1
|
Cama B, Heaton K, Thomas-Oates J, Schulz S, Dasmahapatra KK. Complexity of Chemical Emissions Increases Concurrently with Sexual Maturity in Heliconius Butterflies. J Chem Ecol 2024; 50:197-213. [PMID: 38478290 PMCID: PMC11233321 DOI: 10.1007/s10886-024-01484-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 02/21/2024] [Accepted: 03/03/2024] [Indexed: 07/10/2024]
Abstract
Pheromone communication is widespread among animals. Since it is often involved in mate choice, pheromone production is often tightly controlled. Although male sex pheromones (MSPs) and anti-aphrodisiacs have been studied in some Heliconius butterfly species, little is known about the factors affecting their production and release in these long-lived butterflies. Here, we investigate the effect of post-eclosion age on chemical blends from pheromone-emitting tissues in Heliconius atthis and Heliconius charithonia, exhibiting respectively free-mating and pupal-mating strategies that are hypothesised to differently affect the timing of their pheromone emissions. We focus on two different tissues: the wing androconia, responsible for MSPs used in courtship, and the genital tip, the production site for anti-aphrodisiac pheromones that affect post-mating behaviour. Gas chromatography-mass spectrometric analysis of tissue extracts from virgin males and females of both species from day 0 to 8 post-eclosion demonstrates the following. Some ubiquitous fatty acid precursors are already detectable at day 0. The complexity of the chemical blends increases with age regardless of tissue or sex. No obvious difference in the time course of blend production was evident between the two species, but female tissues in H. charithonia were more affected by age than in H. atthis. We suggest that compounds unique to male androconia and genitals and whose amount increases with age are potential candidates for future investigation into their roles as pheromones. While this analysis revealed some of the complexity in Heliconius chemical ecology, the effects of other factors, such as the time of day, remain unknown.
Collapse
Affiliation(s)
- Bruna Cama
- Department of Biology, University of York, Wentworth Way, Heslington, YO10 5DD, UK.
| | - Karl Heaton
- Department of Chemistry, University of York, Heslington, YO10 5DD, UK
| | - Jane Thomas-Oates
- Department of Chemistry, University of York, Heslington, YO10 5DD, UK
| | - Stefan Schulz
- Institute of Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, Braunschweig, 38106, Germany
| | | |
Collapse
|
2
|
Ehlers S, Blow R, Szczerbowski D, Jiggins C, Schulz S. Variation of Clasper Scent Gland Composition of Heliconius Butterflies from a Biodiversity Hotspot. Chembiochem 2023; 24:e202300537. [PMID: 37650217 DOI: 10.1002/cbic.202300537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/01/2023]
Abstract
Male Heliconius butterflies possess two pheromone emitting structures, wing androconia and abdominal clasper scent glands. The composition of the clasper scent gland of males of 17 Heliconius and Eueides species from an overlapping area in Ecuador, comprising three mimicry groups, was investigated by GC/MS. The chemical signal serves as an anti-aphrodisiac signal that is transferred from males to females during mating, indicating the mating status of the female to prevent them from harassment by other males. In addition, the odour may also serve in predator defence. There is potential for convergence driven by mimicry, although, such convergence might be detrimental for species recognition of the butterflies within the mimicry ring, making mating more difficult. More than 500 compounds were detected, consisting of volatile, semi-volatile or non-volatile compounds, including terpenes, fatty acid esters or aromatic compounds. Several novel esters were identified by GC/MS and GC/IR data, microderivatisation and synthesis, including butyl (Z)-3-dodecenoate and other (Z)-3-alkenoates, 3-oxohexyl citronellate and 5-methylhexa-3,5-dienyl (E)-2,3-dihydrofarnesoate. The secretions were found to be species specific, potentially allowing for species differentiation. Statistical analysis of the compounds showed differentiation by phylogenetic clade and species, but not by mimicry group.
