1
|
Toyama KS, Losos JB, Herrel A, Mahler DL. Sexual size dimorphism as a determinant of biting performance dimorphism in Anolis lizards. J Evol Biol 2025; 38:251-260. [PMID: 39611485 DOI: 10.1093/jeb/voae148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/10/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
Rensch's rule describes a pattern of interspecific allometry in which sexual size dimorphism (SSD) increases with size among closely related species (i.e., among a group of related species, the largest ones tend to show more male-biased SSD). Sexual selection is often invoked to explain Rensch's rule, as larger male body size is assumed to be favoured by sexual selection for increased fighting performance in contests for mating opportunities. Often, however, the correlation between size and performance is not well described. We studied a sexually selected performance trait, bite force in Anolis lizards, to determine whether patterns of SSD are linked to size-associated patterns of performance dimorphism at the macroevolutionary level, as expected under the sexual selection hypothesis for Rensch's rule. Additionally, we tested whether allometric patterns of performance dimorphism differ between mainland and island species, as the latter have likely evolved under a stronger sexual selection regime. We found that SSD overwhelmingly explains the relationship between performance dimorphism and size in anoles, as expected under a sexual selection model for Rensch's rule. However, residual performance dimorphism was higher in island than in mainland species, suggesting that these groups differ in performance dimorphism for reasons unrelated to size. Head size dimorphism was associated with residual performance dimorphism, but did not fully explain the difference in performance dimorphism between island and mainland species. Together, these findings highlight the need to interpret Rensch's rule patterns of body size evolution cautiously, as allometric patterns of performance dimorphism and size dimorphism might not be equivalent.
Collapse
Affiliation(s)
- Ken S Toyama
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
| | - Jonathan B Losos
- Washington University, CB 1137, One Brookings Drive, St. Louis, MO 63130, USA
| | - Anthony Herrel
- Mécanismes Adaptatifs et Evolution, UMR 7179, Département Adaptation du Vivant, Muséum national d'Histoire naturelle CNRS, Paris, France
- Department of Biology, Evolutionary Morphology of Vertebrates, Ghent University, Ghent, Belgium
- Department of Biology, University of Antwerp, Wilrijk, Belgium
- Naturhistorisches Museum Bern, Bern, Switzerland
| | - D Luke Mahler
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
| |
Collapse
|
2
|
Ivanović A, Vučić T, Arntzen JW. Allometry, sexual dimorphism, and Rensch's rule in pygmy and marbled newts. J Evol Biol 2025; 38:240-250. [PMID: 39668139 DOI: 10.1093/jeb/voae150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 11/15/2024] [Accepted: 11/29/2024] [Indexed: 12/14/2024]
Abstract
Allometry, the relationship between body size and the size of other body parts, explains a significant portion of morphological variation across biological levels, at the individual level, within and between species. We used external morphology measurements of 6 Triturus (sub)species, focussing on the T. marmoratus species group, to explore allometric parameters within and between taxa. We tested for allometry of sexual size dimorphism in body, head, and limb dimensions and examined whether intraspecific allometry directed evolutionary allometry, as described by Rensch's rule. Our findings indicated that female-biased trunk and head dimensions exhibited positive allometry, whereas male-biased limb dimensions showed isometric relationships or weak correlations with body size. Morphological divergences between sexes occurred along common allometric slopes, most often through changes in the intercepts. Among taxon, comparisons revealed that (sub)species diverged in the direction of the allometric slopes. In line with Rensch's rule, sexual size dimorphism in female-biased traits significantly decreased as overall body size increased. However, the observed intraspecific allometric parameters deviated from theoretical expectations because the steepest allometric slopes for female-biased traits were recorded in the larger species. Our results contribute to understanding the dynamics of allometric relationships and sexual dimorphism in amphibians and provide a robust baseline for future comparative analyses.
