1
|
Schöneberg T. Modulating vertebrate physiology by genomic fine-tuning of GPCR functions. Physiol Rev 2025; 105:383-439. [PMID: 39052017 DOI: 10.1152/physrev.00017.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/08/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024] Open
Abstract
G protein-coupled receptors (GPCRs) play a crucial role as membrane receptors, facilitating the communication of eukaryotic species with their environment and regulating cellular and organ interactions. Consequently, GPCRs hold immense potential in contributing to adaptation to ecological niches and responding to environmental shifts. Comparative analyses of vertebrate genomes reveal patterns of GPCR gene loss, expansion, and signatures of selection. Integrating these genomic data with insights from functional analyses of gene variants enables the interpretation of genotype-phenotype correlations. This review underscores the involvement of GPCRs in adaptive processes, presenting numerous examples of how alterations in GPCR functionality influence vertebrate physiology or, conversely, how environmental changes impact GPCR functions. The findings demonstrate that modifications in GPCR function contribute to adapting to aquatic, arid, and nocturnal habitats, influencing camouflage strategies, and specializing in particular dietary preferences. Furthermore, the adaptability of GPCR functions provides an effective mechanism in facilitating past, recent, or ongoing adaptations in animal domestication and human evolution and should be considered in therapeutic strategies and drug development.
Collapse
Affiliation(s)
- Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, University of Leipzig, Leipzig, Germany
- School of Medicine, University of Global Health Equity, Kigali, Rwanda
| |
Collapse
|
2
|
Rodgers J, Wright P, Ballister ER, Hughes RB, Storchi R, Wynne J, Martial FP, Lucas RJ. Modulating signalling lifetime to optimise a prototypical animal opsin for optogenetic applications. Pflugers Arch 2023; 475:1387-1407. [PMID: 38036775 PMCID: PMC10730688 DOI: 10.1007/s00424-023-02879-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 12/02/2023]
Abstract
Animal opsins are light activated G-protein-coupled receptors, capable of optogenetic control of G-protein signalling for research or therapeutic applications. Animal opsins offer excellent photosensitivity, but their temporal resolution can be limited by long photoresponse duration when expressed outside their native cellular environment. Here, we explore methods for addressing this limitation for a prototypical animal opsin (human rod opsin) in HEK293T cells. We find that the application of the canonical rhodopsin kinase (GRK1)/visual arrestin signal termination mechanism to this problem is complicated by a generalised suppressive effect of GRK1 expression. This attenuation can be overcome using phosphorylation-independent mutants of arrestin, especially when these are tethered to the opsin protein. We further show that point mutations targeting the Schiff base stability of the opsin can also reduce signalling lifetime. Finally, we apply one such mutation (E122Q) to improve the temporal fidelity of restored visual responses following ectopic opsin expression in the inner retina of a mouse model of retinal degeneration (rd1). Our results reveal that these two strategies (targeting either arrestin binding or Schiff-base hydrolysis) can produce more time-delimited opsin signalling under heterologous expression and establish the potential of this approach to improve optogenetic performance.
Collapse
Affiliation(s)
- Jessica Rodgers
- Centre for Biological Timing, Division of Neuroscience, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK.
| | - Phillip Wright
- Centre for Biological Timing, Division of Neuroscience, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Edward R Ballister
- Centre for Biological Timing, Division of Neuroscience, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons of Columbia University, New York, 10032, NY, USA
| | - Rebecca B Hughes
- Centre for Biological Timing, Division of Neuroscience, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Riccardo Storchi
- Centre for Biological Timing, Division of Neuroscience, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Jonathan Wynne
- Centre for Biological Timing, Division of Neuroscience, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Franck P Martial
- Centre for Biological Timing, Division of Neuroscience, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Robert J Lucas
- Centre for Biological Timing, Division of Neuroscience, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK.