Collapse
Affiliation(s)
- Stephanie Ehlers
- Institute of Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106, Braunschweig, Germany
| | - Rachel Blow
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Daiane Szczerbowski
- Institute of Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106, Braunschweig, Germany
| | - Chris Jiggins
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Stefan Schulz
- Institute of Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106, Braunschweig, Germany
| |
Collapse
|
3
|
Cama B, Ehlers S, Szczerbowski D, Thomas-Oates J, Jiggins CD, Schulz S, McMillan WO, Dasmahapatra KK. Exploitation of an ancestral pheromone biosynthetic pathway contributes to diversification in Heliconius butterflies. Proc Biol Sci 2022; 289:20220474. [PMID: 35892212 PMCID: PMC9326301 DOI: 10.1098/rspb.2022.0474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
During courtship, male butterflies of many species produce androconial secretions containing male sex pheromones (MSPs) that communicate species identity and affect female choice. MSPs are thus likely candidates as reproductive barriers, yet their role in speciation remains poorly studied. Although Heliconius butterflies are a model system in speciation, their MSPs have not been investigated from a macroevolutionary perspective. We use GC/MS to characterize male androconial secretions in 33 of the 69 species in the Heliconiini tribe. We found these blends to be species-specific, consistent with a role in reproductive isolation. We detected a burst in blend diversification rate at the most speciose genus, Heliconius; a consequence of Heliconius and Eueides species using a fatty acid (FA) metabolic pathway to unlock more complex blends than basal Heliconiini species, whose secretions are dominated by plant-like metabolites. A comparison of 10 sister species pairs demonstrates a striking positive correlation between blend dissimilarity and range overlap, consistent with character displacement or reinforcement in sympatry. These results demonstrate for the first time that MSP diversification can promote reproductive isolation across this group of butterflies, showcasing how implementation of an ancestral trait, the co-option of the FA metabolic pathway for pheromone production, can facilitate rapid speciation.
Collapse
Affiliation(s)
- Bruna Cama
- Department of Biology, University of York, Heslington YO10 5DD, UK
| | - Stephanie Ehlers
- Institute of Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, Braunschweig 38106, Germany
| | - Daiane Szczerbowski
- Institute of Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, Braunschweig 38106, Germany
| | - Jane Thomas-Oates
- Department of Chemistry, University of York, Heslington YO10 5DD, UK
| | - Chris D. Jiggins
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Stefan Schulz
- Institute of Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, Braunschweig 38106, Germany
| | | | | |
Collapse
|
4
|
Szczerbowski D, Ehlers S, Darragh K, Jiggins C, Schulz S. Head and Tail Oxidized Terpenoid Esters from Androconia of Heliconius erato Butterflies. JOURNAL OF NATURAL PRODUCTS 2022; 85:1428-1435. [PMID: 35587731 DOI: 10.1021/acs.jnatprod.2c00300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Heliconius erato is a neotropical butterfly species that is part of a complex mimicry ring, with colorful wing patterns. For intraspecific communication, males use pheromones that are released from two different scent-emitting structures. Scent glands located near the abdominal claspers of males, containing antiaphrodisiac pheromones, release a highly complex mixture of compounds that is transferred to females during mating, rendering them unattractive to other males. On the other hand, androconia, scent-emitting scale areas on the wings of male butterflies, release a structurally more restricted set of compounds that likely serves an aphrodisiac role. We report here on two structurally related compounds that are the major androconial constituents, produced in high amounts and are not volatile due to their high molecular mass. Their structures were established by extensive analysis of mass, infrared, and NMR spectra, as well as microderivatization reactions of the natural extract. After establishing synthetic access, the compounds were unequivocally identified as two unusual head and tail oxidized terpenoids, (4E,8E,12E)-4,8,12-trimethyl-16-oxoheptadeca-4,8,12-trien-1-yl oleate (1) and stearate (2). Although behavioral assays are necessary to fully comprehend their role in the chemical communication of the species, hypotheses for their use by the butterflies are also discussed.
