1
|
Alenazi AS, Pereira L, Christin PA, Osborne CP, Dunning LT. Identifying genomic regions associated with C 4 photosynthetic activity and leaf anatomy in Alloteropsis semialata. THE NEW PHYTOLOGIST 2024; 243:1698-1710. [PMID: 38953386 DOI: 10.1111/nph.19933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/13/2024] [Indexed: 07/04/2024]
Abstract
C4 photosynthesis is a complex trait requiring multiple developmental and metabolic alterations. Despite this complexity, it has independently evolved over 60 times. However, our understanding of the transition to C4 is complicated by the fact that variation in photosynthetic type is usually segregated between species that diverged a long time ago. Here, we perform a genome-wide association study (GWAS) using the grass Alloteropsis semialata, the only known species to have C3, intermediate, and C4 accessions that recently diverged. We aimed to identify genomic regions associated with the strength of the C4 cycle (measured using δ13C), and the development of C4 leaf anatomy. Genomic regions correlated with δ13C include regulators of C4 decarboxylation enzymes (RIPK), nonphotochemical quenching (SOQ1), and the development of Kranz anatomy (SCARECROW-LIKE). Regions associated with the development of C4 leaf anatomy in the intermediate individuals contain additional leaf anatomy regulators, including those responsible for vein patterning (GSL8) and meristem determinacy (GIF1). The parallel recruitment of paralogous leaf anatomy regulators between A. semialata and other C4 lineages implies the co-option of these genes is context-dependent, which likely has implications for the engineering of the C4 trait into C3 species.
Collapse
Affiliation(s)
- Ahmed S Alenazi
- Department of Biological Sciences, College of Science, Northern Border University, Arar, 91431, Saudi Arabia
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Lara Pereira
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Pascal-Antoine Christin
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Colin P Osborne
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Luke T Dunning
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| |
Collapse
|
2
|
Bellasio C, Lundgren MR. The operation of PEPCK increases light harvesting plasticity in C 4 NAD-ME and NADP-ME photosynthetic subtypes: A theoretical study. PLANT, CELL & ENVIRONMENT 2024; 47:2288-2309. [PMID: 38494958 DOI: 10.1111/pce.14869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/15/2024] [Accepted: 02/18/2024] [Indexed: 03/19/2024]
Abstract
The repeated emergence of NADP-malic enzyme (ME), NAD-ME and phosphoenolpyruvate carboxykinase (PEPCK) subtypes of C4 photosynthesis are iconic examples of convergent evolution, which suggests that these biochemistries do not randomly assemble, but are instead specific adaptations resulting from unknown evolutionary drivers. Theoretical studies that are based on the classic biochemical understanding have repeatedly proposed light-use efficiency as a possible benefit of the PEPCK subtype. However, quantum yield measurements do not support this idea. We explore this inconsistency here via an analytical model that features explicit descriptions across a seamless gradient between C4 biochemistries to analyse light harvesting and dark photosynthetic metabolism. Our simulations show that the NADP-ME subtype, operated by the most productive crops, is the most efficient. The NAD-ME subtype has lower efficiency, but has greater light harvesting plasticity (the capacity to assimilate CO2 in the broadest combination of light intensity and spectral qualities). In both NADP-ME and NAD-ME backgrounds, increasing PEPCK activity corresponds to greater light harvesting plasticity but likely imposed a reduction in photosynthetic efficiency. We draw the first mechanistic links between light harvesting and C4 subtypes, providing the theoretical basis for future investigation.
Collapse
Affiliation(s)
- Chandra Bellasio
- Laboratory of Theoretical and Applied Crop Ecophysiology, School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
- Department of Chemistry, Biology ond Biotechnology, Università Degli Studi Di Perugia, Perugia, Italy
- Department of Biology, University of the Balearic Islands, Palma, Illes Balears, Spain
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| | | |
Collapse
|
3
|
Sotelo G, Gamboa S, Dunning LT, Christin PA, Varela S. C 4 photosynthesis provided an immediate demographic advantage to populations of the grass Alloteropsis semialata. THE NEW PHYTOLOGIST 2024; 242:774-785. [PMID: 38389217 DOI: 10.1111/nph.19606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/30/2024] [Indexed: 02/24/2024]
Abstract
C4 photosynthesis is a key innovation in land plant evolution, but its immediate effects on population demography are unclear. We explore the early impact of the C4 trait on the trajectories of C4 and non-C4 populations of the grass Alloteropsis semialata. We combine niche models projected into paleoclimate layers for the last 5 million years with demographic models based on genomic data. The initial split between C4 and non-C4 populations was followed by a larger expansion of the ancestral C4 population, and further diversification led to the unparalleled expansion of descendant C4 populations. Overall, C4 populations spread over three continents and achieved the highest population growth, in agreement with a broader climatic niche that rendered a large potential range over time. The C4 populations that remained in the region of origin, however, experienced lower population growth, rather consistent with local geographic constraints. Moreover, the posterior transfer of some C4-related characters to non-C4 counterparts might have facilitated the recent expansion of non-C4 populations in the region of origin. Altogether, our findings support that C4 photosynthesis provided an immediate demographic advantage to A. semialata populations, but its effect might be masked by geographic contingencies.
Collapse
Affiliation(s)
- Graciela Sotelo
- Universidade de Vigo, Departamento de Ecoloxía e Bioloxía Animal, 36310, Vigo, Spain
| | - Sara Gamboa
- Universidade de Vigo, Departamento de Ecoloxía e Bioloxía Animal, 36310, Vigo, Spain
- Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Luke T Dunning
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, S10 2TN, Sheffield, UK
| | - Pascal-Antoine Christin
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, S10 2TN, Sheffield, UK
| | - Sara Varela
- Universidade de Vigo, Departamento de Ecoloxía e Bioloxía Animal, 36310, Vigo, Spain
| |
Collapse
|
4
|
DiMario RJ, Kophs AN, Apalla AJA, Schnable JN, Cousins AB. Multiple highly expressed phosphoenolpyruvate carboxylase genes have divergent enzyme kinetic properties in two C4 grasses. ANNALS OF BOTANY 2023; 132:413-428. [PMID: 37675505 PMCID: PMC10667006 DOI: 10.1093/aob/mcad116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 09/06/2023] [Indexed: 09/08/2023]
Abstract
BACKGROUND AND AIMS Phosphoenolpyruvate (PEP) carboxylase (PEPC) catalyses the irreversible carboxylation of PEP with bicarbonate to produce oxaloacetate. This reaction powers the carbon-concentrating mechanism (CCM) in plants that perform C4 photosynthesis. This CCM is generally driven by a single PEPC gene product that is highly expressed in the cytosol of mesophyll cells. We found two C4 grasses, Panicum miliaceum and Echinochloa colona, that each have two highly expressed PEPC genes. We characterized the kinetic properties of the two most abundant PEPCs in E. colona and P. miliaceum to better understand how the enzyme's amino acid structure influences its function. METHODS Coding sequences of the two most abundant PEPC proteins in E. colona and P. miliaceum were synthesized by GenScript and were inserted into bacteria expression plasmids. Point mutations resulting in substitutions at conserved amino acid residues (e.g. N-terminal serine and residue 890) were created via site-directed PCR mutagenesis. The kinetic properties of semi-purified plant PEPCs from Escherichia coli were analysed using membrane-inlet mass spectrometry and a spectrophotometric enzyme-coupled reaction. KEY RESULTS The two most abundant P. miliaceum PEPCs (PmPPC1 and PmPPC2) have similar sequence identities (>95 %), and as a result had similar kinetic properties. The two most abundant E. colona PEPCs (EcPPC1 and EcPPC2) had identities of ~78 % and had significantly different kinetic properties. The PmPPCs and EcPPCs had different responses to allosteric inhibitors and activators, and substitutions at the conserved N-terminal serine and residue 890 resulted in significantly altered responses to allosteric regulators. CONCLUSIONS The two, significantly expressed C4Ppc genes in P. miliaceum were probably the result of genomes combining from two closely related C4Panicum species. We found natural variation in PEPC's sensitivity to allosteric inhibition that seems to bypass the conserved 890 residue, suggesting alternative evolutionary pathways for increased malate tolerance and other kinetic properties.
Collapse
Affiliation(s)
- Robert J DiMario
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| | - Ashley N Kophs
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| | - Anthony J A Apalla
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| | - James N Schnable
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68583, USA
| | - Asaph B Cousins
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
5
|
Pereira L, Bianconi ME, Osborne CP, Christin PA, Dunning LT. Alloteropsis semialata as a study system for C4 evolution in grasses. ANNALS OF BOTANY 2023; 132:365-382. [PMID: 37422712 PMCID: PMC10667010 DOI: 10.1093/aob/mcad078] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 07/07/2023] [Indexed: 07/10/2023]
Abstract
BACKGROUND Numerous groups of plants have adapted to CO2 limitations by independently evolving C4 photosynthesis. This trait relies on concerted changes in anatomy and biochemistry to concentrate CO2 within the leaf and thereby boost productivity in tropical conditions. The ecological and economic importance of C4 photosynthesis has motivated intense research, often relying on comparisons between distantly related C4 and non-C4 plants. The photosynthetic type is fixed in most species, with the notable exception of the grass Alloteropsis semialata. This species includes populations exhibiting the ancestral C3 state in southern Africa, intermediate populations in the Zambezian region and C4 populations spread around the palaeotropics. SCOPE We compile here the knowledge on the distribution and evolutionary history of the Alloteropsis genus as a whole and discuss how this has furthered our understanding of C4 evolution. We then present a chromosome-level reference genome for a C3 individual and compare the genomic architecture with that of a C4 accession of A. semialata. CONCLUSIONS Alloteropsis semialata is one of the best systems in which to investigate the evolution of C4 photosynthesis because the genetic and phenotypic variation provides a fertile ground for comparative and population-level studies. Preliminary comparative genomic investigations show that the C3 and C4 genomes are highly syntenic and have undergone a modest amount of gene duplication and translocation since the different photosynthetic groups diverged. The background knowledge and publicly available genomic resources make A. semialata a great model for further comparative analyses of photosynthetic diversification.