| |
Collapse
|
3
|
Fogg LG, Chung WS, Justin Marshall N, Cortesi F, de Busserolles F. Multiple rod layers increase the speed and sensitivity of vision in nocturnal reef fishes. Proc Biol Sci 2023; 290:20231749. [PMID: 37989239 PMCID: PMC10688437 DOI: 10.1098/rspb.2023.1749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/24/2023] [Indexed: 11/23/2023] Open
Abstract
Most vertebrates have one layer of the dim-light active rod photoreceptors. However, multiple rod layers, known as a multibank retina, can be found in over 100 species of fish, including several deep-sea species and one family of nocturnally active reef fish, the Holocentridae. Although seemingly associated with increased photon catch, the function of multibank retinas remained unknown. We used an integrative approach, combining histology, electrophysiology and amino acid sequence analysis, applied to three species of nocturnal reef fishes, two holocentrids with a multibank retina (Neoniphon sammara and Myripristis violacea) and an apogonid with a single rod bank (Ostorhinchus compressus), to determine the sensory advantage of multiple rod layers. Our results showed that fish with multibank retinas have both faster vision and enhanced responses to bright- and dim-light intensities. Faster vision was indicated by higher flicker fusion frequencies during temporal resolution electroretinography as well as faster retinal release rates estimated from their rhodopsin proteins. Enhanced sensitivity was demonstrated by broadened intensity-response curves derived from luminous sensitivity electroretinography. Overall, our findings provide the first functional evidence for enhanced dim-light sensitivity using a multibank retina while also suggesting novel roles for the adaptation in enhancing bright-light sensitivity and the speed of vision.
Collapse
Affiliation(s)
- Lily G. Fogg
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Wen-Sung Chung
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - N. Justin Marshall
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Fabio Cortesi
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
- School of the Environment, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Fanny de Busserolles
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
4
|
Castiglione GM, Chiu YLI, Gutierrez EDA, Van Nynatten A, Hauser FE, Preston M, Bhattacharyya N, Schott RK, Chang BSW. Convergent evolution of dim light vision in owls and deep-diving whales. Curr Biol 2023; 33:4733-4740.e4. [PMID: 37776863 DOI: 10.1016/j.cub.2023.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/21/2023] [Accepted: 09/05/2023] [Indexed: 10/02/2023]
Abstract
Animals with enhanced dim-light sensitivity are at higher risk of light-induced retinal degeneration when exposed to bright light conditions.1,2,3,4 This trade-off is mediated by the rod photoreceptor sensory protein, rhodopsin (RHO), and its toxic vitamin A chromophore by-product, all-trans retinal.5,6,7,8 Rod arrestin (Arr-1) binds to RHO and promotes sequestration of excess all-trans retinal,9,10 which has recently been suggested as a protective mechanism against photoreceptor cell death.2,11 We investigated Arr-1 evolution in animals at high risk of retinal damage due to periodic bright-light exposure of rod-dominated retinas. Here, we find the convergent evolution of enhanced Arr-1/RHO all-trans-retinal sequestration in owls and deep-diving whales. Statistical analyses reveal a parallel acceleration of Arr-1 evolutionary rates in these lineages, which is associated with the introduction of a rare Arr-1 mutation (Q69R) into the RHO-Arr-1 binding interface. Using in vitro assays, we find that this single mutation significantly enhances RHO-all-trans-retinal sequestration by ∼30%. This functional convergence across 300 million years of evolutionary divergence suggests that Arr-1 and RHO may play an underappreciated role in the photoprotection of the eye, with potentially vast clinical significance.
