effect on productivity when extracts were familiar to the focal male. These results may be reconciled with those of previous studies that manipulated the relatedness and familiarity of competing males if the difference between the effect of harmfulness on productivity following a single mating and the effect on lifetime reproductive fitness after multiple matings is accounted for. This study provides a novel demonstration of the mechanism of social recognition in the moderation of sexual conflict.
Collapse
Affiliation(s)
- Samuel J Lymbery
- Centre for Evolutionary Biology, School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Leigh W Simmons
- Centre for Evolutionary Biology, School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
7
|
McDonald GC, Gardner A, Pizzari T. Sexual selection in complex communities: Integrating interspecific reproductive interference in structured populations. Evolution 2019; 73:1025-1036. [PMID: 30941751 DOI: 10.1111/evo.13726] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/04/2019] [Accepted: 03/12/2019] [Indexed: 01/06/2023]
Abstract
The social structure of populations plays a key role in shaping variation in sexual selection. In nature, sexual selection occurs in communities of interacting species; however, heterospecifics are rarely included in characterizations of social structure. Heterospecifics can influence the reproductive outcomes of intrasexual competition by interfering with intraspecific sexual interactions (interspecific reproductive interference [IRI]). We outline the need for studies of sexual selection to incorporate heterospecifics as part of the social environment. We use simulations to show that classic predictions for the effect of social structure on sexual selection are altered by an interaction between social structure and IRI. This interaction has wide-ranging implications for patterns of sexual conflict and kin-selected reproductive strategies in socially structured populations. Our work bridges the gap between sexual selection research on social structure and IRI, and highlights future directions to study sexual selection in interacting communities.
Collapse
Affiliation(s)
- Grant C McDonald
- Department of Zoology, Edward Grey Institute, University of Oxford, Oxford, OX1 3PS, United Kingdom.,Department of Ecology, University of Veterinary Medicine Budapest, Budapest, 1077, Hungary
| | - Andy Gardner
- School of Biology, University of St. Andrews, St. Andrews, KY16 9TH, United Kingdom
| | - Tommaso Pizzari
- Department of Zoology, Edward Grey Institute, University of Oxford, Oxford, OX1 3PS, United Kingdom
| |
Collapse
|
8
|
Alvarez-Fernandez A, Borziak K, McDonald GC, Dorus S, Pizzari T. Female novelty and male status dynamically modulate ejaculate expenditure and seminal fluid proteome over successive matings in red junglefowl. Sci Rep 2019; 9:5852. [PMID: 30971704 PMCID: PMC6458113 DOI: 10.1038/s41598-019-41336-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 03/04/2019] [Indexed: 11/16/2022] Open
Abstract
Theory predicts that males will strategically invest in ejaculates according to the value of mating opportunities. While strategic sperm allocation has been studied extensively, little is known about concomitant changes in seminal fluid (SF) and its molecular composition, despite increasing evidence that SF proteins (SFPs) are fundamental in fertility and sperm competition. Here, we show that in male red junglefowl, Gallus gallus, along with changes in sperm numbers and SF investment, SF composition changed dynamically over successive matings with a first female, immediately followed by mating with a second, sexually novel female. The SF proteome exhibited a pattern of both protein depletion and enrichment over successive matings, including progressive increases in immunity and plasma proteins. Ejaculates allocated to the second female had distinct proteomic profiles, where depletion of many SFPs was compensated by increased investment in others. This response was partly modulated by male social status: when mating with the second, novel female, subdominants (but not dominants) preferentially invested in SFPs associated with sperm composition, which may reflect status-specific differences in mating rates, sperm maturation and sperm competition. Global proteomic SF analysis thus reveals that successive matings trigger rapid, dynamic SFP changes driven by a combination of depletion and strategic allocation.
