1
|
Zhao P, Wang C, Sun S, Wang X, Balch WE. Tracing genetic diversity captures the molecular basis of misfolding disease. Nat Commun 2024; 15:3333. [PMID: 38637533 PMCID: PMC11026414 DOI: 10.1038/s41467-024-47520-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 04/04/2024] [Indexed: 04/20/2024] Open
Abstract
Genetic variation in human populations can result in the misfolding and aggregation of proteins, giving rise to systemic and neurodegenerative diseases that require management by proteostasis. Here, we define the role of GRP94, the endoplasmic reticulum Hsp90 chaperone paralog, in managing alpha-1-antitrypsin deficiency on a residue-by-residue basis using Gaussian process regression-based machine learning to profile the spatial covariance relationships that dictate protein folding arising from sequence variants in the population. Covariance analysis suggests a role for the ATPase activity of GRP94 in controlling the N- to C-terminal cooperative folding of alpha-1-antitrypsin responsible for the correction of liver aggregation and lung-disease phenotypes of alpha-1-antitrypsin deficiency. Gaussian process-based spatial covariance profiling provides a standard model built on covariant principles to evaluate the role of proteostasis components in guiding information flow from genome to proteome in response to genetic variation, potentially allowing us to intervene in the onset and progression of complex multi-system human diseases.
Collapse
Affiliation(s)
- Pei Zhao
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, USA
| | - Chao Wang
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, USA.
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China.
| | - Shuhong Sun
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, USA
- Department of Nutrition and Food Hygiene, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Institute for Brain Tumors, Collaborative Innovation Center for Cancer Personalized Medicine, and Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Xi Wang
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, USA
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - William E Balch
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, USA.
| |
Collapse
|
2
|
Frazee SR, Harper AR, Afkhami M, Wood ML, McCrory JC, Masly JP. Interspecific introgression reveals a role of male genital morphology during the evolution of reproductive isolation in Drosophila. Evolution 2021; 75:989-1002. [PMID: 33433903 PMCID: PMC8248101 DOI: 10.1111/evo.14169] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 11/28/2020] [Accepted: 01/02/2021] [Indexed: 01/24/2023]
Abstract
Rapid divergence in genital structures among nascent species has been posited to be an early‐evolving cause of reproductive isolation, although evidence supporting this idea as a widespread phenomenon remains mixed. Using a collection of interspecific introgression lines between two Drosophila species that diverged approximately 240,000 years ago, we tested the hypothesis that even modest divergence in genital morphology can result in substantial fitness losses. We studied the reproductive consequences of variation in the male epandrial posterior lobes between Drosophila mauritiana and Drosophila sechellia and found that divergence in posterior lobe morphology has significant fitness costs on several prefertilization and postcopulatory reproductive measures. Males with divergent posterior lobe morphology also significantly reduced the life span of their mates. Interestingly, one of the consequences of genital divergence was decreased oviposition and fertilization, which suggests that a sensory bias for posterior lobe morphology could exist in females, and thus, posterior lobe morphology may be the target of cryptic female choice in these species. Our results provide evidence that divergence in genitalia can in fact give rise to substantial reproductive isolation early during species divergence, and they also reveal novel reproductive functions of the external male genitalia in Drosophila.