Collapse
Affiliation(s)
- Daiane Szczerbowski
- Institute of Organic Chemistry, Technische Universität Braunschweig, 38106 Braunschweig Germany
| | - Stephanie Ehlers
- Institute of Organic Chemistry, Technische Universität Braunschweig, 38106 Braunschweig Germany
| | - Kathy Darragh
- Department of Evolution and Ecology, University of California, Davis, California 95616, United States
| | - Chris Jiggins
- Department of Zoology, University of Cambridge, Downing Street, CB2 3EJ, Cambridge, United Kingdom
| | - Stefan Schulz
- Institute of Organic Chemistry, Technische Universität Braunschweig, 38106 Braunschweig Germany
| |
Collapse
|
5
|
Tabata J. Genetic Basis Underlying Structural Shift of Monoterpenoid Pheromones in Mealybugs. J Chem Ecol 2022; 48:546-553. [PMID: 35112225 DOI: 10.1007/s10886-021-01339-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/05/2021] [Accepted: 12/09/2021] [Indexed: 10/19/2022]
Abstract
Insect sex pheromones are examples of semiochemicals that trigger the most conspicuous biological activities, and they have attracted the interest of chemical ecologists since the dawn of this multidisciplinary field. For a deeper understanding of the ecological and evolutionary scenario of pheromones, as well as other targets of chemical ecology, it is essential to analyze the chemicals produced by individual organisms along with sound chemical identifications using reference compounds. Prof. Kenji Mori and his colleagues have developed various synthetic routes and have provided their products as authentic standards to many researchers. Using such a legacy, the tiny amounts of pheromones emitted by individual mealybug females were successfully analyzed and quantified by selected-ion-monitoring mode of gas chromatography-mass spectrometry. The results of the analyses of the monoterpene pheromones from Planococcus citri, P. minor, and their hybrids suggested that shift of the cyclobutane structure in P. citri and its acyclic form in P. minor is largely attributable to a single genetic locus.
Collapse
Affiliation(s)
- Jun Tabata
- National Agriculture and Food Research Organization, 3-1-3 Kannondai, Tsukuba, Ibaraki, 305-8604, Japan.
| |
Collapse
|
6
|
Abstract
Butterflies use structurally highly diverse volatile compounds for communication, in addition to visual signals. These compounds originate from plants or a formed de novo especially by male butterflies that possess specific scent organs.
Collapse
Affiliation(s)
- Stephanie Ehlers
- Institute of Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| | - Stefan Schulz
- Institute of Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| |
Collapse
|
7
|
Ehlers S, Szczerbowski D, Harig T, Stell M, Hötling S, Darragh K, Jiggins CD, Schulz S. Identification and Composition of Clasper Scent Gland Components of the Butterfly Heliconius erato and Its Relation to Mimicry. Chembiochem 2021; 22:3300-3313. [PMID: 34547164 PMCID: PMC9293309 DOI: 10.1002/cbic.202100372] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/20/2021] [Indexed: 12/01/2022]
Abstract
The butterfly Heliconius erato occurs in various mimetic morphs. The male clasper scent gland releases an anti‐aphrodisiac pheromone and additionally contains a complex mixture of up to 350 components, varying between individuals. In 114 samples of five different mimicry groups and their hybrids 750 different compounds were detected by gas chromatography/mass spectrometry (GC/MS). Many unknown components occurred, which were identified using their mass spectra, gas chromatography/infrared spectroscopy (GC/IR)‐analyses, derivatization, and synthesis. Key compounds proved to be various esters of 3‐oxohexan‐1‐ol and (Z)‐3‐hexen‐1‐ol with (S)‐2,3‐dihydrofarnesoic acid, accompanied by a large variety of other esters with longer terpene acids, fatty acids, and various alcohols. In addition, linear terpenes with up to seven uniformly connected isoprene units occur, e. g. farnesylfarnesol. A large number of the compounds have not been reported before from nature. Discriminant analyses of principal components of the gland contents showed that the iridescent mimicry group differs strongly from the other, mostly also separated, mimicry groups. Comparison with data from other species indicated that Heliconius recruits different biosynthetic pathways in a species‐specific manner for semiochemical formation.
Collapse
Affiliation(s)
- Stephanie Ehlers
- Technische Universität Braunschweig, Hagenring 30, 38106, Braunschweig, Germany
| | - Daiane Szczerbowski
- Technische Universität Braunschweig, Hagenring 30, 38106, Braunschweig, Germany
| | - Tim Harig
- Technische Universität Braunschweig, Hagenring 30, 38106, Braunschweig, Germany
| | - Matthew Stell
- Technische Universität Braunschweig, Hagenring 30, 38106, Braunschweig, Germany
| | - Susan Hötling
- Technische Universität Braunschweig, Hagenring 30, 38106, Braunschweig, Germany
| | - Kathy Darragh
- Department of Evolution and Ecology, Storer Hall University of California, One Shields Avenue, Davis, CA, 95616, USA
| | - Chris D Jiggins
- Department of Zoology, University of Cambridge, Downing Street, CB2 3EJ, Cambridge, UK
| | - Stefan Schulz
- Technische Universität Braunschweig, Hagenring 30, 38106, Braunschweig, Germany
| |
Collapse
|
8
|
Evolutionary importance of intraspecific variation in sex pheromones. Trends Ecol Evol 2021; 36:848-859. [PMID: 34167852 DOI: 10.1016/j.tree.2021.05.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 11/23/2022]
Abstract
Sex pheromones in many insect species are important species-recognition signals that attract conspecifics and inhibit attraction between heterospecifics; therefore, sex pheromones have predominantly been considered to evolve due to interactions between species. Recent research, however, is uncovering roles for these signals in mate choice, and that variation within and between populations can be drivers of species evolution. Variation in pheromone communication channels arises from a combination of context-dependent, condition-dependent, or genetic mechanisms in both signalers and receivers. Variation can affect mate choice and thus gene flow between individuals and populations, affecting species' evolution. The complex interactions between intraspecific and interspecific selection forces calls for more integrative studies to understand the evolution of sex pheromone communication.