Collapse
Affiliation(s)
- Ana Ivanović
- Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Tijana Vučić
- Faculty of Biology, University of Belgrade, Belgrade, Serbia
- Naturalis Biodiversity Center, Leiden, The Netherlands
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Jan W Arntzen
- Naturalis Biodiversity Center, Leiden, The Netherlands
- Institute of Biology, Leiden University, Leiden, The Netherlands
| |
Collapse
|
3
|
Gayford JH, Sternes PC. Sharks Violate Rensch's Rule for Sexual Size Dimorphism. Integr Org Biol 2024; 6:obae025. [PMID: 39011350 PMCID: PMC11247179 DOI: 10.1093/iob/obae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/29/2024] [Accepted: 07/03/2024] [Indexed: 07/17/2024] Open
Abstract
Systematic trends in body size variation exist in a multitude of vertebrate radiations, however their underlying ecological and evolutionary causes remain poorly understood. Rensch's rule describes one such trend-in which the scaling of sexual size dimorphism (SSD) depends on which sex is larger. Where SSD is male-biased, SSD should scale hyperallometrically, as opposed to hypoallometrically where SSD is female-biased. The evidence for Rensch's rule is mixed, and comes from a small subset of total vertebrate diversity. We conducted the first empirical test of Rensch's rule in sharks, seeking to confirm or refute a long-hypothesied trend. We find that sharks violate Rensch's rule, as the magnitude of SSD increases with body size despite sharks predominantly exhibiting female-biased SSD. This adds to a growing literature of vertebrate clades that appear not to follow Rensch's rule, suggesting the absence of a single, conserved scaling trend for SSD amongst vertebrates. It is likely that selection associated with fecundity results in the "inverse Rensch's rule" observed in sharks, although additional studies will be required to fully reveal the factors underlying SSD variation in this clade.
Collapse
Affiliation(s)
- J H Gayford
- Department of Life Sciences, Silwood Park Campus, Imperial College London, SW7 2AZ, London, UK
- Shark Measurements, SW11 3RT, London, UK
| | - P C Sternes
- Department of Evolution, Ecology and Organismal Biology, University of California, Riverside, CA 92521, USA
| |
Collapse
|
4
|
Andrade-Santos J, Rosa RS, Ramos TPA. Spotting mistakes: Reappraisal of Spotted Drum Stellifer punctatissimus (Meek & Hildebrand, 1925) (Teleostei: Sciaenidae) reveals species misidentification trends and suggests latitudinal sexual dimorphism. ZOOLOGY 2024; 165:126180. [PMID: 38850629 DOI: 10.1016/j.zool.2024.126180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/10/2024]
Abstract
A major part of the described species is understudied, falling into the Linnean shortfall. This is a major concern for cryptic species, which require integrative approaches to better evaluate their diversity. We conducted morphological analyses using specimens of Stellifer punctatissimus, S. gomezi, and S. menezesi to reassess their taxonomical identity. We evaluated the allometric and sexual components of the morphology of the Stellifer punctatissimus species complex, and tested and discussed species hypotheses. The combined evidence of our work and previous studies agrees with the current morphological hypothesis of three species, as opposed to the two-lineage molecular hypothesis. However, as cryptic species, they overlap in most their traits, especially females and juveniles. Previously unaccounted variation of allometric and sexually dimorphic characters in this species complex revealed a confounding effect that might explain past and current taxonomic errors. Taxonomical practice of using body depth as a diagnostic character had led to juveniles and females being, respectively, described as a different species or wrongfully identified. Hence, taxonomical studies demand better assessment of allometric and sexual dimorphism components. Herein, we present new characters in a key to the Atlantic species of Stellifer, which disclose size and sexual variation unnoticed in previous studies. The contrasting growth patterns among these species could imply distinct habitat use. As a result, it could be suggested that such species are under different threats, which highlights the need of differential management and conservation strategies.
