1
|
Perry C, Sarraude T, Billet M, Minot E, Gangloff EJ, Aubret F. Sex-dependent shifts in body size and condition along replicated elevational gradients in a montane colonising ectotherm, the common wall lizard (Podarcis muralis). Oecologia 2024; 206:335-346. [PMID: 39523232 DOI: 10.1007/s00442-024-05634-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/26/2024] [Indexed: 11/16/2024]
Abstract
In ectothermic animals, elevational gradients, such as mountainous environments, are often associated with shifts in body size, although patterns differ across taxa and contexts. Mountain landscapes are characterised by relatively rapid shifts in biotic and abiotic conditions along an elevational gradient, commonly referred to as elevational zonation. Such zonation can reduce the geographic scale at which organisms experience the effects of climate change. The upslope range shifts will expose organisms at the colonization front to sub-optimal conditions. We can expect these challenging conditions to influence many life-history traits including growth rates and reproductive output. We tested the hypothesis that body size varies across elevational gradients in a contemporary montane colonizer, the common wall lizard (Podarcis muralis). Further, we assessed active body temperatures and available environmental temperatures in an attempt to discern a potential abiotic factor that might drive such a pattern. We quantified body size in lizards along four replicate transects ranging from 400 to 2400 m above sea level in the Pyrenees. Male body size decreased with increasing elevation. While female body size was invariant, females at higher elevation exhibited lower body condition. These results suggest that the effects of abiotic limitations or selective pressures experienced at the high-elevation colonisation front are sex-specific. Furthermore, lizards from both sexes were able to maintain similar field active body temperatures across elevation, despite reduced ambient temperature. If available temperatures limit activity periods or necessitate higher thermoregulatory investment, as suggested by our results, then further warming may benefit lizards and favour further upslope migration.
Collapse
Affiliation(s)
- Constant Perry
- Station d'Écologie Théorique et Expérimentale du CNRS, UAR 2029, Moulis, France.
- ED SEVAB - Université Toulouse III - Paul Sabatier, 31062, Toulouse, France.
| | - Tom Sarraude
- Station d'Écologie Théorique et Expérimentale du CNRS, UAR 2029, Moulis, France
| | - Manon Billet
- Station d'Écologie Théorique et Expérimentale du CNRS, UAR 2029, Moulis, France
| | - Elsa Minot
- Station d'Écologie Théorique et Expérimentale du CNRS, UAR 2029, Moulis, France
| | - Eric J Gangloff
- Department of Biological Sciences, Ohio Wesleyan University, Delaware, OH, 43015, USA
| | - Fabien Aubret
- Station d'Écologie Théorique et Expérimentale du CNRS, UAR 2029, Moulis, France
- School of Agricultural, Environmental & Veterinary Sciences, Charles Sturt University, Birpai Country, 7 Major Innes Road, Port Macquarie, NSW, 2444, Australia
| |
Collapse
|
2
|
Macklem DC, Augustine L, Wanner MD, Ettling JA, Crabill T, Pedigo AS, Schuette C, Ihrig-Bueckendorf PL, Martin AJ, Noble KR, Elden JM, Briggler JT. Growth and Mortality of Zoo-Reared Ozark Hellbenders, Cryptobranchus alleganiensis bishopi (Grobman 1943). Zoo Biol 2024. [PMID: 39588554 DOI: 10.1002/zoo.21870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 06/15/2024] [Accepted: 09/20/2024] [Indexed: 11/27/2024]
Abstract
Ozark hellbender (Cryptobranchus alleganiensis bishopi, Grobman 1943) populations in Missouri and Arkansas have been federally listed as endangered since 2011. As part of the comprehensive recovery plan for the subspecies, the Saint Louis Zoo WildCare Institute's Ron and Karen Goellner Center for Hellbender Conservation, in collaboration with the Missouri Department of Conservation, Arkansas Game and Fish Commission, and the U.S. Fish and Wildlife Service, established a conservation breeding and head-starting program to augment and create self-sustaining wild populations. We examined how the river of origin and egg origin (i.e., Zoo-bred or wild-bred) influenced various growth and mortality responses of Zoo-reared Ozark hellbenders. River of origin significantly predicted most larval and long-term Zoo-reared Ozark hellbender growth responses, with our results concurring with observed differences in wild populations and known genetic relationships between Ozark hellbender populations. Mortality of Zoo-reared Ozark hellbenders was often predicted by river of origin and egg origin with Zoo-bred hellbenders having significantly higher proportional mortality responses relative to wild-bred hellbenders. Further exploration of this egg origin relationship revealed differences between the Zoo breeding group generations with higher proportional mortality rates for hellbenders from the less mature second-generation breeding group relative to hellbenders from the first-generation breeding group and wild-bred hellbenders. Ultimately, our results provide baseline data on Zoo-bred and wild-bred Ozark hellbenders in the program, help identify differences in growth and mortality responses between Ozark hellbender populations, and contribute to existing evidence supporting distinct populations of Ozark hellbenders in Missouri to aid in targeted conservation strategies.