Collapse
|
9
|
Darragh K, Orteu A, Black D, Byers KJRP, Szczerbowski D, Warren IA, Rastas P, Pinharanda A, Davey JW, Fernanda Garza S, Abondano Almeida D, Merrill RM, McMillan WO, Schulz S, Jiggins CD. A novel terpene synthase controls differences in anti-aphrodisiac pheromone production between closely related Heliconius butterflies. PLoS Biol 2021; 19:e3001022. [PMID: 33465061 PMCID: PMC7815096 DOI: 10.1371/journal.pbio.3001022] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 11/30/2020] [Indexed: 02/07/2023] Open
Abstract
Plants and insects often use the same compounds for chemical communication, but not much is known about the genetics of convergent evolution of chemical signals. The terpene (E)-β-ocimene is a common component of floral scent and is also used by the butterfly Heliconius melpomene as an anti-aphrodisiac pheromone. While the biosynthesis of terpenes has been described in plants and microorganisms, few terpene synthases (TPSs) have been identified in insects. Here, we study the recent divergence of 2 species, H. melpomene and Heliconius cydno, which differ in the presence of (E)-β-ocimene; combining linkage mapping, gene expression, and functional analyses, we identify 2 novel TPSs. Furthermore, we demonstrate that one, HmelOS, is able to synthesise (E)-β-ocimene in vitro. We find no evidence for TPS activity in HcydOS (HmelOS ortholog of H. cydno), suggesting that the loss of (E)-β-ocimene in this species is the result of coding, not regulatory, differences. The TPS enzymes we discovered are unrelated to previously described plant and insect TPSs, demonstrating that chemical convergence has independent evolutionary origins. Plants and insects often use the same compounds for chemical communication, but little is known about the convergent evolution of such chemical signals. This study identifies a novel terpene synthase involved in production of an anti-aphrodisiac pheromone by the butterfly Heliconius melpomene. This enzyme is unrelated to other insect terpene synthases, providing evidence that the ability to synthesise terpenes has arisen multiple times independently within the insects.
Collapse
Affiliation(s)
- Kathy Darragh
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
- Smithsonian Tropical Research Institute, Panamá, Panamá
- * E-mail:
| | - Anna Orteu
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Daniella Black
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
- School of Biology, University of St Andrews, St Andrews, United Kingdom
| | - Kelsey J. R. P. Byers
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
- Smithsonian Tropical Research Institute, Panamá, Panamá
| | - Daiane Szczerbowski
- Institute of Organic Chemistry, Department of Life Sciences, Technische Universität Braunschweig, Braunschweig, Germany
| | - Ian A. Warren
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Pasi Rastas
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Ana Pinharanda
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - John W. Davey
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | | | | | - Richard M. Merrill
- Smithsonian Tropical Research Institute, Panamá, Panamá
- Division of Evolutionary Biology, Ludwig-Maximilians-Universität München, Munich, Germany
| | | | - Stefan Schulz
- Institute of Organic Chemistry, Department of Life Sciences, Technische Universität Braunschweig, Braunschweig, Germany
| | - Chris D. Jiggins
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
- Smithsonian Tropical Research Institute, Panamá, Panamá
| |
Collapse
|
10
|
Byers KJRP, Darragh K, Fernanda Garza S, Abondano Almeida D, Warren IA, Rastas PMA, Merrill RM, Schulz S, McMillan WO, Jiggins CD. Clustering of loci controlling species differences in male chemical bouquets of sympatric Heliconius butterflies. Ecol Evol 2021; 11:89-107. [PMID: 33437416 PMCID: PMC7790645 DOI: 10.1002/ece3.6947] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 12/23/2022] Open
Abstract