Collapse
Affiliation(s)
- Lara Pereira
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Western Bank, Sheffield S10 2TN,UK
| | - Matheus E Bianconi
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Western Bank, Sheffield S10 2TN,UK
| | - Colin P Osborne
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Pascal-Antoine Christin
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Western Bank, Sheffield S10 2TN,UK
| | - Luke T Dunning
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Western Bank, Sheffield S10 2TN,UK
| |
Collapse
|
6
|
Alenazi AS, Bianconi ME, Middlemiss E, Milenkovic V, Curran EV, Sotelo G, Lundgren MR, Nyirenda F, Pereira L, Christin PA, Dunning LT, Osborne CP. Leaf anatomy explains the strength of C 4 activity within the grass species Alloteropsis semialata. PLANT, CELL & ENVIRONMENT 2023. [PMID: 37184423 DOI: 10.1111/pce.14607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 03/23/2023] [Accepted: 05/01/2023] [Indexed: 05/16/2023]
Abstract
C4 photosynthesis results from anatomical and biochemical characteristics that together concentrate CO2 around ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), increasing productivity in warm conditions. This complex trait evolved through the gradual accumulation of components, and particular species possess only some of these, resulting in weak C4 activity. The consequences of adding C4 components have been modelled and investigated through comparative approaches, but the intraspecific dynamics responsible for strengthening the C4 pathway remain largely unexplored. Here, we evaluate the link between anatomical variation and C4 activity, focusing on populations of the photosynthetically diverse grass Alloteropsis semialata that fix various proportions of carbon via the C4 cycle. The carbon isotope ratios in these populations range from values typical of C3 to those typical of C4 plants. This variation is statistically explained by a combination of leaf anatomical traits linked to the preponderance of bundle sheath tissue. We hypothesize that increased investment in bundle sheath boosts the strength of the intercellular C4 pump and shifts the balance of carbon acquisition towards the C4 cycle. Carbon isotope ratios indicating a stronger C4 pathway are associated with warmer, drier environments, suggesting that incremental anatomical alterations can lead to the emergence of C4 physiology during local adaptation within metapopulations.
Collapse
Affiliation(s)
- Ahmed S Alenazi
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield, UK
- Department of Biological Sciences, Northern Border University, Arar, Saudi Arabia
| | - Matheus E Bianconi
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield, UK
| | - Ella Middlemiss
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield, UK
| | - Vanja Milenkovic
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield, UK
| | - Emma V Curran
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield, UK
| | - Graciela Sotelo
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield, UK
| | - Marjorie R Lundgren
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield, UK
| | - Florence Nyirenda
- Department of Biological Sciences, University of Zambia, Lusaka, Zambia
| | - Lara Pereira
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield, UK
| | - Pascal-Antoine Christin
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield, UK
| | - Luke T Dunning
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield, UK
| | - Colin P Osborne
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield, UK
| |
Collapse
|
7
|
Sidharthan VK, Rajeswari V, Vanamala G, Baranwal VK. Revisiting the amalgaviral landscapes in plant transcriptomes expands the host range of plant amalgaviruses. Virology 2022; 577:65-73. [PMID: 36308887 DOI: 10.1016/j.virol.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/09/2022] [Accepted: 10/16/2022] [Indexed: 11/19/2022]
Abstract
Plant amalgaviruses are monopartite, double-stranded RNA viruses, capable of vertical transmission through seeds. An attempt to revisit plant transcriptome-assembled contigs for amalgaviral sequences identified 40 putative novel amalgaviruses in 35 plant species, nearly doubling the number of plant amalgaviruses. Of the 35 plant species, 33 are reported to host amalgaviruses for the first time, including a pteridophytic and two gymnospermic species. Coding-complete genomes of all identified viruses were recovered and the putative +1 programmed ribosomal frameshift (PRF) sites were determined. Genomes of 35 identified amalgaviruses contained the conserved +1 PRF motif 'UUU_CGN', while variant versions were predicted in five genomes. Phylogenetic analysis grouped pteridophyte- and gymnosperm-infecting amalgaviruses together in divergent sub-clades while few of the related angiosperm-infecting amalgaviruses infect members of the same plant family, reiterating the co-evolution of plant amalgaviruses and their hosts. The current study paves way for further studies on understanding biological properties of identified viruses.
Collapse
Affiliation(s)
- V Kavi Sidharthan
- Division of Genetics and Tree Improvement, Institute of Forest Biodiversity (ICFRE), Hyderabad, India.
| | - V Rajeswari
- Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore, India
| | - Gayatri Vanamala
- Division of Genetics and Tree Improvement, Institute of Forest Biodiversity (ICFRE), Hyderabad, India
| | - V K Baranwal
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India.
| |
Collapse
|
8
|
Tefarikis DT, Morales-Briones DF, Yang Y, Edwards G, Kadereit G. On the hybrid origin of the C 2 Salsola divaricata agg. (Amaranthaceae) from C 3 and C 4 parental lineages. THE NEW PHYTOLOGIST 2022; 234:1876-1890. [PMID: 35288945 DOI: 10.1111/nph.18098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
C2 photosynthesis is characterised using recapturing photorespiratory CO2 by RuBisCo in Kranz-like cells and is therefore physiologically intermediate between C3 and C4 photosynthesis. C2 can be interpreted as an evolutionary precursor of C4 and/or as the result of hybridisation between a C3 and C4 lineage. We compared the expression of photosynthetic traits among populations of the Salsola divaricata agg. (C2 ) from humid subtropical to arid habitats on the coasts of the Canary Islands and Morocco and subjected them to salt and drought treatments. We screened for enhanced C4 -like expression of traits related to habitat or treatment. We estimated species trees with a transcriptome dataset of Salsoleae and explored patterns of gene tree discordance. With phylogenetic networks and hybridisation analyses we tested for the hybrid origin of the Salsola divaricata agg. We observed distinct independent variation of photosynthetic traits within and among populations and no clear evidence for selection towards C4 -like trait expression in more stressful habitats or treatments. We found reticulation and gene tree incongruence in Salsoleae supporting a putative hybrid origin of the Salsola divaricata agg. C2 photosynthesis in the Salsola divaricata agg. combines traits inherited from its C3 and C4 parental lineages and seems evolutionarily stable, possibly well adapted to a wide climatic amplitude.
Collapse
Affiliation(s)
- Delphine T Tefarikis
- AG Biodiversity and Evolution of Plants, Institute of Molecular Physiology, Johannes Gutenberg University Mainz, 55099, Mainz, Germany
| | - Diego F Morales-Briones
- Department of Plant and Microbial Biology, University of Minnesota-Twin Cities, St Paul, MN, 55108, USA
- Princess Therese von Bayern Chair of Systematics, Biodiversity and Evolution of Plants, Ludwig Maximilians University of Munich, 80638, Munich, Germany
| | - Ya Yang
- Department of Plant and Microbial Biology, University of Minnesota-Twin Cities, St Paul, MN, 55108, USA
| | - Gerald Edwards
- School of Biological Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Gudrun Kadereit
- AG Biodiversity and Evolution of Plants, Institute of Molecular Physiology, Johannes Gutenberg University Mainz, 55099, Mainz, Germany
- Princess Therese von Bayern Chair of Systematics, Biodiversity and Evolution of Plants, Ludwig Maximilians University of Munich, 80638, Munich, Germany
| |
Collapse
|
9
|
Simpson CJC, Reeves G, Tripathi A, Singh P, Hibberd JM. Using breeding and quantitative genetics to understand the C4 pathway. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3072-3084. [PMID: 34747993 PMCID: PMC9126733 DOI: 10.1093/jxb/erab486] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/03/2021] [Indexed: 05/09/2023]
Abstract
Reducing photorespiration in C3 crops could significantly increase rates of photosynthesis and yield. One method to achieve this would be to integrate C4 photosynthesis into C3 species. This objective is challenging as it involves engineering incompletely understood traits into C3 leaves, including complex changes to their biochemistry, cell biology, and anatomy. Quantitative genetics and selective breeding offer underexplored routes to identify regulators of these processes. We first review examples of natural intraspecific variation in C4 photosynthesis as well as the potential for hybridization between C3 and C4 species. We then discuss how quantitative genetic approaches including artificial selection and genome-wide association could be used to better understand the C4 syndrome and in so doing guide the engineering of the C4 pathway into C3 crops.
Collapse
Affiliation(s)
- Conor J C Simpson
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Gregory Reeves
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Anoop Tripathi
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Pallavi Singh
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Julian M Hibberd
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
- Correspondence:
| |
Collapse
|
10
|
Bianconi ME, Sotelo G, Curran EV, Milenkovic V, Samaritani E, Dunning LT, Bertolino LT, Osborne CP, Christin PA. Upregulation of C 4 characteristics does not consistently improve photosynthetic performance in intraspecific hybrids of a grass. PLANT, CELL & ENVIRONMENT 2022. [PMID: 35201618 DOI: 10.1101/2021.08.10.455822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
C4 photosynthesis is thought to have evolved via intermediate stages, with changes towards the C4 phenotype gradually enhancing photosynthetic performance. This hypothesis is widely supported by modelling studies, but experimental tests are missing. Mixing of C4 components to generate artificial intermediates can be achieved via crossing, and the grass Alloteropsis semialata represents an outstanding study system since it includes C4 and non-C4 populations. Here, we analyse F1 hybrids between C3 and C4 , and C3 +C4 and C4 genotypes to determine whether the acquisition of C4 characteristics increases photosynthetic performance. The hybrids have leaf anatomical characters and C4 gene expression profiles that are largely intermediate between those of their parents. Carbon isotope ratios are similarly intermediate, which suggests that a partial C4 cycle coexists with C3 carbon fixation in the hybrids. This partial C4 phenotype is associated with C4 -like photosynthetic efficiency in C3 +C4 × C4 , but not in C3 × C4 hybrids, which are overall less efficient than both parents. Our results support the hypothesis that the photosynthetic gains from the upregulation of C4 characteristics depend on coordinated changes in anatomy and biochemistry. The order of acquisition of C4 components is thus constrained, with C3 +C4 species providing an essential step for C4 evolution.