Collapse
Affiliation(s)
| | | | - Mehrnaz Afkhami
- Department of Biology, University of Oklahoma, Norman, Oklahoma
| | - Michelle L Wood
- Department of Biology, University of Oklahoma, Norman, Oklahoma
| | - John C McCrory
- Department of Biology, University of Oklahoma, Norman, Oklahoma
| | - John P Masly
- Department of Biology, University of Oklahoma, Norman, Oklahoma
| |
Collapse
|
3
|
Szoke A, Pignon B, Boster S, Jamain S, Schürhoff F. Schizophrenia: Developmental Variability Interacts with Risk Factors to Cause the Disorder: Nonspecific Variability-Enhancing Factors Combine with Specific Risk Factors to Cause Schizophrenia. Bioessays 2020; 42:e2000038. [PMID: 32864753 DOI: 10.1002/bies.202000038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 08/10/2020] [Indexed: 12/31/2022]
Abstract
A new etiological model is proposed for schizophrenia that combines variability-enhancing nonspecific factors acting during development with more specific risk factors. This model is better suited than the current etiological models of schizophrenia, based on the risk factors paradigm, for predicting and/or explaining several important findings about schizophrenia: high co-morbidity rates, low specificity of many risk factors, and persistence in the population of the associated genetic polymorphisms. Compared with similar models, e.g., de-canalization, common psychopathology factor, sexual-selection, or differential sensitivity to the environment, this proposal is more general and integrative. Recently developed research methods have proven the existence of genetic and environmental factors that enhance developmental variability. Applying such methods to newly collected or already available data can allow for testing the hypotheses upon which this model is built. If validated, this model may change the understanding of the etiology of schizophrenia, the research models, and preventionbrk paradigms.
Collapse
Affiliation(s)
- Andrei Szoke
- INSERM, U955, Translational NeuroPsychiatry Lab, Créteil, 94000, France.,AP-HP, DHU IMPACT, Pôle de Psychiatrie, Hôpitaux Universitaires Henri-Mondor, Créteil, 94000, France.,Fondation FondaMental, Créteil, 94000, France.,UPEC, Faculté de Médecine, Université Paris-Est Créteil, Créteil, 94000, France
| | - Baptiste Pignon
- INSERM, U955, Translational NeuroPsychiatry Lab, Créteil, 94000, France.,AP-HP, DHU IMPACT, Pôle de Psychiatrie, Hôpitaux Universitaires Henri-Mondor, Créteil, 94000, France.,Fondation FondaMental, Créteil, 94000, France.,UPEC, Faculté de Médecine, Université Paris-Est Créteil, Créteil, 94000, France
| | | | - Stéphane Jamain
- INSERM, U955, Translational NeuroPsychiatry Lab, Créteil, 94000, France.,UPEC, Faculté de Médecine, Université Paris-Est Créteil, Créteil, 94000, France
| | - Franck Schürhoff
- INSERM, U955, Translational NeuroPsychiatry Lab, Créteil, 94000, France.,AP-HP, DHU IMPACT, Pôle de Psychiatrie, Hôpitaux Universitaires Henri-Mondor, Créteil, 94000, France.,Fondation FondaMental, Créteil, 94000, France.,UPEC, Faculté de Médecine, Université Paris-Est Créteil, Créteil, 94000, France
| |
Collapse
|
4
|
An Atlas of Transcription Factors Expressed in Male Pupal Terminalia of Drosophila melanogaster. G3-GENES GENOMES GENETICS 2019; 9:3961-3972. [PMID: 31619460 PMCID: PMC6893207 DOI: 10.1534/g3.119.400788] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
During development, transcription factors and signaling molecules govern gene regulatory networks to direct the formation of unique morphologies. As changes in gene regulatory networks are often implicated in morphological evolution, mapping transcription factor landscapes is important, especially in tissues that undergo rapid evolutionary change. The terminalia (genital and anal structures) of Drosophila melanogaster and its close relatives exhibit dramatic changes in morphology between species. While previous studies have identified network components important for patterning the larval genital disc, the networks governing adult structures during pupal development have remained uncharted. Here, we performed RNA-seq in whole Drosophila melanogaster male terminalia followed by in situ hybridization for 100 highly expressed transcription factors during pupal development. We find that the male terminalia are highly patterned during pupal stages and that specific transcription factors mark separate structures and substructures. Our results are housed online in a searchable database (https://flyterminalia.pitt.edu/) as a resource for the community. This work lays a foundation for future investigations into the gene regulatory networks governing the development and evolution of Drosophila terminalia.
Collapse
|