The degree to which loci promoting reproductive isolation cluster in the genome-that is, the genetic architecture of reproductive isolation-can influence the tempo and mode of speciation. Tight linkage between these loci can facilitate speciation in the face of gene flow. Pheromones play a role in reproductive isolation in many Lepidoptera species, and the role of endogenously produced compounds as secondary metabolites decreases the likelihood of pleiotropy associated with many barrier loci. Heliconius butterflies use male sex pheromones to both court females (aphrodisiac wing pheromones) and ward off male courtship (male-transferred antiaphrodisiac genital pheromones), and it is likely that these compounds play a role in reproductive isolation between Heliconius species. Using a set of backcross hybrids between H. melpomene and H. cydno, we investigated the genetic architecture of putative male pheromone compound production. We found a set of 40 significant quantitative trait loci (QTL) representing 33 potential pheromone compounds. QTL clustered significantly on two chromosomes, chromosome 8 for genital compounds and chromosome 20 for wing compounds, and chromosome 20 was enriched for potential pheromone biosynthesis genes. There was minimal overlap between pheromone QTL and known QTL for mate choice and color pattern. Nonetheless, we did detect linkage between a QTL for wing androconial area and optix, a color pattern locus known to play a role in reproductive isolation in these species. This tight clustering of putative pheromone loci might contribute to coincident reproductive isolating barriers, facilitating speciation despite ongoing gene flow.
Collapse
Affiliation(s)
- Kelsey J. R. P. Byers
- Department of ZoologyUniversity of CambridgeCambridgeUK
- Smithsonian Tropical Research InstitutePanamaPanama
- Present address:
Department of Cell and Developmental BiologyJohn Innes CentreNorwichUK
| | - Kathy Darragh
- Department of ZoologyUniversity of CambridgeCambridgeUK
- Smithsonian Tropical Research InstitutePanamaPanama
- Present address:
Department of Evolution and EcologyUniversity of California DavisDavisCAUSA
| | - Sylvia Fernanda Garza
- Smithsonian Tropical Research InstitutePanamaPanama
- Present address:
Department of Collective BehaviourMax Planck Institute of Animal BehaviourKonstanzGermany
| | - Diana Abondano Almeida
- Smithsonian Tropical Research InstitutePanamaPanama
- Present address:
Institute for Ecology, Evolution and DiversityGoethe UniversitätFrankfurtGermany
| | - Ian A. Warren
- Department of ZoologyUniversity of CambridgeCambridgeUK
| | | | - Richard M. Merrill
- Smithsonian Tropical Research InstitutePanamaPanama
- Division of Evolutionary BiologyLudwig‐Maximilians‐Universität MünchenMunichGermany
| | - Stefan Schulz
- Institute of Organic ChemistryDepartment of Life SciencesTechnische Universität BraunschweigBraunschweigGermany
| | | | - Chris D. Jiggins
- Department of ZoologyUniversity of CambridgeCambridgeUK
- Smithsonian Tropical Research InstitutePanamaPanama
| |
Collapse
|
11
|
González-Rojas MF, Darragh K, Robles J, Linares M, Schulz S, McMillan WO, Jiggins CD, Pardo-Diaz C, Salazar C. Chemical signals act as the main reproductive barrier between sister and mimetic Heliconius butterflies. Proc Biol Sci 2020; 287:20200587. [PMID: 32370676 PMCID: PMC7282924 DOI: 10.1098/rspb.2020.0587] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Colour pattern is the main trait that drives mate recognition between Heliconius species that are phylogenetically close. However, when this cue is compromised such as in cases of mimetic, sympatric and closely related species, alternative mating signals must evolve to ensure reproductive isolation and species integrity. The closely related species Heliconius melpomene malleti and H. timareta florencia occur in the same geographical region, and despite being co-mimics, they display strong reproductive isolation. In order to test which cues differ between species, and potentially contribute to reproductive isolation, we quantified differences in the wing phenotype and the male chemical profile. As expected, the wing colour pattern was indistinguishable between the two species, while the chemical profile of the androconial and genital males' extracts showed marked differences. We then conducted behavioural experiments to study the importance of these signals in mate recognition by females. In agreement with our previous results, we found that chemical blends and not wing colour pattern drive the preference of females for conspecific males. Also, experiments with hybrid males and females suggested an important genetic component for both chemical production and preference. Altogether, these results suggest that chemicals are the major reproductive barrier opposing gene flow between these two sister and co-mimic species.