Collapse
Affiliation(s)
- Matheus E Bianconi
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Western Bank, Sheffield, UK
| | - Graciela Sotelo
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Western Bank, Sheffield, UK
| | - Emma V Curran
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Western Bank, Sheffield, UK
| | - Vanja Milenkovic
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Western Bank, Sheffield, UK
| | - Emanuela Samaritani
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Western Bank, Sheffield, UK
| | - Luke T Dunning
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Western Bank, Sheffield, UK
| | - Lígia T Bertolino
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Western Bank, Sheffield, UK
| | - Colin P Osborne
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Western Bank, Sheffield, UK
| | - Pascal-Antoine Christin
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Western Bank, Sheffield, UK
| |
Collapse
|
11
|
Bianconi ME, Sotelo G, Curran EV, Milenkovic V, Samaritani E, Dunning LT, Bertolino LT, Osborne CP, Christin P. Upregulation of C 4 characteristics does not consistently improve photosynthetic performance in intraspecific hybrids of a grass. PLANT, CELL & ENVIRONMENT 2022; 45:1398-1411. [PMID: 35201618 PMCID: PMC9314825 DOI: 10.1111/pce.14301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/20/2021] [Accepted: 11/21/2021] [Indexed: 06/14/2023]
Abstract
C4 photosynthesis is thought to have evolved via intermediate stages, with changes towards the C4 phenotype gradually enhancing photosynthetic performance. This hypothesis is widely supported by modelling studies, but experimental tests are missing. Mixing of C4 components to generate artificial intermediates can be achieved via crossing, and the grass Alloteropsis semialata represents an outstanding study system since it includes C4 and non-C4 populations. Here, we analyse F1 hybrids between C3 and C4 , and C3 +C4 and C4 genotypes to determine whether the acquisition of C4 characteristics increases photosynthetic performance. The hybrids have leaf anatomical characters and C4 gene expression profiles that are largely intermediate between those of their parents. Carbon isotope ratios are similarly intermediate, which suggests that a partial C4 cycle coexists with C3 carbon fixation in the hybrids. This partial C4 phenotype is associated with C4 -like photosynthetic efficiency in C3 +C4 × C4 , but not in C3 × C4 hybrids, which are overall less efficient than both parents. Our results support the hypothesis that the photosynthetic gains from the upregulation of C4 characteristics depend on coordinated changes in anatomy and biochemistry. The order of acquisition of C4 components is thus constrained, with C3 +C4 species providing an essential step for C4 evolution.
Collapse
Affiliation(s)
- Matheus E. Bianconi
- Ecology and Evolutionary Biology, School of BiosciencesUniversity of SheffieldWestern BankSheffieldUK
| | - Graciela Sotelo
- Ecology and Evolutionary Biology, School of BiosciencesUniversity of SheffieldWestern BankSheffieldUK
| | - Emma V. Curran
- Ecology and Evolutionary Biology, School of BiosciencesUniversity of SheffieldWestern BankSheffieldUK
| | - Vanja Milenkovic
- Ecology and Evolutionary Biology, School of BiosciencesUniversity of SheffieldWestern BankSheffieldUK
| | - Emanuela Samaritani
- Ecology and Evolutionary Biology, School of BiosciencesUniversity of SheffieldWestern BankSheffieldUK
| | - Luke T. Dunning
- Ecology and Evolutionary Biology, School of BiosciencesUniversity of SheffieldWestern BankSheffieldUK
| | - Lígia T. Bertolino
- Plants, Photosynthesis and Soil, School of BiosciencesUniversity of SheffieldWestern BankSheffieldUK
| | - Colin P. Osborne
- Plants, Photosynthesis and Soil, School of BiosciencesUniversity of SheffieldWestern BankSheffieldUK
| | - Pascal‐Antoine Christin
- Ecology and Evolutionary Biology, School of BiosciencesUniversity of SheffieldWestern BankSheffieldUK
| |
Collapse
|
12
|
Huang W, Zhang L, Columbus JT, Hu Y, Zhao Y, Tang L, Guo Z, Chen W, McKain M, Bartlett M, Huang CH, Li DZ, Ge S, Ma H. A well-supported nuclear phylogeny of Poaceae and implications for the evolution of C 4 photosynthesis. MOLECULAR PLANT 2022; 15:755-777. [PMID: 35093593 DOI: 10.1016/j.molp.2022.01.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 06/09/2021] [Accepted: 01/24/2022] [Indexed: 05/11/2023]
Abstract
Poaceae (the grasses) includes rice, maize, wheat, and other crops, and is the most economically important angiosperm family. Poaceae is also one of the largest plant families, consisting of over 11 000 species with a global distribution that contributes to diverse ecosystems. Poaceae species are classified into 12 subfamilies, with generally strong phylogenetic support for their monophyly. However, many relationships within subfamilies, among tribes and/or subtribes, remain uncertain. To better resolve the Poaceae phylogeny, we generated 342 transcriptomic and seven genomic datasets; these were combined with other genomic and transcriptomic datasets to provide sequences for 357 Poaceae species in 231 genera, representing 45 tribes and all 12 subfamilies. Over 1200 low-copy nuclear genes were retrieved from these datasets, with several subsets obtained using additional criteria, and used for coalescent analyses to reconstruct a Poaceae phylogeny. Our results strongly support the monophyly of 11 subfamilies; however, the subfamily Puelioideae was separated into two non-sister clades, one for each of the two previously defined tribes, supporting a hypothesis that places each tribe in a separate subfamily. Molecular clock analyses estimated the crown age of Poaceae to be ∼101 million years old. Ancestral character reconstruction of C3/C4 photosynthesis supports the hypothesis of multiple independent origins of C4 photosynthesis. These origins are further supported by phylogenetic analysis of the ppc gene family that encodes the phosphoenolpyruvate carboxylase, which suggests that members of three paralogous subclades (ppc-aL1a, ppc-aL1b, and ppc-B2) were recruited as functional C4ppc genes. This study provides valuable resources and a robust phylogenetic framework for evolutionary analyses of the grass family.
Collapse
Affiliation(s)
- Weichen Huang
- Department of Biology, 510 Mueller Laboratory, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, State College, PA 16802, USA
| | - Lin Zhang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering and State Key Laboratory of Genetic Engineering, Institute of Biodiversity Sciences and Institute of Plant Biology, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - J Travis Columbus
- Rancho Santa Ana Botanic Garden and Claremont Graduate University, 1500 North College Avenue, Claremont, CA 91711, USA
| | - Yi Hu
- Department of Biology, 510 Mueller Laboratory, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, State College, PA 16802, USA
| | - Yiyong Zhao
- Department of Biology, 510 Mueller Laboratory, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, State College, PA 16802, USA; Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering and State Key Laboratory of Genetic Engineering, Institute of Biodiversity Sciences and Institute of Plant Biology, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Lin Tang
- Department of Biology, 510 Mueller Laboratory, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, State College, PA 16802, USA; College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zhenhua Guo
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201 China
| | - Wenli Chen
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Michael McKain
- Department of Biological Sciences, University of Alabama, 411 Mary Harmon Bryant Hall, Tuscaloosa, AL 35487, USA
| | - Madelaine Bartlett
- Biology Department, University of Massachusetts Amherst, 611 North Pleasant Street, 221 Morrill 3, Amherst, MA 01003 USA
| | - Chien-Hsun Huang
- Department of Biology, 510 Mueller Laboratory, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, State College, PA 16802, USA; Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering and State Key Laboratory of Genetic Engineering, Institute of Biodiversity Sciences and Institute of Plant Biology, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - De-Zhu Li
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201 China
| | - Song Ge
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Hong Ma
- Department of Biology, 510 Mueller Laboratory, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, State College, PA 16802, USA.
| |
Collapse
|
13
|
Bianconi ME, Christin PA, Dunning LT. Inferring the genome-wide history of grasses. MOLECULAR PLANT 2022; 15:591-592. [PMID: 35307592 DOI: 10.1016/j.molp.2022.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/14/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Affiliation(s)
- Matheus E Bianconi
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Pascal-Antoine Christin
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK; Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | - Luke T Dunning
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK.
| |
Collapse
|
14
|
Artur MAS, Kajala K. Convergent evolution of gene regulatory networks underlying plant adaptations to dry environments. PLANT, CELL & ENVIRONMENT 2021; 44:3211-3222. [PMID: 34196969 PMCID: PMC8518057 DOI: 10.1111/pce.14143] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 06/25/2021] [Indexed: 05/21/2023]
Abstract
Plants transitioned from an aquatic to a terrestrial lifestyle during their evolution. On land, fluctuations on water availability in the environment became one of the major problems they encountered. The appearance of morpho-physiological adaptations to cope with and tolerate water loss from the cells was undeniably useful to survive on dry land. Some of these adaptations, such as carbon concentrating mechanisms (CCMs), desiccation tolerance (DT) and root impermeabilization, appeared in multiple plant lineages. Despite being crucial for evolution on land, it has been unclear how these adaptations convergently evolved in the various plant lineages. Recent advances on whole genome and transcriptome sequencing are revealing that co-option of genes and gene regulatory networks (GRNs) is a common feature underlying the convergent evolution of these adaptations. In this review, we address how the study of CCMs and DT has provided insight into convergent evolution of GRNs underlying plant adaptation to dry environments, and how these insights could be applied to currently emerging understanding of evolution of root impermeabilization through different barrier cell types. We discuss examples of co-option, conservation and innovation of genes and GRNs at the cell, tissue and organ levels revealed by recent phylogenomic (comparative genomic) and comparative transcriptomic studies.