Collapse
Affiliation(s)
| | - Lauren Augustine
- Philadelphia Zoo, Philadelphia, Pennsylvania, USA
- Smithsonian National Zoological Park, Washington, District of Columbia, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Benning JW, Clark EI, Hufbauer RA, Weiss-Lehman C. Environmental gradients mediate dispersal evolution during biological invasions. Ecol Lett 2024; 27:e14472. [PMID: 39011649 DOI: 10.1111/ele.14472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 07/17/2024]
Abstract
Rapid evolution of increased dispersal at the edge of a range expansion can accelerate invasions. However, populations expanding across environmental gradients often face challenging environments that reduce fitness of dispersing individuals. We used an eco-evolutionary model to explore how environmental gradients influence dispersal evolution and, in turn, modulate the speed and predictability of invasion. Environmental gradients opposed evolution of increased dispersal during invasion, even leading to evolution of reduced dispersal along steeper gradients. Counterintuitively, reduced dispersal could allow for faster expansion by minimizing maladaptive gene flow and facilitating adaptation. While dispersal evolution across homogenous landscapes increased both the mean and variance of expansion speed, these increases were greatly dampened by environmental gradients. We illustrate our model's potential application to prediction and management of invasions by parameterizing it with data from a recent invertebrate range expansion. Overall, we find that environmental gradients strongly modulate the effect of dispersal evolution on invasion trajectories.
Collapse
Affiliation(s)
- John W Benning
- Department of Botany, University of Wyoming, Laramie, Wyoming, USA
| | - Eliza I Clark
- Department of Agricultural Biology and Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, USA
| | - Ruth A Hufbauer
- Department of Agricultural Biology and Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, USA
| | | |
Collapse
|
4
|
Zhang Y, Tan S, Fu J, Chen J. Elevational variation in metabolic rate, feeding capacity and their associations in the Asiatic toad Bufo gargarizans. J Therm Biol 2024; 119:103788. [PMID: 38281315 DOI: 10.1016/j.jtherbio.2024.103788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/30/2024]
Abstract
Foraging behavior is known to place demands on the metabolic characteristics of anurans. Active foragers feeding on sedentary prey typically have high aerobic capacity and low anaerobic capacity, whereas sit-and-wait foragers feeding on active and mobile prey have the opposite pattern. Thus, the energetic demands of foraging may influence their metabolic adaptations to harsh environments, such as high elevations. Anurans that engage in active foraging have been found to increase maximum metabolic rate (MMR) and aerobic scope (AS, the difference between MMR and resting metabolic rate, RMR) at high elevations. However, data are lacking in amphibian ambush foragers. In this study, we examined the RMR, MMR, AS, and feeding capacity of a sit-and-wait forager ─the Asiatic toad (Bufo gargarizans), from two populations that are in close geographic proximity but differ by 1350 m in elevation. Our results show that there is no elevational variation in RMR and feeding capacity in either males or females. However, there are sex-specific variations in MMR and AS along an elevational gradient; females from high elevations have lower MMR and smaller net AS than their counterparts from low elevations while males maintain similar MMR and net AS across elevations. Furthermore, aerobic performances do not appear to be associated with feeding capacity at either the individual or population level. Our results support the hypothesis that sit-and-wait foragers may not increase their aerobic capacity as a strategy in hypoxic and low food availability environments and the role of sex in these adaptive adjustments should not be overlooked.