Collapse
Affiliation(s)
- M F González-Rojas
- Department of Biology, Faculty of Natural Sciences and Mathematics, Universidad del Rosario, Bogota 111221, Colombia
| | - K Darragh
- Department of Zoology, University of Cambridge, Cambridge, Cambridgeshire CB2 3EJ, UK
| | - J Robles
- Department of Chemistry, Pontificia Universidad Javeriana, Bogota, Colombia
| | - M Linares
- Department of Biology, Faculty of Natural Sciences and Mathematics, Universidad del Rosario, Bogota 111221, Colombia
| | - S Schulz
- Institute of Organic Chemistry, Technische Universität Braunschweig, Braunschweig, Germany
| | | | - C D Jiggins
- Department of Zoology, University of Cambridge, Cambridge, Cambridgeshire CB2 3EJ, UK
| | - C Pardo-Diaz
- Department of Biology, Faculty of Natural Sciences and Mathematics, Universidad del Rosario, Bogota 111221, Colombia
| | - C Salazar
- Department of Biology, Faculty of Natural Sciences and Mathematics, Universidad del Rosario, Bogota 111221, Colombia
| |
Collapse
|
12
|
Darragh K, Montejo‐Kovacevich G, Kozak KM, Morrison CR, Figueiredo CME, Ready JS, Salazar C, Linares M, Byers KJRP, Merrill RM, McMillan WO, Schulz S, Jiggins CD. Species specificity and intraspecific variation in the chemical profiles of Heliconius butterflies across a large geographic range. Ecol Evol 2020; 10:3895-3918. [PMID: 32489619 PMCID: PMC7244815 DOI: 10.1002/ece3.6079] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 02/01/2023] Open
Abstract
In many animals, mate choice is important for the maintenance of reproductive isolation between species. Traits important for mate choice and behavioral isolation are predicted to be under strong stabilizing selection within species; however, such traits can also exhibit variation at the population level driven by neutral and adaptive evolutionary processes. Here, we describe patterns of divergence among androconial and genital chemical profiles at inter- and intraspecific levels in mimetic Heliconius butterflies. Most variation in chemical bouquets was found between species, but there were also quantitative differences at the population level. We found a strong correlation between interspecific chemical and genetic divergence, but this correlation varied in intraspecific comparisons. We identified "indicator" compounds characteristic of particular species that included compounds already known to elicit a behavioral response, suggesting an approach for identification of candidate compounds for future behavioral studies in novel systems. Overall, the strong signal of species identity suggests a role for these compounds in species recognition, but with additional potentially neutral variation at the population level.
Collapse
Affiliation(s)
- Kathy Darragh
- Department of ZoologyUniversity of CambridgeCambridgeUK
- Smithsonian Tropical Research InstitutePanama CityPanama
| | | | | | - Colin R. Morrison
- Smithsonian Tropical Research InstitutePanama CityPanama
- Department of Integrative BiologyThe University of Texas at AustinAustinTXUSA
| | | | - Jonathan S. Ready
- Institute for Biological SciencesUniversidade Federal do ParáBelémBrazil
| | - Camilo Salazar
- Biology ProgramFaculty of Natural Sciences and MathematicsUniversidad del RosarioBogotaColombia
| | - Mauricio Linares
- Biology ProgramFaculty of Natural Sciences and MathematicsUniversidad del RosarioBogotaColombia
| | - Kelsey J. R. P. Byers
- Department of ZoologyUniversity of CambridgeCambridgeUK
- Smithsonian Tropical Research InstitutePanama CityPanama
| | - Richard M. Merrill
- Smithsonian Tropical Research InstitutePanama CityPanama
- Division of Evolutionary BiologyFaculty of BiologyLudwig‐Maximilians‐Universität MünchenMunichGermany
| | | | - Stefan Schulz
- Institute of Organic ChemistryTechnische Universität BraunschweigBraunschweigGermany
| | - Chris D. Jiggins
- Department of ZoologyUniversity of CambridgeCambridgeUK
- Smithsonian Tropical Research InstitutePanama CityPanama
| |
Collapse
|