Collapse
Affiliation(s)
- Mariana A. S. Artur
- Laboratory of Plant PhysiologyWageningen UniversityWageningenThe Netherlands
- Plant Ecophysiology, Institute of Environmental BiologyUtrecht UniversityUtrechtThe Netherlands
| | - Kaisa Kajala
- Plant Ecophysiology, Institute of Environmental BiologyUtrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
15
|
Cui H. Challenges and Approaches to Crop Improvement Through C3-to-C4 Engineering. FRONTIERS IN PLANT SCIENCE 2021; 12:715391. [PMID: 34594351 PMCID: PMC8476962 DOI: 10.3389/fpls.2021.715391] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/06/2021] [Indexed: 05/24/2023]
Abstract
With a rapidly growing world population and dwindling natural resources, we are now facing the enormous challenge of increasing crop yields while simultaneously improving the efficiency of resource utilization. Introduction of C4 photosynthesis into C3 crops is widely accepted as a key strategy to meet this challenge because C4 plants are more efficient than C3 plants in photosynthesis and resource usage, particularly in hot climates, where the potential for productivity is high. Lending support to the feasibility of this C3-to-C4 engineering, evidence indicates that C4 photosynthesis has evolved from C3 photosynthesis in multiple lineages. Nevertheless, C3-to-C4 engineering is not an easy task, as several features essential to C4 photosynthesis must be introduced into C3 plants. One such feature is the spatial separation of the two phases of photosynthesis (CO2 fixation and carbohydrate synthesis) into the mesophyll and bundle sheath cells, respectively. Another feature is the Kranz anatomy, characterized by a close association between the mesophyll and bundle sheath (BS) cells (1:1 ratio). These anatomical features, along with a C4-specific carbon fixation enzyme (PEPC), form a CO2-concentration mechanism that ensures a high photosynthetic efficiency. Much effort has been taken in the past to introduce the C4 mechanism into C3 plants, but none of these attempts has met with success, which is in my opinion due to a lack of system-level understanding and manipulation of the C3 and C4 pathways. As a prerequisite for the C3-to-C4 engineering, I propose that not only the mechanisms that control the Kranz anatomy and cell-type-specific expression in C3 and C4 plants must be elucidated, but also a good understanding of the gene regulatory network underlying C3 and C4 photosynthesis must be achieved. In this review, I first describe the past and current efforts to increase photosynthetic efficiency in C3 plants and their limitations; I then discuss a systems approach to tackling down this challenge, some practical issues, and recent technical innovations that would help us to solve these problems.
Collapse
Affiliation(s)
- Hongchang Cui
- Department of Biological Science, Florida State University, Tallahassee, FL, United States
- College of Life Science, Northwest Science University of Agriculture and Forestry, Yangling, China
| |
Collapse
|
16
|
Phansopa C, Dunning LT, Reid JD, Christin PA. Lateral Gene Transfer Acts As an Evolutionary Shortcut to Efficient C4 Biochemistry. Mol Biol Evol 2021; 37:3094-3104. [PMID: 32521019 PMCID: PMC7751175 DOI: 10.1093/molbev/msaa143] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The adaptation of proteins for novel functions often requires changes in their kinetics via amino acid replacement. This process can require multiple mutations, and therefore extended periods of selection. The transfer of genes among distinct species might speed up the process, by providing proteins already adapted for the novel function. However, this hypothesis remains untested in multicellular eukaryotes. The grass Alloteropsis is an ideal system to test this hypothesis due to its diversity of genes encoding phosphoenolpyruvate carboxylase, an enzyme that catalyzes one of the key reactions in the C4 pathway. Different accessions of Alloteropsis either use native isoforms relatively recently co-opted from other functions or isoforms that were laterally acquired from distantly related species that evolved the C4 trait much earlier. By comparing the enzyme kinetics, we show that native isoforms with few amino acid replacements have substrate KM values similar to the non-C4 ancestral form, but exhibit marked increases in catalytic efficiency. The co-option of native isoforms was therefore followed by rapid catalytic improvements, which appear to rely on standing genetic variation observed within one species. Native C4 isoforms with more amino acid replacements exhibit additional changes in affinities, suggesting that the initial catalytic improvements are followed by gradual modifications. Finally, laterally acquired genes show both strong increases in catalytic efficiency and important changes in substrate handling. We conclude that the transfer of genes among distant species sharing the same physiological novelty creates an evolutionary shortcut toward more efficient enzymes, effectively accelerating evolution.
Collapse
Affiliation(s)
- Chatchawal Phansopa
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom.,Department of Chemistry, University of Sheffield, Sheffield, United Kingdom
| | - Luke T Dunning
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - James D Reid
- Department of Chemistry, University of Sheffield, Sheffield, United Kingdom
| | | |
Collapse
|
17
|
Bianconi ME, Hackel J, Vorontsova MS, Alberti A, Arthan W, Burke SV, Duvall MR, Kellogg EA, Lavergne S, McKain MR, Meunier A, Osborne CP, Traiperm P, Christin PA, Besnard G. Continued Adaptation of C4 Photosynthesis After an Initial Burst of Changes in the Andropogoneae Grasses. Syst Biol 2020; 69:445-461. [PMID: 31589325 PMCID: PMC7672695 DOI: 10.1093/sysbio/syz066] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 09/18/2019] [Accepted: 09/26/2019] [Indexed: 11/29/2022] Open
Abstract
C\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}$_{4}$\end{document} photosynthesis is a complex trait that sustains fast growth and high productivity in tropical and subtropical conditions and evolved repeatedly in flowering plants. One of the major C\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}$_{4}$\end{document} lineages is Andropogoneae, a group of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}$\sim $\end{document}1200 grass species that includes some of the world’s most important crops and species dominating tropical and some temperate grasslands. Previous efforts to understand C\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}$_{4}$\end{document} evolution in the group have compared a few model C\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}$_{4}$\end{document} plants to distantly related C\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}$_{3}$\end{document} species so that changes directly responsible for the transition to C\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}$_{4}$\end{document} could not be distinguished from those that preceded or followed it. In this study, we analyze the genomes of 66 grass species, capturing the earliest diversification within Andropogoneae as well as their C\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}$_{3}$\end{document} relatives. Phylogenomics combined with molecular dating and analyses of protein evolution show that many changes linked to the evolution of C\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}$_{4}$\end{document} photosynthesis in Andropogoneae happened in the Early Miocene, between 21 and 18 Ma, after the split from its C\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}$_{3}$\end{document} sister lineage, and before the diversification of the group. This initial burst of changes was followed by an extended period of modifications to leaf anatomy and biochemistry during the diversification of Andropogoneae, so that a single C\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}$_{4}$\end{document} origin gave birth to a diversity of C\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}$_{4}$\end{document} phenotypes during 18 million years of speciation events and migration across geographic and ecological spaces. Our comprehensive approach and broad sampling of the diversity in the group reveals that one key transition can lead to a plethora of phenotypes following sustained adaptation of the ancestral state. [Adaptive evolution; complex traits; herbarium genomics; Jansenelleae; leaf anatomy; Poaceae; phylogenomics.]
Collapse
Affiliation(s)
- Matheus E Bianconi
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Jan Hackel
- Laboratoire Evolution & Diversité Biologique (EDB, UMR 5174), CNRS/IRD/Université Toulouse III, 118 route de Narbonne, 31062 Toulouse, France
- Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AB, UK
| | - Maria S Vorontsova
- Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AB, UK
| | - Adriana Alberti
- CEA - Institut de Biologie Francois-Jacob, Genoscope, 2 Rue Gaston Cremieux 91057 Evry Cedex, France
| | - Watchara Arthan
- Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AB, UK
- School of Biological Sciences, University of Reading, Reading RG6 6AH, UK
| | - Sean V Burke
- Department of Biological Sciences, Plant Molecular and Bioinformatics Center, Northern Illinois University, 1425 W. Lincoln Hwy, DeKalb, IL 60115-2861, USA
| | - Melvin R Duvall
- Department of Biological Sciences, Plant Molecular and Bioinformatics Center, Northern Illinois University, 1425 W. Lincoln Hwy, DeKalb, IL 60115-2861, USA
| | - Elizabeth A Kellogg
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MI 63132, USA
| | - Sébastien Lavergne
- Laboratoire d’Ecologie Alpine, CNRS – Université Grenoble Alpes, UMR 5553, Grenoble, France
| | - Michael R McKain
- Department of Biological Sciences, The University of Alabama, 500 Hackberry Lane, Tuscaloosa, AL 35487, USA
| | - Alexandre Meunier
- Laboratoire Evolution & Diversité Biologique (EDB, UMR 5174), CNRS/IRD/Université Toulouse III, 118 route de Narbonne, 31062 Toulouse, France
| | - Colin P Osborne
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Paweena Traiperm
- Department of Plant Science, Faculty of Science, Mahidol University, King Rama VI Road, Bangkok 10400, Thailand
| | - Pascal-Antoine Christin
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Guillaume Besnard
- Laboratoire Evolution & Diversité Biologique (EDB, UMR 5174), CNRS/IRD/Université Toulouse III, 118 route de Narbonne, 31062 Toulouse, France
- Correspondence to be sent to: Laboratoire Evolution & Diversité Biologique (EDB, UMR 5174), CNRS/IRD/Université Toulouse III, 118 route de Narbonne, 31062 Toulouse, France; E-mail:
| |
Collapse
|
18
|
Bianconi ME, Dunning LT, Curran EV, Hidalgo O, Powell RF, Mian S, Leitch IJ, Lundgren MR, Manzi S, Vorontsova MS, Besnard G, Osborne CP, Olofsson JK, Christin PA. Contrasted histories of organelle and nuclear genomes underlying physiological diversification in a grass species. Proc Biol Sci 2020; 287:20201960. [PMID: 33171085 PMCID: PMC7735283 DOI: 10.1098/rspb.2020.1960] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
C4 photosynthesis evolved multiple times independently in angiosperms, but most origins are relatively old so that the early events linked to photosynthetic diversification are blurred. The grass Alloteropsis semialata is an exception, as this species encompasses C4 and non-C4 populations. Using phylogenomics and population genomics, we infer the history of dispersal and secondary gene flow before, during and after photosynthetic divergence in A. semialata. We further analyse the genome composition of individuals with varied ploidy levels to establish the origins of polyploids in this species. Detailed organelle phylogenies indicate limited seed dispersal within the mountainous region of origin and the emergence of a C4 lineage after dispersal to warmer areas of lower elevation. Nuclear genome analyses highlight repeated secondary gene flow. In particular, the nuclear genome associated with the C4 phenotype was swept into a distantly related maternal lineage probably via unidirectional pollen flow. Multiple intraspecific allopolyploidy events mediated additional secondary genetic exchanges between photosynthetic types. Overall, our results show that limited dispersal and isolation allowed lineage divergence, with photosynthetic innovation happening after migration to new environments, and pollen-mediated gene flow led to the rapid spread of the derived C4 physiology away from its region of origin.