Collapse
Affiliation(s)
- Gianni M Castiglione
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA; Department of Ophthalmology & Visual Sciences, Vanderbilt University, Nashville, TN 37232, USA; Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada; Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, ON M5S 3B2, Canada; Evolutionary Studies, Vanderbilt University, Nashville, TN 37235, USA.
| | - Yan L I Chiu
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Eduardo de A Gutierrez
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Alexander Van Nynatten
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada; Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada
| | - Frances E Hauser
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, ON M5S 3B2, Canada; Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada
| | - Matthew Preston
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Nihar Bhattacharyya
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada; Institute of Ophthalmology, University College London, London EC1V 2PD, UK
| | - Ryan K Schott
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, ON M5S 3B2, Canada; Department of Biology and Centre for Vision Research, York University, Toronto, ON M3J 1P3, Canada; Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA
| | - Belinda S W Chang
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada; Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, ON M5S 3B2, Canada.
| |
Collapse
|
5
|
Oteiza P, Baldwin MW. Evolution of sensory systems. Curr Opin Neurobiol 2021; 71:52-59. [PMID: 34600187 DOI: 10.1016/j.conb.2021.08.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/26/2021] [Indexed: 01/14/2023]
Abstract
Sensory systems evolve and enable organisms to perceive their sensory Umwelt, the unique set of cues relevant for their survival. The multiple components that comprise sensory systems - the receptors, cells, organs, and dedicated high-order circuits - can vary greatly across species. Sensory receptor gene families can expand and contract across lineages, resulting in enormous sensory diversity. Comparative studies of sensory receptor function have uncovered the molecular basis of receptor properties and identified novel sensory receptor classes and noncanonical sensory strategies. Phylogenetically informed comparisons of sensory systems across multiple species can pinpoint when sensory changes evolve and highlight the role of contingency in sensory system evolution.
Collapse
Affiliation(s)
- Pablo Oteiza
- Flow Sensing Research Group, Max Planck Institute for Ornithology, Seewiesen, Germany.
| | - Maude W Baldwin
- Evolution of Sensory Systems Research Group, Max Planck Institute for Ornithology, Seewiesen, Germany.
| |
Collapse
|
6
|
Moreno JM, Jesus TF, Coelho MM, Sousa VC. Adaptation and convergence in circadian-related genes in Iberian freshwater fish. BMC Ecol Evol 2021; 21:38. [PMID: 33685402 PMCID: PMC7941933 DOI: 10.1186/s12862-021-01767-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 02/16/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The circadian clock is a biological timing system that improves the ability of organisms to deal with environmental fluctuations. At the molecular level it consists of a network of transcription-translation feedback loops, involving genes that activate (bmal and clock - positive loop) and repress expression (cryptochrome (cry) and period (per) - negative loop). This is regulated by daily alternations of light but can also be affected by temperature. Fish, as ectothermic, depend on the environmental temperature and thus are good models to study its integration within the circadian system. Here, we studied the molecular evolution of circadian genes in four Squalius freshwater fish species, distributed across Western Iberian rivers affected by two climatic types with different environmental conditions (e.g., light and temperature). S. carolitertii and S. pyrenaicus inhabit the colder northern region under Atlantic climate type, while S. torgalensis, S. aradensis and some populations of S. pyrenaicus inhabit the warmer southern region affected by summer droughts, under Mediterranean climate type. RESULTS We identified 16 circadian-core genes in the Squalius species using a comparative transcriptomics approach. We detected evidence of positive selection in 12 of these genes using methods based on dN/dS. Positive selection was mainly found in cry and per genes of the negative loop, with 55 putatively adaptive substitutions, 16 located on protein domains. Evidence for positive selection is predominant in southern populations affected by the Mediterranean climate type. By predicting protein features we found that changes at sites under positive selection can impact protein thermostability by changing their aliphatic index and isoelectric point. Additionally, in nine genes, the phylogenetic clustering of species that belong to different clades but inhabit southern basins with similar environmental conditions indicated evolutionary convergence. We found evidence for increased nonsynonymous substitution rate in convergent lineages, likely due to positive selection at 27 sites, mostly in cry genes. CONCLUSIONS Our results support that temperature may be a selective pressure driving the evolution of genes involved in the circadian system. By integrating sequence-based functional protein prediction with dN/dS-based methods to detect selection we uncovered adaptive convergence in the southern populations, probably related to their similar thermal conditions.