Collapse
Affiliation(s)
- Yuechan Zhang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China; University of Chinese Academy of Sciences, No.19 (A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Song Tan
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China; College of Life Sciences, Sichuan University, Chengdu, 610064, China; University of Chinese Academy of Sciences, No.19 (A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Jinzhong Fu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China; Department of Integrative Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Jingfeng Chen
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China; University of Chinese Academy of Sciences, No.19 (A) Yuquan Road, Shijingshan District, Beijing, 100049, China.
| |
Collapse
|
5
|
Scheele BC, Heard GW, Cardillo M, Duncan RP, Gillespie GR, Hoskin CJ, Mahony M, Newell D, Rowley JJL, Sopniewski J. An invasive pathogen drives directional niche contractions in amphibians. Nat Ecol Evol 2023; 7:1682-1692. [PMID: 37550511 DOI: 10.1038/s41559-023-02155-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 07/07/2023] [Indexed: 08/09/2023]
Abstract
Global change is causing an unprecedented restructuring of ecosystems, with the spread of invasive species being a key driver. While population declines of native species due to invasives are well documented, much less is known about whether new biotic interactions reshape niches of native species. Here we quantify geographic range and realized-niche contractions in Australian frog species following the introduction of amphibian chytrid fungus Batrachochytrium dendrobatidis, a pathogen responsible for catastrophic amphibian declines worldwide. We show that chytrid-impacted species experienced proportionately greater contractions in niche breadth than geographic distribution following chytrid emergence. Furthermore, niche contractions were directional, with contemporary distributions of chytrid-impacted species characterized by higher temperatures, lower diurnal temperature range, higher precipitation and lower elevations. Areas with these conditions may enable host persistence with chytrid through lower pathogenicity of the fungus and/or greater demographic resilience. Nevertheless, contraction to a narrower subset of environmental conditions could increase host vulnerability to other threatening processes and should be considered in assessments of extinction risk and during conservation planning. More broadly, our results emphasize that biotic interactions can strongly shape species realized niches and that large-scale niche contractions due to new species interactions-particularly emerging pathogens-could be widespread.
Collapse
Affiliation(s)
- Ben C Scheele
- Fenner School of Environment and Society, Australian National University, Canberra, Australian Capital Territory, Australia.
- Macroevolution and Macroecology Group, Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia.
| | - Geoffrey W Heard
- Terrestrial Ecosystem Research Network and Centre for Biodiversity and Conservation Science, University of Queensland, Brisbane, Queensland, Australia
| | - Marcel Cardillo
- Macroevolution and Macroecology Group, Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Richard P Duncan
- Centre for Conservation Ecology and Genomics, University of Canberra, Canberra, Australian Capital Territory, Australia
| | - Graeme R Gillespie
- Science, Economics and Insights Division, Department of Planning and Environment, Parramatta, New South Wales, Australia
- School of Biosciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Conrad J Hoskin
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | - Michael Mahony
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
| | - David Newell
- Faculty of Science and Engineering, Southern Cross University, Lismore, New South Wales, Australia
| | - Jodi J L Rowley
- Australian Museum Research Institute, Australian Museum, Sydney, New South Wales, Australia
- Centre for Ecosystem Science; School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Jarrod Sopniewski
- Fenner School of Environment and Society, Australian National University, Canberra, Australian Capital Territory, Australia
- School of Biological Sciences, University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
6
|
Usui T, Lerner D, Eckert I, Angert AL, Garroway CJ, Hargreaves A, Lancaster LT, Lessard JP, Riva F, Schmidt C, van der Burg K, Marshall KE. The evolution of plasticity at geographic range edges. Trends Ecol Evol 2023; 38:831-842. [PMID: 37183152 DOI: 10.1016/j.tree.2023.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 05/16/2023]
Abstract
Phenotypic plasticity enables rapid responses to environmental change, and could facilitate range shifts in response to climate change. What drives the evolution of plasticity at range edges, and the capacity of range-edge individuals to be plastic, remain unclear. Here, we propose that accurately predicting when plasticity itself evolves or mediates adaptive evolution at expanding range edges requires integrating knowledge on the demography and evolution of edge populations. Our synthesis shows that: (i) the demography of edge populations can amplify or attenuate responses to selection for plasticity through diverse pathways, and (ii) demographic effects on plasticity are modified by the stability of range edges. Our spatially explicit synthesis for plasticity has the potential to improve predictions for range shifts with climate change.