Collapse
Affiliation(s)
- Matheus E Bianconi
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Luke T Dunning
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Emma V Curran
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Oriane Hidalgo
- Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AB, UK
| | - Robyn F Powell
- Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AB, UK
| | - Sahr Mian
- Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AB, UK
| | - Ilia J Leitch
- Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AB, UK
| | - Marjorie R Lundgren
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Sophie Manzi
- Laboratoire Evolution and Diversité Biologique (EDB UMR5174), Université de Toulouse III - Paul Sabatier, CNRS, IRD, 118 route de Narbonne, 31062 Toulouse, France
| | - Maria S Vorontsova
- Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AB, UK
| | - Guillaume Besnard
- Laboratoire Evolution and Diversité Biologique (EDB UMR5174), Université de Toulouse III - Paul Sabatier, CNRS, IRD, 118 route de Narbonne, 31062 Toulouse, France
| | - Colin P Osborne
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Jill K Olofsson
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Pascal-Antoine Christin
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| |
Collapse
|
19
|
Khoshravesh R, Stata M, Adachi S, Sage TL, Sage RF. Evolutionary Convergence of C 4 Photosynthesis: A Case Study in the Nyctaginaceae. FRONTIERS IN PLANT SCIENCE 2020; 11:578739. [PMID: 33224166 PMCID: PMC7667235 DOI: 10.3389/fpls.2020.578739] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/06/2020] [Indexed: 05/27/2023]
Abstract
C4 photosynthesis evolved over 65 times, with around 24 origins in the eudicot order Caryophyllales. In the Caryophyllales family Nyctaginaceae, the C4 pathway is known in three genera of the tribe Nyctagineae: Allionia, Okenia and Boerhavia. Phylogenetically, Allionia and Boerhavia/Okenia are separated by three genera whose photosynthetic pathway is uncertain. To clarify the distribution of photosynthetic pathways in the Nyctaginaceae, we surveyed carbon isotope ratios of 159 species of the Nyctaginaceae, along with bundle sheath (BS) cell ultrastructure, leaf gas exchange, and C4 pathway biochemistry in five species from the two C4 clades and closely related C3 genera. All species in Allionia, Okenia and Boerhavia are C4, while no C4 species occur in any other genera of the family, including three that branch between Allionia and Boerhavia. This demonstrates that C4 photosynthesis evolved twice in Nyctaginaceae. Boerhavia species use the NADP-malic enzyme (NADP-ME) subtype of C4 photosynthesis, while Allionia species use the NAD-malic enzyme (NAD-ME) subtype. The BS cells of Allionia have many more mitochondria than the BS of Boerhavia. Bundle sheath mitochondria are closely associated with chloroplasts in Allionia which facilitates CO2 refixation following decarboxylation by mitochondrial NAD-ME. The close relationship between Allionia and Boerhavia could provide insights into why NADP-ME versus NAD-ME subtypes evolve, particularly when coupled to analysis of their respective genomes. As such, the group is an excellent system to dissect the organizational hierarchy of convergent versus divergent traits produced by C4 evolution, enabling us to understand when convergence is favored versus when divergent modifications can result in a common phenotype.
Collapse
Affiliation(s)
- Roxana Khoshravesh
- Department of Ecology and Evolutionary Biology, The University of Toronto, Toronto, ON, Canada
- Department of Biology, The University of New Mexico, Albuquerque, NM, United States
| | - Matt Stata
- Department of Ecology and Evolutionary Biology, The University of Toronto, Toronto, ON, Canada
| | - Shunsuke Adachi
- Department of Ecology and Evolutionary Biology, The University of Toronto, Toronto, ON, Canada
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Tammy L. Sage
- Department of Ecology and Evolutionary Biology, The University of Toronto, Toronto, ON, Canada
| | - Rowan F. Sage
- Department of Ecology and Evolutionary Biology, The University of Toronto, Toronto, ON, Canada
| |
Collapse
|
20
|
Moody NR, Christin PA, Reid JD. Kinetic Modifications of C 4 PEPC Are Qualitatively Convergent, but Larger in Panicum Than in Flaveria. FRONTIERS IN PLANT SCIENCE 2020; 11:1014. [PMID: 32719709 PMCID: PMC7350407 DOI: 10.3389/fpls.2020.01014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
C4 photosynthesis results from a set of anatomical features and biochemical components that act together to concentrate CO2 within the leaf and boost productivity. This complex trait evolved independently many times, resulting in various realizations of the phenotype, but in all C4 plants the primary fixation of atmospheric carbon is catalyzed by phosphoenolpyruvate carboxylase. Comparisons of C4 and non-C4 PEPC from a few closely related species suggested that the enzyme was modified to meet the demands of the C4 cycle. However, very few C4 groups have been investigated, hampering general conclusions. To test the hypothesis that distant C4 lineages underwent convergent biochemical changes, we compare the kinetic variation between C4 and non-C4 PEPC from a previously assessed young lineage (Flaveria, Asteraceae) with those from an older lineage found within the distantly related grass family (Panicum). Despite the evolutionary distance, the kinetic changes between the non-C4 and C4 PEPC are qualitatively similar, with a decrease in sensitivity for inhibitors, an increased specificity (k cat/K m) for bicarbonate, and a decreased specificity (k cat/K m) for PEP. The differences are more pronounced in the older lineage Panicum, which might indicate that optimization of PEPC for the C4 context increases with evolutionary time.
Collapse
Affiliation(s)
- Nicholas R. Moody
- Department of Chemistry, University of Sheffield, Sheffield, United Kingdom
| | | | - James D. Reid
- Department of Chemistry, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
21
|
Wood D, Besnard G, Beerling DJ, Osborne CP, Christin PA. Phylogenomics indicates the "living fossil" Isoetes diversified in the Cenozoic. PLoS One 2020; 15:e0227525. [PMID: 32555586 PMCID: PMC7302493 DOI: 10.1371/journal.pone.0227525] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 05/14/2020] [Indexed: 11/19/2022] Open
Abstract
The fossil record provides an invaluable insight into the temporal origins of extant lineages of organisms. However, establishing the relationships between fossils and extant lineages can be difficult in groups with low rates of morphological change over time. Molecular dating can potentially circumvent this issue by allowing distant fossils to act as calibration points, but rate variation across large evolutionary scales can bias such analyses. In this study, we apply multiple dating methods to genome-wide datasets to infer the origin of extant species of Isoetes, a group of mostly aquatic and semi-aquatic isoetalean lycopsids, which closely resemble fossil forms dating back to the Triassic. Rate variation observed in chloroplast genomes hampers accurate dating, but genome-wide nuclear markers place the origin of extant diversity within this group in the mid-Paleogene, 45-60 million years ago. Our genomic analyses coupled with a careful evaluation of the fossil record indicate that despite resembling forms from the Triassic, extant Isoetes species do not represent the remnants of an ancient and widespread group, but instead have spread around the globe in the relatively recent past.
Collapse
Affiliation(s)
- Daniel Wood
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, United Kingdom
| | - Guillaume Besnard
- CNRS, Université de Toulouse, IRD, UMR 5174, EDB (Laboratoire Évolution & Diversité Biologique), Toulouse, France
| | - David J. Beerling
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, United Kingdom
| | - Colin P. Osborne
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, United Kingdom
| | - Pascal-Antoine Christin
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, United Kingdom
| |
Collapse
|
22
|
Dunning LT, Christin PA. Reticulate evolution, lateral gene transfer, and innovation in plants. AMERICAN JOURNAL OF BOTANY 2020; 107:541-544. [PMID: 32198762 DOI: 10.1002/ajb2.1452] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Affiliation(s)
- Luke T Dunning
- Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| | | |
Collapse
|
23
|
Olofsson JK, Dunning LT, Lundgren MR, Barton HJ, Thompson J, Cuff N, Ariyarathne M, Yakandawala D, Sotelo G, Zeng K, Osborne CP, Nosil P, Christin PA. Population-Specific Selection on Standing Variation Generated by Lateral Gene Transfers in a Grass. Curr Biol 2019; 29:3921-3927.e5. [DOI: 10.1016/j.cub.2019.09.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/06/2019] [Accepted: 09/10/2019] [Indexed: 12/26/2022]
|
24
|
Edwards EJ. Evolutionary trajectories, accessibility and other metaphors: the case of C 4 and CAM photosynthesis. THE NEW PHYTOLOGIST 2019; 223:1742-1755. [PMID: 30993711 DOI: 10.1111/nph.15851] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 03/18/2019] [Indexed: 05/24/2023]
Abstract
Are evolutionary outcomes predictable? Adaptations that show repeated evolutionary convergence across the Tree of Life provide a special opportunity to dissect the context surrounding their origins, and identify any commonalities that may predict why certain traits evolved many times in particular clades and yet never evolved in others. The remarkable convergence of C4 and Crassulacean Acid Metabolism (CAM) photosynthesis in vascular plants makes them exceptional model systems for understanding the repeated evolution of complex phenotypes. This review highlights what we have learned about the recurring assembly of C4 and CAM, focusing on the increasingly predictable stepwise evolutionary integration of anatomy and biochemistry. With the caveat that we currently understand C4 evolution better than we do CAM, I propose a general model that explains and unites C4 and CAM evolutionary trajectories. Available data suggest that anatomical modifications are the 'rate-limiting step' in each trajectory, which in large part determines the evolutionary accessibility of both syndromes. The idea that organismal structure exerts a primary influence on innovation is discussed in the context of other systems. Whether the rate-limiting step occurs early or late in the evolutionary assembly of a new phenotype may have profound implications for its distribution across the Tree of Life.