Collapse
Affiliation(s)
- João M Moreno
- cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Tiago F Jesus
- cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Maria M Coelho
- cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Vitor C Sousa
- cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal.
| |
Collapse
|
7
|
Accelerated evolution and positive selection of rhodopsin in Tibetan loaches living in high altitude. Int J Biol Macromol 2020; 165:2598-2606. [PMID: 33470199 DOI: 10.1016/j.ijbiomac.2020.10.151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/16/2020] [Accepted: 10/19/2020] [Indexed: 11/22/2022]
Abstract
Rhodopsin (RH1), the temperature-sensitive visual pigment, attained cold adaptation by functional trade-offs between protein stability and activity. Recent studies suggested convergent selection pressures drove cold adaptation of rhodopsin in high altitude catfishes through nonparallel molecular mechanisms. Here, we tested whether the similar shift occurred in RH1 of Tibetan loaches on the Qinghai-Tibet Plateau (QTP) by investigating the molecular evolution and potential effect on function of RH1. We sequenced RH1 from 27 Triplophysa species, and four lowland loaches and combined these data with published sequences. Tests using a series of models of molecular evolution resulted in strong evidence for accelerated evolution and positive selection in Triplophysa RH1. Three positively selected sites were near key functional domains modulating nonspectral properties of rhodopsin, substitutions of which were likely to compensate for cold-induced decrease in rhodopsin kinetics in cold environments. Moreover, although accelerated evolutionary rates in Tibetan loaches was convergent with those in high altitude catfishes, the sites under positive selection were nonoverlapping. Our findings provide evidence for convergent shift in selection pressures of RH1 in high altitude fish during the ecological transition to cold environment of the QTP.
Collapse
|
8
|
Baldwin MW, Ko MC. Functional evolution of vertebrate sensory receptors. Horm Behav 2020; 124:104771. [PMID: 32437717 DOI: 10.1016/j.yhbeh.2020.104771] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 04/20/2020] [Accepted: 04/28/2020] [Indexed: 12/15/2022]
Abstract
Sensory receptors enable animals to perceive their external world, and functional properties of receptors evolve to detect the specific cues relevant for an organism's survival. Changes in sensory receptor function or tuning can directly impact an organism's behavior. Functional tests of receptors from multiple species and the generation of chimeric receptors between orthologs with different properties allow for the dissection of the molecular basis of receptor function and identification of the key residues that impart functional changes in different species. Knowledge of these functionally important sites facilitates investigation into questions regarding the role of epistasis and the extent of convergence, as well as the timing of sensory shifts relative to other phenotypic changes. However, as receptors can also play roles in non-sensory tissues, and receptor responses can be modulated by numerous other factors including varying expression levels, alternative splicing, and morphological features of the sensory cell, behavioral validation can be instrumental in confirming that responses observed in heterologous systems play a sensory role. Expression profiling of sensory cells and comparative genomics approaches can shed light on cell-type specific modifications and identify other proteins that may affect receptor function and can provide insight into the correlated evolution of complex suites of traits. Here we review the evolutionary history and diversity of functional responses of the major classes of sensory receptors in vertebrates, including opsins, chemosensory receptors, and ion channels involved in temperature-sensing, mechanosensation and electroreception.