Collapse
Affiliation(s)
- Takuji Usui
- Department of Botany, University of British Columbia, Vancouver, BC, Canada.
| | - David Lerner
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel.
| | - Isaac Eckert
- Department of Biology, McGill University, Montreal, QC, Canada
| | - Amy L Angert
- Department of Botany, University of British Columbia, Vancouver, BC, Canada; Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Colin J Garroway
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Anna Hargreaves
- Department of Biology, McGill University, Montreal, QC, Canada
| | | | | | - Federico Riva
- Department of Ecology and Evolution, Université de Lausanne, Lausanne, Switzerland
| | - Chloé Schmidt
- German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-, Leipzig, Germany
| | - Karin van der Burg
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Katie E Marshall
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
7
|
Wadgymar SM, DeMarche ML, Josephs EB, Sheth SN, Anderson JT. Local adaptation: Causal agents of selection and adaptive trait divergence. ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS 2022; 53:87-111. [PMID: 37790997 PMCID: PMC10544833 DOI: 10.1146/annurev-ecolsys-012722-035231] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Divergent selection across the landscape can favor the evolution of local adaptation in populations experiencing contrasting conditions. Local adaptation is widely observed in a diversity of taxa, yet we have a surprisingly limited understanding of the mechanisms that give rise to it. For instance, few have experimentally confirmed the biotic and abiotic variables that promote local adaptation, and fewer yet have identified the phenotypic targets of selection that mediate local adaptation. Here, we highlight critical gaps in our understanding of the process of local adaptation and discuss insights emerging from in-depth investigations of the agents of selection that drive local adaptation, the phenotypes they target, and the genetic basis of these phenotypes. We review historical and contemporary methods for assessing local adaptation, explore whether local adaptation manifests differently across life history, and evaluate constraints on local adaptation.
Collapse
Affiliation(s)
| | - Megan L DeMarche
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Emily B Josephs
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI, 48824, USA
| | - Seema N Sheth
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Jill T Anderson
- Department of Genetics and Odum School of Ecology, University of Georgia, Athens, GA, 30602
| |
Collapse
|
8
|
Phenotypic variation in Xenopus laevis tadpoles from contrasting climatic regimes is the result of adaptation and plasticity. Oecologia 2022; 200:37-50. [PMID: 35996029 DOI: 10.1007/s00442-022-05240-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 08/06/2022] [Indexed: 10/15/2022]
Abstract
Phenotypic variations between populations often correlate with climatic variables. Determining the presence of phenotypic plasticity and local adaptation of a species to different environments over a large spatial scale can provide insight on the persistence of a species across its range. Amphibians, and in particular their larvae, are good models for studies of phenotypic variation as they are especially sensitive to their immediate environment. Few studies have attempted to determine the mechanisms that drive phenotypic variation between populations of a single amphibian species over a large spatial scale especially across contrasting climatic regimes. The African clawed frog, Xenopus laevis, occurs in two regions with contrasting rainfall regimes in southern Africa. We hypothesised that the phenotypic variation of life-history traits of X. laevis tadpoles emerges from a combination of plastic and genetic responses. We predicted that plasticity would allow the development of tadpoles from both regions in each environment. We also predicted that local adaptation of larval traits would drive the differentiation of reaction norms between populations and lower survival in tadpoles reared away from their home environment. We measured growth, time to metamorphosis, and survival in a reciprocal transplant experiment using outdoor mesocosms. Supporting our prediction, we found that the measured variation of all traits was explained by both adaptation and plasticity. However, the reaction norms differed between populations suggesting adaptive and asymmetric plasticity. All tadpoles experienced lower survival when translocated, but only translocated tadpoles from the winter rainfall region matched survival of local tadpoles. This has implications for the dynamics of translocated X. laevis into novel environments, especially from the winter rainfall region. Our discovery of their asymmetric capacity to overcome novel environmental conditions by phenotypic plasticity alone provides insight into their invasion success.
Collapse
|
9
|
Jelena M, Anssi L, Katja R. Context dependent variation in corticosterone and phenotypic divergence of Rana arvalis populations along an acidification gradient. BMC Ecol Evol 2022; 22:11. [PMID: 35123416 PMCID: PMC8818180 DOI: 10.1186/s12862-022-01967-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 01/26/2022] [Indexed: 11/10/2022] Open
Abstract
Background Physiological processes, as immediate responses to the environment, are important mechanisms of phenotypic plasticity and can influence evolution at ecological time scales. In stressful environments, physiological stress responses of individuals are initiated and integrated via the release of hormones, such as corticosterone (CORT). In vertebrates, CORT influences energy metabolism and resource allocation to multiple fitness traits (e.g. growth and morphology) and can be an important mediator of rapid adaptation to environmental stress, such as acidification. The moor frog, Rana arvalis, shows adaptive divergence in larval life-histories and predator defense traits along an acidification gradient in Sweden. Here we take a first step to understanding the role of CORT in this adaptive divergence. We conducted a fully factorial laboratory experiment and reared tadpoles from three populations (one acidic, one neutral and one intermediate pH origin) in two pH treatments (Acid versus Neutral pH) from hatching to metamorphosis. We tested how the populations differ in tadpole CORT profiles and how CORT is associated with tadpole life-history and morphological traits. Results We found clear differences among the populations in CORT profiles across different developmental stages, but only weak effects of pH treatment on CORT. Tadpoles from the acid origin population had, on average, lower CORT levels than tadpoles from the neutral origin population, and the intermediate pH origin population had intermediate CORT levels. Overall, tadpoles with higher CORT levels developed faster and had shorter and shallower tails, as well as shallower tail muscles. Conclusions Our common garden results indicate among population divergence in CORT levels, likely reflecting acidification mediated divergent selection on tadpole physiology, concomitant to selection on larval life-histories and morphology. However, CORT levels were highly environmental context dependent. Jointly these results indicate a potential role for CORT as a mediator of multi-trait divergence along environmental stress gradients in natural populations. At the same time, the population level differences and high context dependency in CORT levels suggest that snapshot assessment of CORT in nature may not be reliable bioindicators of stress. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-022-01967-1.