Collapse
Affiliation(s)
- Erika J Edwards
- Department of Ecology and Evolutionary Biology, Yale University, 165 Prospect St, New Haven, CT, 06520-8105, USA
| |
Collapse
|
25
|
Dunning LT, Moreno-Villena JJ, Lundgren MR, Dionora J, Salazar P, Adams C, Nyirenda F, Olofsson JK, Mapaura A, Grundy IM, Kayombo CJ, Dunning LA, Kentatchime F, Ariyarathne M, Yakandawala D, Besnard G, Quick WP, Bräutigam A, Osborne CP, Christin PA. Key changes in gene expression identified for different stages of C4 evolution in Alloteropsis semialata. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:3255-3268. [PMID: 30949663 PMCID: PMC6598098 DOI: 10.1093/jxb/erz149] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/19/2019] [Indexed: 05/23/2023]
Abstract
C4 photosynthesis is a complex trait that boosts productivity in tropical conditions. Compared with C3 species, the C4 state seems to require numerous novelties, but species comparisons can be confounded by long divergence times. Here, we exploit the photosynthetic diversity that exists within a single species, the grass Alloteropsis semialata, to detect changes in gene expression associated with different photosynthetic phenotypes. Phylogenetically informed comparative transcriptomics show that intermediates with a weak C4 cycle are separated from the C3 phenotype by increases in the expression of 58 genes (0.22% of genes expressed in the leaves), including those encoding just three core C4 enzymes: aspartate aminotransferase, phosphoenolpyruvate carboxykinase, and phosphoenolpyruvate carboxylase. The subsequent transition to full C4 physiology was accompanied by increases in another 15 genes (0.06%), including only the core C4 enzyme pyruvate orthophosphate dikinase. These changes probably created a rudimentary C4 physiology, and isolated populations subsequently improved this emerging C4 physiology, resulting in a patchwork of expression for some C4 accessory genes. Our work shows how C4 assembly in A. semialata happened in incremental steps, each requiring few alterations over the previous step. These create short bridges across adaptive landscapes that probably facilitated the recurrent origins of C4 photosynthesis through a gradual process of evolution.
Collapse
Affiliation(s)
- Luke T Dunning
- Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, UK
| | | | - Marjorie R Lundgren
- Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, UK
| | | | - Paolo Salazar
- International Rice Research Institute, DAPO, Metro Manila, Philippines
| | - Claire Adams
- Botany Department, Rhodes University, Grahamstown, South Africa
| | - Florence Nyirenda
- Department of Biological Sciences, University of Zambia, Lusaka, Zambia
| | - Jill K Olofsson
- Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, UK
| | | | - Isla M Grundy
- Institute of Environmental Studies, University of Zimbabwe, Harare, Zimbabwe
| | | | - Lucy A Dunning
- Department of Social Sciences, University of Sheffield, Sheffield, UK
| | | | - Menaka Ariyarathne
- Department of Botany, Faculty of Science, University of Peradeniya, Peradeiya, Sri Lanka
| | - Deepthi Yakandawala
- Department of Botany, Faculty of Science, University of Peradeniya, Peradeiya, Sri Lanka
| | - Guillaume Besnard
- Laboratoire Évolution et Diversité Biologique (EDB UMR5174), Université de Toulouse, CNRS, IRD, UPS, Toulouse, France
| | - W Paul Quick
- Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, UK
- International Rice Research Institute, DAPO, Metro Manila, Philippines
| | | | - Colin P Osborne
- Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, UK
| | | |
Collapse
|
26
|
Flood PJ. Using natural variation to understand the evolutionary pressures on plant photosynthesis. CURRENT OPINION IN PLANT BIOLOGY 2019; 49:68-73. [PMID: 31284076 DOI: 10.1016/j.pbi.2019.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 05/23/2019] [Accepted: 06/03/2019] [Indexed: 06/09/2023]
Abstract
Photosynthesis is the gateway of the Sun's energy into the biosphere and the source of the ozone layer; thus it is both provider and protector of life as we know it. Despite its pivotal role we know surprisingly little about the genetic basis of variation in photosynthesis and the selective pressures giving rise to or maintaining this variation. In this review, I will briefly summarise our current knowledge of intraspecific and interspecific variation in photosynthesis to understand the main selective constraints on photosynthesis and what this means for the future of nature and agriculture in a changing world.
Collapse
Affiliation(s)
- Pádraic J Flood
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany.
| |
Collapse
|
27
|
Stata M, Sage TL, Sage RF. Mind the gap: the evolutionary engagement of the C 4 metabolic cycle in support of net carbon assimilation. CURRENT OPINION IN PLANT BIOLOGY 2019; 49:27-34. [PMID: 31150949 DOI: 10.1016/j.pbi.2019.04.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/20/2019] [Accepted: 04/23/2019] [Indexed: 06/09/2023]
Abstract
C4 photosynthesis evolved dozens of times, with a critical step being the engagement of a C4 metabolic cycle to concentrate CO2 into a bundle sheath-like compartment. While C3-C4 intermediate species show a progressive increase in the activity of a C4 metabolic cycle, the integration of the C4 and C3 biochemical cycles in enhancing photosynthetic carbon gain occurs in a punctuated manner, at an initial C4 cycle activity near 60%. Punctuated integration of the C4 cycle could result from the evolutionary acquisition of traits that coordinate the C3 and C4 biochemical cycles (for example, an enzymatic, regulatory or transport function) or from a sudden reduction in the mesophyll C3 cycle. Alternatively, a punctuated pattern could be an artifact of low numbers of C3-C4 intermediates in the evolutionary space where C4 cycle engagement occurs, due to incomplete sampling of natural diversity or evolutionary dynamics rendering such intermediates unstable. Understanding how the C4 cycle becomes integrated with the C3 cycle could reveal new avenues for engineering the C4 pathway into C3 plants. Such efforts would be facilitated by the generation of hybrids, or the discovery of additional intermediates, that span the transition from low to high C4 cycle engagement.
Collapse
Affiliation(s)
- Matt Stata
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, M5S3B2, Canada
| | - Tammy L Sage
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, M5S3B2, Canada
| | - Rowan F Sage
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, M5S3B2, Canada.
| |
Collapse
|
28
|
|
29
|
Moreno-Villena JJ, Dunning LT, Osborne CP, Christin PA. Highly Expressed Genes Are Preferentially Co-Opted for C4 Photosynthesis. Mol Biol Evol 2019; 35:94-106. [PMID: 29040657 PMCID: PMC5850498 DOI: 10.1093/molbev/msx269] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Novel adaptations are generally assembled by co-opting pre-existing genetic components, but the factors dictating the suitability of genes for new functions remain poorly known. In this work, we used comparative transcriptomics to determine the attributes that increased the likelihood of some genes being co-opted for C4 photosynthesis, a convergent complex trait that boosts productivity in tropical conditions. We show that independent lineages of grasses repeatedly co-opted the gene lineages that were the most highly expressed in non-C4 ancestors to produce their C4 pathway. Although ancestral abundance in leaves explains which genes were used for the emergence of a C4 pathway, the tissue specificity has surprisingly no effect. Our results suggest that levels of key genes were elevated during the early diversification of grasses and subsequently repeatedly used to trigger a weak C4 cycle via relatively few mutations. The abundance of C4-suitable transcripts therefore facilitated physiological innovation, but the transition to a strong C4 pathway still involved consequent changes in expression levels, leaf specificity, and coding sequences. The direction and amount of changes required for the strong C4 pathway depended on the identity of the genes co-opted, so that ancestral gene expression both facilitates adaptive transitions and constrains subsequent evolutionary trajectories.
Collapse
Affiliation(s)
| | - Luke T Dunning
- Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Colin P Osborne
- Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | | |
Collapse
|
30
|
Abstract
A fundamental tenet of multicellular eukaryotic evolution is that vertical inheritance is paramount, with natural selection acting on genetic variants transferred from parents to offspring. This lineal process means that an organism's adaptive potential can be restricted by its evolutionary history, the amount of standing genetic variation, and its mutation rate. Lateral gene transfer (LGT) theoretically provides a mechanism to bypass many of these limitations, but the evolutionary importance and frequency of this process in multicellular eukaryotes, such as plants, remains debated. We address this issue by assembling a chromosome-level genome for the grass Alloteropsis semialata, a species surmised to exhibit two LGTs, and screen it for other grass-to-grass LGTs using genomic data from 146 other grass species. Through stringent phylogenomic analyses, we discovered 57 additional LGTs in the A. semialata nuclear genome, involving at least nine different donor species. The LGTs are clustered in 23 laterally acquired genomic fragments that are up to 170 kb long and have accumulated during the diversification of Alloteropsis. The majority of the 59 LGTs in A. semialata are expressed, and we show that they have added functions to the recipient genome. Functional LGTs were further detected in the genomes of five other grass species, demonstrating that this process is likely widespread in this globally important group of plants. LGT therefore appears to represent a potent evolutionary force capable of spreading functional genes among distantly related grass species.