Collapse
Affiliation(s)
| | - Meng-Ching Ko
- Max Planck Institute for Ornithology, Seewiesen, Germany
| |
Collapse
|
9
|
Schneider K, Adams CE, Elmer KR. Parallel selection on ecologically relevant gene functions in the transcriptomes of highly diversifying salmonids. BMC Genomics 2019; 20:1010. [PMID: 31870285 PMCID: PMC6929470 DOI: 10.1186/s12864-019-6361-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 12/01/2019] [Indexed: 12/11/2022] Open
Abstract
Background Salmonid fishes are characterised by a very high level of variation in trophic, ecological, physiological, and life history adaptations. Some salmonid taxa show exceptional potential for fast, within-lake diversification into morphologically and ecologically distinct variants, often in parallel; these are the lake-resident charr and whitefish (several species in the genera Salvelinus and Coregonus). To identify selection on genes and gene categories associated with such predictable diversifications, we analysed 2702 orthogroups (4.82 Mbp total; average 4.77 genes/orthogroup; average 1783 bp/orthogroup). We did so in two charr and two whitefish species and compared to five other salmonid lineages, which do not evolve in such ecologically predictable ways, and one non-salmonid outgroup. Results All selection analyses are based on Coregonus and Salvelinus compared to non-diversifying taxa. We found more orthogroups were affected by relaxed selection than intensified selection. Of those, 122 were under significant relaxed selection, with trends of an overrepresentation of serine family amino acid metabolism and transcriptional regulation, and significant enrichment of behaviour-associated gene functions. Seventy-eight orthogroups were under significant intensified selection and were enriched for signalling process and transcriptional regulation gene ontology terms and actin filament and lipid metabolism gene sets. Ninety-two orthogroups were under diversifying/positive selection. These were enriched for signal transduction, transmembrane transport, and pyruvate metabolism gene ontology terms and often contained genes involved in transcriptional regulation and development. Several orthogroups showed signs of multiple types of selection. For example, orthogroups under relaxed and diversifying selection contained genes such as ap1m2, involved in immunity and development, and slc6a8, playing an important role in muscle and brain creatine uptake. Orthogroups under intensified and diversifying selection were also found, such as genes syn3, with a role in neural processes, and ctsk, involved in bone remodelling. Conclusions Our approach pinpointed relevant genomic targets by distinguishing among different kinds of selection. We found that relaxed, intensified, and diversifying selection affect orthogroups and gene functions of ecological relevance in salmonids. Because they were found consistently and robustly across charr and whitefish and not other salmonid lineages, we propose these genes have a potential role in the replicated ecological diversifications.
Collapse
Affiliation(s)
- Kevin Schneider
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Colin E Adams
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK.,Scottish Centre for Ecology and the Natural Environment, University of Glasgow, Rowardennan, G63 0AW, UK
| | - Kathryn R Elmer
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
10
|
Gutierrez EDA, Castiglione GM, Morrow JM, Schott RK, Loureiro LO, Lim BK, Chang BSW. Functional Shifts in Bat Dim-Light Visual Pigment Are Associated with Differing Echolocation Abilities and Reveal Molecular Adaptation to Photic-Limited Environments. Mol Biol Evol 2019; 35:2422-2434. [PMID: 30010964 DOI: 10.1093/molbev/msy140] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Bats are excellent models for studying the molecular basis of sensory adaptation. In Chiroptera, a sensory trade-off has been proposed between the visual and auditory systems, though the extent of this association has yet to be fully examined. To investigate whether variation in visual performance is associated with echolocation, we experimentally assayed the dim-light visual pigment rhodopsin from bat species with differing echolocation abilities. While spectral tuning properties were similar among bats, we found that the rate of decay of their light-activated state was significantly slower in a nonecholocating bat relative to species that use distinct echolocation strategies, consistent with a sensory trade-off hypothesis. We also found that these rates of decay were remarkably slower compared with those of other mammals, likely indicating an adaptation to dim light. To examine whether functional changes in rhodopsin are associated with shifts in selection intensity upon bat Rh1 sequences, we implemented selection analyses using codon-based likelihood clade models. While no shifts in selection were identified in response to diverse echolocation abilities of bats, we detected a significant increase in the intensity of evolutionary constraint accompanying the diversification of Chiroptera. Taken together, this suggests that substitutions that modulate the stability of the light-activated rhodopsin state were likely maintained through intensified constraint after bats diversified, being finely tuned in response to novel sensory specializations. Our study demonstrates the power of combining experimental and computational approaches for investigating functional mechanisms underlying the evolution of complex sensory adaptations.