Collapse
Affiliation(s)
| | - Kirill Borziak
- Center for Reproductive Evolution, Syracuse University, 107 College Place, Syracuse, NY, 13244, USA
| | - Grant C McDonald
- Edward Grey Institute, Department of Zoology, University of Oxford, Oxford, OX1 3SZ, UK
| | - Steve Dorus
- Center for Reproductive Evolution, Syracuse University, 107 College Place, Syracuse, NY, 13244, USA.
| | - Tommaso Pizzari
- Edward Grey Institute, Department of Zoology, University of Oxford, Oxford, OX1 3SZ, UK.
| |
Collapse
|
9
|
Pizzari T, McDonald GC. Sexual selection in socially-structured, polyandrous populations: Some insights from the fowl. ADVANCES IN THE STUDY OF BEHAVIOR 2019. [DOI: 10.1016/bs.asb.2019.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
10
|
Faria GS, Varela SAM, Gardner A. The relation between R. A. Fisher's sexy-son hypothesis and W. D. Hamilton's greenbeard effect. Evol Lett 2018. [DOI: 10.1002/evl3.53] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Gonçalo S. Faria
- School of Biology; University of St Andrews; St Andrews KY16 9TH United Kingdom
| | - Susana A. M. Varela
- Instituto Gulbenkian de Ciência; 2780-156 Oeiras Portugal
- cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa; 1749-016 Lisboa Portugal
| | - Andy Gardner
- School of Biology; University of St Andrews; St Andrews KY16 9TH United Kingdom
| |
Collapse
|
11
|
Sophisticated Fowl: The Complex Behaviour and Cognitive Skills of Chickens and Red Junglefowl. Behav Sci (Basel) 2018; 8:bs8010013. [PMID: 29342087 PMCID: PMC5791031 DOI: 10.3390/bs8010013] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 01/08/2018] [Accepted: 01/12/2018] [Indexed: 01/09/2023] Open
Abstract
The world’s most numerous bird, the domestic chicken, and their wild ancestor, the red junglefowl, have long been used as model species for animal behaviour research. Recently, this research has advanced our understanding of the social behaviour, personality, and cognition of fowl, and demonstrated their sophisticated behaviour and cognitive skills. Here, we overview some of this research, starting with describing research investigating the well-developed senses of fowl, before presenting how socially and cognitively complex they can be. The realisation that domestic chickens, our most abundant production animal, are behaviourally and cognitively sophisticated should encourage an increase in general appraise and fascination towards them. In turn, this should inspire increased use of them as both research and hobby animals, as well as improvements in their unfortunately often poor welfare.
Collapse
|
12
|
Le Page S, Sepil I, Flintham E, Pizzari T, Carazo P, Wigby S. Male relatedness and familiarity are required to modulate male-induced harm to females in Drosophila. Proc Biol Sci 2018; 284:rspb.2017.0441. [PMID: 28794215 PMCID: PMC5563793 DOI: 10.1098/rspb.2017.0441] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 07/10/2017] [Indexed: 11/12/2022] Open
Abstract
Males compete over mating and fertilization, and often harm females in the process. Inclusive fitness theory predicts that increasing relatedness within groups of males may relax competition and discourage male harm of females as males gain indirect benefits. Recent studies in Drosophila melanogaster are consistent with these predictions, and have found that within-group male relatedness increases female fitness, though others have found no effects. Importantly, these studies did not fully disentangle male genetic relatedness from larval familiarity, so the extent to which modulation of harm to females is explained by male familiarity remains unclear. Here we performed a fully factorial design, isolating the effects of male relatedness and larval familiarity on female harm. While we found no differences in male courtship or aggression, there was a significant interaction between male genetic relatedness and familiarity on female reproduction and survival. Relatedness among males increased female lifespan, reproductive lifespan and overall reproductive success, but only when males were familiar. By showing that both male relatedness and larval familiarity are required to modulate female harm, these findings reconcile previous studies, shedding light on the potential role of indirect fitness effects on sexual conflict and the mechanisms underpinning kin recognition in fly populations.
Collapse
Affiliation(s)
- Sally Le Page
- Edward Grey Institute, Department of Zoology, University of Oxford, Oxford, UK
| | - Irem Sepil
- Edward Grey Institute, Department of Zoology, University of Oxford, Oxford, UK
| | - Ewan Flintham
- Edward Grey Institute, Department of Zoology, University of Oxford, Oxford, UK
| | - Tommaso Pizzari
- Edward Grey Institute, Department of Zoology, University of Oxford, Oxford, UK
| | - Pau Carazo
- Behaviour, Ecology and Evolution group, Instituto Cavanilles of Biodiversity and Evolutionary Biology, University of Valencia, Valencia, Spain
| | - Stuart Wigby
- Edward Grey Institute, Department of Zoology, University of Oxford, Oxford, UK
| |
Collapse
|