Collapse
|
31
|
Niklaus M, Kelly S. The molecular evolution of C4 photosynthesis: opportunities for understanding and improving the world's most productive plants. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:795-804. [PMID: 30462241 DOI: 10.1093/jxb/ery416] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 11/09/2018] [Indexed: 05/28/2023]
Abstract
C4 photosynthesis is a convergent evolutionary trait that enhances photosynthetic efficiency in a variety of environmental conditions. It has evolved repeatedly following a fall in atmospheric CO2 concentration such that there is up to a 30 million year difference in the amount of time that natural selection has had to improve C4 function between the oldest and youngest C4 lineages. This large difference in time, coupled with the phylogenetic distance between lineages, has resulted in a large disparity in anatomy, physiology, and biochemistry between extant C4 species. This review summarizes the myriad of molecular sequence changes that have been linked to the evolution of C4 photosynthesis. These range from single nucleotide changes to duplication of entire genes, and provide a roadmap for how natural selection has adapted enzymes and pathways for enhanced C4 function. Finally, this review discusses how this molecular diversity can provide opportunities for understanding and improving photosynthesis for multiple important C4 food, feed, and bioenergy crops.
Collapse
Affiliation(s)
- Michael Niklaus
- Department of Plant Sciences, University of Oxford, Oxford, UK
| | - Steven Kelly
- Department of Plant Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
32
|
Lundgren MR, Dunning LT, Olofsson JK, Moreno‐Villena JJ, Bouvier JW, Sage TL, Khoshravesh R, Sultmanis S, Stata M, Ripley BS, Vorontsova MS, Besnard G, Adams C, Cuff N, Mapaura A, Bianconi ME, Long CM, Christin P, Osborne CP. C 4 anatomy can evolve via a single developmental change. Ecol Lett 2019; 22:302-312. [PMID: 30557904 PMCID: PMC6849723 DOI: 10.1111/ele.13191] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 10/31/2018] [Indexed: 01/05/2023]
Abstract
C4 photosynthesis is a complex trait that boosts productivity in warm environments. Paradoxically, it evolved independently in numerous plant lineages, despite requiring specialised leaf anatomy. The anatomical modifications underlying C4 evolution have previously been evaluated through interspecific comparisons, which capture numerous changes besides those needed for C4 functionality. Here, we quantify the anatomical changes accompanying the transition between non-C4 and C4 phenotypes by sampling widely across the continuum of leaf anatomical traits in the grass Alloteropsis semialata. Within this species, the only trait that is shared among and specific to C4 individuals is an increase in vein density, driven specifically by minor vein development that yields multiple secondary effects facilitating C4 function. For species with the necessary anatomical preconditions, developmental proliferation of veins can therefore be sufficient to produce a functional C4 leaf anatomy, creating an evolutionary entry point to complex C4 syndromes that can become more specialised.
Collapse
Affiliation(s)
- Marjorie R. Lundgren
- Department of Animal and Plant SciencesUniversity of SheffieldWestern BankSheffieldS10 2TNUK
- Present address:
Lancaster Environment CentreLancaster UniversityLancasterLA1 4YQUK
| | - Luke T. Dunning
- Department of Animal and Plant SciencesUniversity of SheffieldWestern BankSheffieldS10 2TNUK
| | - Jill K. Olofsson
- Department of Animal and Plant SciencesUniversity of SheffieldWestern BankSheffieldS10 2TNUK
| | - Jose J. Moreno‐Villena
- Department of Animal and Plant SciencesUniversity of SheffieldWestern BankSheffieldS10 2TNUK
| | - Jacques W. Bouvier
- Department of Animal and Plant SciencesUniversity of SheffieldWestern BankSheffieldS10 2TNUK
| | - Tammy L. Sage
- Department of Ecology and Evolutionary BiologyUniversity of Toronto25 Willcocks StreetTorontoONM5S 3B2Canada
| | - Roxana Khoshravesh
- Department of Ecology and Evolutionary BiologyUniversity of Toronto25 Willcocks StreetTorontoONM5S 3B2Canada
| | - Stefanie Sultmanis
- Department of Ecology and Evolutionary BiologyUniversity of Toronto25 Willcocks StreetTorontoONM5S 3B2Canada
| | - Matt Stata
- Department of Ecology and Evolutionary BiologyUniversity of Toronto25 Willcocks StreetTorontoONM5S 3B2Canada
| | - Brad S. Ripley
- Botany DepartmentRhodes UniversityGrahamstown6139South Africa
| | - Maria S. Vorontsova
- Comparative Plant and Fungal BiologyRoyal Botanic GardensKewRichmondSurreyTW9 3ABUK
| | - Guillaume Besnard
- Laboratoire Évolution & Diversité Biologique (EDB UMR5174)Université de ToulouseCNRSENSFEAUPSIRD118 route de Narbonne31062ToulouseFrance
| | - Claire Adams
- Botany DepartmentRhodes UniversityGrahamstown6139South Africa
| | - Nicholas Cuff
- Northern Territory HerbariumDepartment of Environment and Natural ResourcesPO Box 496PalmerstonNT0831Australia
| | | | - Matheus E. Bianconi
- Department of Animal and Plant SciencesUniversity of SheffieldWestern BankSheffieldS10 2TNUK
| | - Christine M. Long
- Department of Primary Industry and FisheriesNorthern Territory GovernmentDarwinNT0801Australia
| | - Pascal‐Antoine Christin
- Department of Animal and Plant SciencesUniversity of SheffieldWestern BankSheffieldS10 2TNUK
| | - Colin P. Osborne
- Department of Animal and Plant SciencesUniversity of SheffieldWestern BankSheffieldS10 2TNUK
| |
Collapse
|
33
|
Pignon CP, Lundgren MR, Osborne CP, Long SP. Bundle sheath chloroplast volume can house sufficient Rubisco to avoid limiting C4 photosynthesis during chilling. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:357-365. [PMID: 30407578 PMCID: PMC6305190 DOI: 10.1093/jxb/ery345] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 09/13/2018] [Indexed: 05/15/2023]
Abstract
C4 leaves confine Rubisco to bundle sheath cells. Thus, the size of bundle sheath compartments and the total volume of chloroplasts within them limit the space available for Rubisco. Rubisco activity limits photosynthesis at low temperatures. C3 plants counter this limitation by increasing leaf Rubisco content, yet few C4 species do the same. Because C3 plants usually outperform C4 plants in chilling environments, it has been suggested that there is insufficient chloroplast volume available in the bundle sheath of C4 leaves to allow such an increase in Rubisco at low temperatures. We investigated this potential limitation by measuring bundle sheath and mesophyll compartment volumes and chloroplast contents, as well as leaf thickness and inter-veinal distance, in three C4 Andropogoneae grasses: two crops (Zea mays and Saccharum officinarum) and a wild, chilling-tolerant grass (Miscanthus × giganteus). A wild C4 Paniceae grass (Alloteropsis semialata) was also included. Despite significant structural differences between species, there was no evidence of increased bundle sheath chloroplast volume per leaf area available to the chilling-tolerant species, relative to the chilling-sensitive ones. Maximal theoretical photosynthetic capacity of the leaf far exceeded the photosynthetic rates achieved even at low temperatures. C4 bundle sheath cells therefore have the chloroplast volume to house sufficient Rubisco to avoid limiting C4 photosynthesis during chilling.
Collapse
Affiliation(s)
- Charles P Pignon
- University of Illinois, Carl R. Woese Institute for Genomic Biology and Departments of Crop Sciences and of Plant Biology, Urbana, IL, USA
| | - Marjorie R Lundgren
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, USA
- Arnold Arboretum, Harvard University, Boston, USA
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Colin P Osborne
- Department of Animal and Plant Sciences, Alfred Denny Building, University of Sheffield, Sheffield, UK
| | - Stephen P Long
- University of Illinois, Carl R. Woese Institute for Genomic Biology and Departments of Crop Sciences and of Plant Biology, Urbana, IL, USA
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| |
Collapse
|
34
|
Sedelnikova OV, Hughes TE, Langdale JA. Understanding the Genetic Basis of C 4 Kranz Anatomy with a View to Engineering C 3 Crops. Annu Rev Genet 2018; 52:249-270. [PMID: 30208293 DOI: 10.1146/annurev-genet-120417-031217] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
One of the most remarkable examples of convergent evolution is the transition from C3 to C4 photosynthesis, an event that occurred on over 60 independent occasions. The evolution of C4 is particularly noteworthy because of the complexity of the developmental and metabolic changes that took place. In most cases, compartmentalized metabolic reactions were facilitated by the development of a distinct leaf anatomy known as Kranz. C4 Kranz anatomy differs from ancestral C3 anatomy with respect to vein spacing patterns across the leaf, cell-type specification around veins, and cell-specific organelle function. Here we review our current understanding of how Kranz anatomy evolved and how it develops, with a focus on studies that are dissecting the underlying genetic mechanisms. This research field has gained prominence in recent years because understanding the genetic regulation of Kranz may enable the C3-to-C4 transition to be engineered, an endeavor that would significantly enhance crop productivity.
Collapse
Affiliation(s)
- Olga V Sedelnikova
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom; , ,
| | - Thomas E Hughes
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom; , ,
| | - Jane A Langdale
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom; , ,
| |
Collapse
|
35
|
Some like it hot: the physiological ecology of C 4 plant evolution. Oecologia 2018; 187:941-966. [PMID: 29955992 DOI: 10.1007/s00442-018-4191-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 06/05/2018] [Indexed: 10/28/2022]
Abstract
The evolution of C4 photosynthesis requires an intermediate phase where photorespiratory glycine produced in the mesophyll cells must flow to the vascular sheath cells for metabolism by glycine decarboxylase. This glycine flux concentrates photorespired CO2 within the sheath cells, allowing it to be efficiently refixed by sheath Rubisco. A modest C4 biochemical cycle is then upregulated, possibly to support the refixation of photorespired ammonia in sheath cells, with subsequent increases in C4 metabolism providing incremental benefits until an optimized C4 pathway is established. 'Why' C4 photosynthesis evolved is largely explained by ancestral C3 species exploiting photorespiratory CO2 to improve carbon gain and thus enhance fitness. While photorespiration depresses C3 performance, it produces a resource (photorespired CO2) that can be exploited to build an evolutionary bridge to C4 photosynthesis. 'Where' C4 evolved is indicated by the habitat of species branching near C3-to-C4 transitions on phylogenetic trees. Consistent with the photorespiratory bridge hypothesis, transitional species show that the large majority of > 60 C4 lineages arose in hot, dry, and/or saline regions where photorespiratory potential is high. 'When' C4 evolved has been clarified by molecular clock analyses using phylogenetic data, coupled with isotopic signatures from fossils. Nearly all C4 lineages arose after 25 Ma when atmospheric CO2 levels had fallen to near current values. This reduction in CO2, coupled with persistent high temperature at low-to-mid-latitudes, met a precondition where photorespiration was elevated, thus facilitating the evolutionary selection pressure that led to C4 photosynthesis.