Collapse
Affiliation(s)
- Eduardo de A Gutierrez
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Gianni M Castiglione
- Department of Cell and Systems Biology, University of Toronto, ON, Canada.,Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - James M Morrow
- Department of Cell and Systems Biology, University of Toronto, ON, Canada.,Centre of Forensic Sciences, Toronto, ON, Canada
| | - Ryan K Schott
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada.,Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Livia O Loureiro
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Burton K Lim
- Department of Natural History, Royal Ontario Museum, Toronto, ON, Canada
| | - Belinda S W Chang
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada.,Department of Cell and Systems Biology, University of Toronto, ON, Canada.,Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
11
|
Gutierrez EDA, Schott RK, Preston MW, Loureiro LO, Lim BK, Chang BSW. The role of ecological factors in shaping bat cone opsin evolution. Proc Biol Sci 2019; 285:rspb.2017.2835. [PMID: 29618549 DOI: 10.1098/rspb.2017.2835] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/15/2018] [Indexed: 12/16/2022] Open
Abstract
Bats represent one of the largest and most striking nocturnal mammalian radiations, exhibiting many visual system specializations for performance in light-limited environments. Despite representing the greatest ecological diversity and species richness in Chiroptera, Neotropical lineages have been undersampled in molecular studies, limiting the potential for identifying signatures of selection on visual genes associated with differences in bat ecology. Here, we investigated how diverse ecological pressures mediate long-term shifts in selection upon long-wavelength (Lws) and short-wavelength (Sws1) opsins, photosensitive cone pigments that form the basis of colour vision in most mammals, including bats. We used codon-based likelihood clade models to test whether ecological variables associated with reliance on visual information (e.g. echolocation ability and diet) or exposure to varying light environments (e.g. roosting behaviour and foraging habitat) mediated shifts in evolutionary rates in bat cone opsin genes. Using additional cone opsin sequences from newly sequenced eye transcriptomes of six Neotropical bat species, we found significant evidence for different ecological pressures influencing the evolution of the cone opsins. While Lws is evolving under significantly lower constraint in highly specialized high-duty cycle echolocating lineages, which have enhanced sonar ability to detect and track targets, variation in Sws1 constraint was significantly associated with foraging habitat, exhibiting elevated rates of evolution in species that forage among vegetation. This suggests that increased reliance on echolocation as well as the spectral environment experienced by foraging bats may differentially influence the evolution of different cone opsins. Our study demonstrates that different ecological variables may underlie contrasting evolutionary patterns in bat visual opsins, and highlights the suitability of clade models for testing ecological hypotheses of visual evolution.
Collapse
Affiliation(s)
- Eduardo de A Gutierrez
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada M5S 3B2
| | - Ryan K Schott
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada M5S 3B2
| | - Matthew W Preston
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada M5S 3B2
| | - Lívia O Loureiro
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada M5S 3B2
| | - Burton K Lim
- Department of Natural History, Royal Ontario Museum, Toronto, Ontario, Canada M5S 2C6
| | - Belinda S W Chang
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada M5S 3B2 .,Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, Canada M5S 3B2.,Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada M5S 3G5
| |
Collapse
|
12
|
Hao Y, Qu Y, Song G, Lei F. Genomic Insights into the Adaptive Convergent Evolution. Curr Genomics 2019; 20:81-89. [PMID: 31555059 PMCID: PMC6728901 DOI: 10.2174/1389202920666190313162702] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 01/10/2019] [Accepted: 03/07/2019] [Indexed: 11/22/2022] Open
Abstract
Adaptive convergent evolution, which refers to the same or similar phenotypes produced by species from independent lineages under similar selective pressures, has been widely examined for a long time. Accumulating studies on the adaptive convergent evolution have been reported from many different perspectives (cellular, anatomical, morphological, physiological, biochemical, and behavioral). Recent advances in the genomic technologies have demonstrated that adaptive convergence can arise from specific genetic mechanisms in different hierarchies, ranging from the same nucleotide or amino acid substitutions to the biological functions or pathways. Among these genetic mechanisms, the same amino acid changes in protein-coding genes play an important role in adaptive phenotypic convergence. Methods for detecting adaptive convergence at the protein sequence level have been constantly debated and developed. Here, we review recent progress on using genomic approaches to evaluate the genetic mechanisms of adaptive convergent evolution, summarize the research methods for identifying adaptive amino acid convergence, and discuss the future perspectives for researching adaptive convergent evolu-tion.