Collapse
Affiliation(s)
- Jonas Andrade-Santos
- Programa de Pós-Graduação em Ciências Biológicas (Zoologia), Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba, João Pessoa, PB 58051-900, Brazil; Setor de Ictiologia, Programa de Pós-Graduação em Zoologia, Museu Nacional, Universidade Federal do Rio de Janeiro, Departamento de Vertebrados, Quinta da Boa Vista s/n, São Cristóvão, Rio de Janeiro, RJ 20940-040, Brazil.
| | - Ricardo S Rosa
- Programa de Pós-Graduação em Ciências Biológicas (Zoologia), Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba, João Pessoa, PB 58051-900, Brazil
| | - Telton P A Ramos
- Programa de Pós-Graduação em Ciências Biológicas (Zoologia), Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba, João Pessoa, PB 58051-900, Brazil; Instituto Peixes da Caatinga, João Pessoa, Paraíba, Brazil
| |
Collapse
|
5
|
Juarez BH, Moen DS, Adams DC. Ecology, sexual dimorphism, and jumping evolution in anurans. J Evol Biol 2023; 36:829-841. [PMID: 37129372 DOI: 10.1111/jeb.14171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 12/30/2022] [Accepted: 02/06/2023] [Indexed: 05/03/2023]
Abstract
Sexual dimorphism (SD) is a common feature of animals, and selection for sexually dimorphic traits may affect both functional morphological traits and organismal performance. Trait evolution through natural selection can also vary across environments. However, whether the evolution of organismal performance is distinct between the sexes is rarely tested in a phylogenetic comparative context. Anurans commonly exhibit sexual size dimorphism, which may affect jumping performance given the effects of body size on locomotion. They also live in a wide variety of microhabitats. Yet the relationships among dimorphism, performance, and ecology remain underexamined in anurans. Here, we explore relationships between microhabitat use, body size, and jumping performance in males and females to determine the drivers of dimorphic patterns in jumping performance. Using methods for predicting jumping performance through anatomical measurements, we describe how fecundity selection and natural selection associated with body size and microhabitat have likely shaped female jumping performance. We found that the magnitude of sexual size dimorphism (where females are about 14% larger than males) was much lower than dimorphism in muscle volume, where females had 42% more muscle than males (after accounting for body size). Despite these sometimes-large averages, phylogenetic t-tests failed to show the statistical significance of SD for any variable, indicating sexually dimorphic species tend to be closely related. While SD of jumping performance did not vary among microhabitats, we found female jumping velocity and energy differed across microhabitats. Overall, our findings indicate that differences in sex-specific reproductive roles, size, jumping-related morphology, and performance are all important determinants in how selection has led to the incredible ecophenotypic diversity of anurans.
Collapse
Affiliation(s)
- Bryan H Juarez
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, USA
- Departments of Biology and Earth System Science, Stanford University, Stanford, California, USA
| | - Daniel S Moen
- Department of Integrative Biology, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Dean C Adams
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
6
|
Toyama KS, Mahler DL, Goodman RM. Climate shapes patterns of sexual size and shape dimorphism across the native range of the green anole lizard, Anolis carolinensis (Squamata: Dactyloidae). Biol J Linn Soc Lond 2022. [DOI: 10.1093/biolinnean/blac136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract
Geographical variation in sexual size dimorphism (SSD) can result from the combined effects of environmental and sexual selection. To understand the determinants of SSD across geographical landscapes, we tested for relationships between SSD and climatic variables in the widespread lizard Anolis carolinensis. To distinguish alternative hypotheses for observed patterns of variation in SSD, we also examined sex-specific patterns of body size evolution and asked whether SSD was associated with certain patterns of sexual shape dimorphism. We found strong evidence for Rensch’s rule (an increase in male-biased SSD with average body size) in A. carolinensis and evidence for the reversed version of Bergmann’s rule (an increase in body size towards warmer environments) in males. Across populations, SSD was positively related to temperature; however, female body size was not related to any climatic variable, suggesting that the latitudinal gradient of SSD might be driven by a gradient in the intensity of sexual selection acting on males. Sexual size dimorphism was positively correlated with sexual dimorphism in head shape and negatively correlated with limb length dimorphism, suggesting that sexual selection in males might drive the evolution of SSD and that differences in size and limb shape between sexes might represent alternative strategies to avoid competition for the same resources.