Collapse
|
36
|
Bianconi ME, Dunning LT, Moreno-Villena JJ, Osborne CP, Christin PA. Gene duplication and dosage effects during the early emergence of C4 photosynthesis in the grass genus Alloteropsis. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:1967-1980. [PMID: 29394370 PMCID: PMC6018922 DOI: 10.1093/jxb/ery029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 01/17/2018] [Indexed: 05/04/2023]
Abstract
The importance of gene duplication for evolutionary diversification has been mainly discussed in terms of genetic redundancy allowing neofunctionalization. In the case of C4 photosynthesis, which evolved via the co-option of multiple enzymes to boost carbon fixation in tropical conditions, the importance of genetic redundancy has not been consistently supported by genomic studies. Here, we test for a different role for gene duplication in the early evolution of C4 photosynthesis, via dosage effects creating rapid step changes in expression levels. Using genome-wide data for accessions of the grass genus Alloteropsis that recently diversified into different photosynthetic types, we estimate gene copy numbers and demonstrate that recurrent duplications in two important families of C4 genes coincided with increases in transcript abundance along the phylogeny, in some cases via a pure dosage effect. While increased gene copy number during the initial emergence of C4 photosynthesis probably offered a rapid route to enhanced expression, we also find losses of duplicates following the acquisition of genes encoding better-suited isoforms. The dosage effect of gene duplication might therefore act as a transient process during the evolution of a C4 biochemistry, rendered obsolete by the fixation of regulatory mutations increasing expression levels.
Collapse
Affiliation(s)
- Matheus E Bianconi
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Luke T Dunning
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | | | - Colin P Osborne
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | | |
Collapse
|
37
|
Goolsby EW, Moore AJ, Hancock LP, De Vos JM, Edwards EJ. Molecular evolution of key metabolic genes during transitions to C 4 and CAM photosynthesis. AMERICAN JOURNAL OF BOTANY 2018; 105:602-613. [PMID: 29660114 DOI: 10.1002/ajb2.1051] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 12/12/2017] [Indexed: 06/08/2023]
Abstract
PREMISE OF THE STUDY Next-generation sequencing facilitates rapid production of well-sampled phylogenies built from very large genetic data sets, which can then be subsequently exploited to examine the molecular evolution of the genes themselves. We present an evolutionary analysis of 83 gene families (19 containing carbon-concentrating mechanism (CCM) genes, 64 containing non-CCM genes) in the portullugo clade (Caryophyllales), a diverse lineage of mostly arid-adapted plants that contains multiple evolutionary origins of all known photosynthesis types in land plants (C3 , C4 , CAM, C4 -CAM, and various intermediates). METHODS We inferred a phylogeny of 197 individuals from 167 taxa using coalescent-based approaches and individual gene family trees using maximum likelihood. Positive selection analyses were conducted on individual gene family trees with a mixed effects model of evolution (MEME). We devised new indices to compare levels of convergence and prevalence of particular residues between CCM and non-CCM genes and between species with different photosynthetic pathways. KEY RESULTS Contrary to expectations, there were no significant differences in the levels of positive selection detected in CCM versus non-CCM genes. However, we documented a significantly higher level of convergent amino acid substitutions in CCM genes, especially in C4 taxa. CONCLUSIONS Our analyses reveal a new suite of amino acid residues putatively important for C4 and CAM function. We discuss both the advantages and challenges of using targeted enrichment sequence data for exploratory studies of molecular evolution.
Collapse
Affiliation(s)
- Eric W Goolsby
- Brown University, Department of Ecology and Evolutionary Biology, Box G-W, 80 Waterman St, Providence, Rhode Island, 02912, USA
- Yale University, Department of Ecology and Evolutionary Biology, 165 Prospect Street, New Haven, Connecticut, 06511, USA
| | - Abigail J Moore
- Brown University, Department of Ecology and Evolutionary Biology, Box G-W, 80 Waterman St, Providence, Rhode Island, 02912, USA
- University of Oklahoma, Department of Microbiology and Plant Biology and Oklahoma Biological Survey, 136 George Lynn Cross Hall, 770 Van Vleet Oval, Norman, Oklahoma, 73019, USA
| | - Lillian P Hancock
- Brown University, Department of Ecology and Evolutionary Biology, Box G-W, 80 Waterman St, Providence, Rhode Island, 02912, USA
| | - Jurriaan M De Vos
- Brown University, Department of Ecology and Evolutionary Biology, Box G-W, 80 Waterman St, Providence, Rhode Island, 02912, USA
- University of Basel, Department of Environmental Sciences-Botany, Bernoullistrasse 32, 4056, Basel, Switzerland
| | - Erika J Edwards
- Brown University, Department of Ecology and Evolutionary Biology, Box G-W, 80 Waterman St, Providence, Rhode Island, 02912, USA
- Yale University, Department of Ecology and Evolutionary Biology, 165 Prospect Street, New Haven, Connecticut, 06511, USA
| |
Collapse
|
38
|
Moreno-Villena JJ, Dunning LT, Osborne CP, Christin PA. Highly Expressed Genes Are Preferentially Co-Opted for C4 Photosynthesis. Mol Biol Evol 2018. [PMID: 29040657 DOI: 10.1093/molbev/msx269/4457558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Novel adaptations are generally assembled by co-opting pre-existing genetic components, but the factors dictating the suitability of genes for new functions remain poorly known. In this work, we used comparative transcriptomics to determine the attributes that increased the likelihood of some genes being co-opted for C4 photosynthesis, a convergent complex trait that boosts productivity in tropical conditions. We show that independent lineages of grasses repeatedly co-opted the gene lineages that were the most highly expressed in non-C4 ancestors to produce their C4 pathway. Although ancestral abundance in leaves explains which genes were used for the emergence of a C4 pathway, the tissue specificity has surprisingly no effect. Our results suggest that levels of key genes were elevated during the early diversification of grasses and subsequently repeatedly used to trigger a weak C4 cycle via relatively few mutations. The abundance of C4-suitable transcripts therefore facilitated physiological innovation, but the transition to a strong C4 pathway still involved consequent changes in expression levels, leaf specificity, and coding sequences. The direction and amount of changes required for the strong C4 pathway depended on the identity of the genes co-opted, so that ancestral gene expression both facilitates adaptive transitions and constrains subsequent evolutionary trajectories.
Collapse
Affiliation(s)
| | - Luke T Dunning
- Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Colin P Osborne
- Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | | |
Collapse
|
39
|
Wang P, Khoshravesh R, Karki S, Tapia R, Balahadia CP, Bandyopadhyay A, Quick WP, Furbank R, Sage TL, Langdale JA. Re-creation of a Key Step in the Evolutionary Switch from C 3 to C 4 Leaf Anatomy. Curr Biol 2017; 27:3278-3287.e6. [PMID: 29056456 PMCID: PMC5678070 DOI: 10.1016/j.cub.2017.09.040] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 09/18/2017] [Accepted: 09/19/2017] [Indexed: 12/26/2022]
Abstract
The C4 photosynthetic pathway accounts for ∼25% of primary productivity on the planet despite being used by only 3% of species. Because C4 plants are higher yielding than C3 plants, efforts are underway to introduce the C4 pathway into the C3 crop rice. This is an ambitious endeavor; however, the C4 pathway evolved from C3 on multiple independent occasions over the last 30 million years, and steps along the trajectory are evident in extant species. One approach toward engineering C4 rice is to recapitulate this trajectory, one of the first steps of which was a change in leaf anatomy. The transition from C3 to so-called "proto-Kranz" anatomy requires an increase in organelle volume in sheath cells surrounding leaf veins. Here we induced chloroplast and mitochondrial development in rice vascular sheath cells through constitutive expression of maize GOLDEN2-LIKE genes. Increased organelle volume was accompanied by the accumulation of photosynthetic enzymes and by increased intercellular connections. This suite of traits reflects that seen in "proto-Kranz" species, and, as such, a key step toward engineering C4 rice has been achieved.
Collapse
Affiliation(s)
- Peng Wang
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Roxana Khoshravesh
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON M5S3B2, Canada
| | - Shanta Karki
- International Rice Research Institute (IRRI), Los Banos 4030, Laguna, the Philippines
| | - Ronald Tapia
- International Rice Research Institute (IRRI), Los Banos 4030, Laguna, the Philippines
| | - C Paolo Balahadia
- International Rice Research Institute (IRRI), Los Banos 4030, Laguna, the Philippines
| | - Anindya Bandyopadhyay
- International Rice Research Institute (IRRI), Los Banos 4030, Laguna, the Philippines
| | - W Paul Quick
- International Rice Research Institute (IRRI), Los Banos 4030, Laguna, the Philippines; Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Robert Furbank
- CSIRO, Canberra, ACT 2601, Australia; ARC Centre of Excellence for Translational Photosynthesis, Research School of Biology, Australian National University, Acton, ACT 2601, Australia
| | - Tammy L Sage
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON M5S3B2, Canada.
| | - Jane A Langdale
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK.
| |
Collapse
|