Collapse
Affiliation(s)
| | | | | | - Fumin Lei
- Address correspondence to this author at the Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, P.O. Box: 100101, Beijing, China; Fax: +86-10-64807159; E-mail:
| |
Collapse
|
13
|
Castiglione GM, Chang BS. Functional trade-offs and environmental variation shaped ancient trajectories in the evolution of dim-light vision. eLife 2018; 7:35957. [PMID: 30362942 PMCID: PMC6203435 DOI: 10.7554/elife.35957] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 09/09/2018] [Indexed: 12/11/2022] Open
Abstract
Trade-offs between protein stability and activity can restrict access to evolutionary trajectories, but widespread epistasis may facilitate indirect routes to adaptation. This may be enhanced by natural environmental variation, but in multicellular organisms this process is poorly understood. We investigated a paradoxical trajectory taken during the evolution of tetrapod dim-light vision, where in the rod visual pigment rhodopsin, E122 was fixed 350 million years ago, a residue associated with increased active-state (MII) stability but greatly diminished rod photosensitivity. Here, we demonstrate that high MII stability could have likely evolved without E122, but instead, selection appears to have entrenched E122 in tetrapods via epistatic interactions with nearby coevolving sites. In fishes by contrast, selection may have exploited these epistatic effects to explore alternative trajectories, but via indirect routes with low MII stability. Our results suggest that within tetrapods, E122 and high MII stability cannot be sacrificed-not even for improvements to rod photosensitivity.
Collapse
Affiliation(s)
- Gianni M Castiglione
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada.,Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
| | - Belinda Sw Chang
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada.,Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada.,Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Canada
| |
Collapse
|
14
|
Härer A, Meyer A, Torres‐Dowdall J. Convergent phenotypic evolution of the visual system via different molecular routes: How Neotropical cichlid fishes adapt to novel light environments. Evol Lett 2018; 2:341-354. [PMID: 30283686 PMCID: PMC6121847 DOI: 10.1002/evl3.71] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 06/21/2018] [Accepted: 06/21/2018] [Indexed: 12/17/2022] Open
Abstract
How predictable is evolution? This remains a fundamental but contested issue in evolutionary biology. When independent lineages colonize the same environment, we are presented with a natural experiment that allows us to ask if genetic and ecological differences promote species-specific evolutionary outcomes or whether species phenotypically evolve in a convergent manner in response to shared selection pressures. If so, are the molecular mechanisms underlying phenotypic convergence the same? In Nicaragua, seven species of cichlid fishes concurrently colonized two novel photic environments. Hence, their visual system represents a compelling model to address these questions, particularly since the adaptive value of phenotypic changes is well-understood. By analyzing retinal transcriptomes, we found that differential expression of genes responsible for color vision (cone opsins and cyp27c1) produced rapid and mostly convergent changes of predicted visual sensitivities. Notably, these changes occurred in the same direction in all species although there were differences in underlying gene expression patterns illustrating nonconvergence at the molecular level. Adaptive phenotypes evolved deterministically, even when species differ substantially in ecology and genetic variation. This provides strong evidence that phenotypic evolution of the visual system occurred in response to similar selective forces of the photic environment.
Collapse
Affiliation(s)
- Andreas Härer
- Zoology and Evolutionary Biology, Department of BiologyUniversity of KonstanzGermany
| | - Axel Meyer
- Zoology and Evolutionary Biology, Department of BiologyUniversity of KonstanzGermany
- Radcliffe Institute for Advanced StudyHarvard UniversityCambridgeMassachusetts02138
| | - Julián Torres‐Dowdall
- Zoology and Evolutionary Biology, Department of BiologyUniversity of KonstanzGermany
- Zukunftskolleg, University of KonstanzKonstanzGermany
| |
Collapse
|