Collapse
Affiliation(s)
- Ken S Toyama
- Department of Ecology and Evolutionary Biology, University of Toronto , ON , Canada M5S 3B2
| | - D Luke Mahler
- Department of Ecology and Evolutionary Biology, University of Toronto , ON , Canada M5S 3B2
| | - Rachel M Goodman
- Biology Department, Hampden-Sydney College , Hampden-Sydney, VA , USA
| |
Collapse
|
7
|
Yang YJ, Jiang Y, Mi ZP, Liao WB. Testing the Role of Environmental Harshness and Sexual Selection in Limb Muscle Mass in Anurans. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.879885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Sexual dimorphism is regarded as the consequence of differential responses by males and females to selection pressures. Limb muscle plays a very important role during amplexus, which is likely to be under both natural and sexual selection in anurans. Here, we studied the effects of natural and sexual selection on limb muscle mass in males and females across 64 species of anurans. The results showed that there were non-significant differences in relative limb muscle mass between the sexes among species, exhibiting no sexual dimorphism in limb muscle. Absolute and relative limb muscle mass positively displayed correlations with snout-vent length (SVL)for both sexes. However, neither male-biased operational sex ratio (OSR) nor environmental harshness [e.g., coefficient of variation (CV) in temperature and CV in rainfall] can explain relative limb muscle mass (e.g., forelimb, hindlimb, and total limb muscle) within each sex. The findings suggest that environmental harshness and sexual selection cannot play important roles in promoting variations in limb muscle among anuran species.
Collapse
|
8
|
OUP accepted manuscript. Zool J Linn Soc 2022. [DOI: 10.1093/zoolinnean/zlac042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
9
|
Juarez BH, Adams DC. Evolutionary allometry of sexual dimorphism of jumping performance in anurans. Evol Ecol 2021. [DOI: 10.1007/s10682-021-10132-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Painting CJ. Size and shape variation in the male dimorphic head weapons of an anthribid weevil (Hoherius meinertzhageni). Evol Ecol 2021. [DOI: 10.1007/s10682-021-10127-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Machado G, Buzatto BA, Samia DSM. It is not always about body size: evidence of Rensch's rule in a male weapon. Biol Lett 2021; 17:20210234. [PMID: 34157237 PMCID: PMC8219403 DOI: 10.1098/rsbl.2021.0234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 05/28/2021] [Indexed: 02/02/2023] Open
Abstract
In many species, sexual dimorphism increases with body size when males are the larger sex but decreases when females are the larger sex, a macro-evolutionary pattern known as Rensch's rule (RR). Although empirical studies usually focus exclusively on body size, Rensch's original proposal included sexual differences in other traits, such as ornaments and weapons. Here, we used a clade of harvestmen to investigate whether two traits follow RR: body size and length of the fourth pair of legs (legs IV), which are used as weapons in male-male fights. We found that males were slightly smaller than females and body size did not follow RR, whereas legs IV were much longer in males and followed RR. We propose that sexual selection might be stronger on legs IV length than on body size in males, and we discuss the potential role of condition dependence in the emergence of RR.
Collapse
Affiliation(s)
- Glauco Machado
- LAGE do Departamento de Ecologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP 05508-090, Brazil
| | - Bruno A. Buzatto
- Department of Biological Sciences (E8C 209), Macquarie University, Eastern Road, Sydney 2109, NSW, Australia
- Centre for Evolutionary Biology, School of Biological Sciences (M092), The University of Western Australia, 35 Stirling Highway, Crawley 6009, WA, Australia
| | - Diogo S. M. Samia
- LAGE do Departamento de Ecologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP 05508-090, Brazil
| |
Collapse
|