Collapse
Affiliation(s)
- Mausbach Jelena
- Department of Aquatic Ecology, Eawag, Ueberlandstrasse 133, 8600, Duebendorf, Switzerland. .,Institute of Integrative Biology, ETH Zurich, Universitätstrasse 16, 8092, Zurich, Switzerland.
| | - Laurila Anssi
- Animal Ecology/Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden
| | - Räsänen Katja
- Department of Aquatic Ecology, Eawag, Ueberlandstrasse 133, 8600, Duebendorf, Switzerland. .,Institute of Integrative Biology, ETH Zurich, Universitätstrasse 16, 8092, Zurich, Switzerland. .,Department of Biological and Environmental Science, University of Jyväskylä, Survontie 9C, 40014, Jyväskylä, Finland.
| |
Collapse
|
10
|
Tan S, Li P, Yao Z, Liu G, Yue B, Fu J, Chen J. Metabolic cold adaptation in the Asiatic toad: intraspecific comparison along an altitudinal gradient. J Comp Physiol B 2021; 191:765-776. [PMID: 34089366 DOI: 10.1007/s00360-021-01381-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/07/2021] [Accepted: 05/19/2021] [Indexed: 11/26/2022]
Abstract
The metabolic cold adaptation (MCA) hypothesis predicts an increase in metabolic rate and thermal sensitivity of poikilotherms from cold environments as compared to those from warm environments, when measured under standardized conditions. This compensatory response is also expected to evolve in life history and behavioral traits if the reductions in these phenotypic traits at low temperature involves in a reduction in fitness. We investigated the extent to which the level of energy intake (measured as feeding rate), energy turnover (measured as standard metabolic rate, SMR) and the energy budget (energy allocation to growth and physical activity) are influenced by climatic conditions in three populations of the Asiatic toad (Bufo gargarizans) distributed across an altitudinal gradient of 1350 m in the Qionglai Mountains of Western China. We found a similar thermal reaction norm of SMR at both population and individual levels; therefore, the data did not support the MCA hypothesis. However, there was a co-gradient variation (CoGV) for mass change rate in which the high and medium altitudinal populations displayed slower mass change rates than their counterparts from low altitudes. Moreover, this CoGV pattern was accompanied by a low feeding rate and high physical activity for the high- and medium-altitude populations. Our results highlight that adjustments in energy intake and energy allocation to behaviors, but not energy allocation to metabolism of maintenance, could act as an energetic strategy to accommodate the varied growth efficiency in Asiatic toads along an altitudinal gradient.
Collapse
Affiliation(s)
- Song Tan
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- College of Life Sciences, Sichuan University, Chengdu, 610064, China
- University of Chinese Academy of Sciences, No.19 (A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Ping Li
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, No.19 (A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Zhongyi Yao
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- College of Life Sciences, Sichuan University, Chengdu, 610064, China
- University of Chinese Academy of Sciences, No.19 (A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Gaohui Liu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- Chinese Research Academy of Environmental Sciences, No.8, Dayangfang, Beiyuan, Beijing, 100012, China
| | - Bisong Yue
- College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Jinzhong Fu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
- Department of Integrative Biology, University of Guelph, Guelph, N1G 2W1, Canada.
| | - Jingfeng Chen
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
- University of Chinese Academy of Sciences, No.19 (A) Yuquan Road, Shijingshan District, Beijing, 100049, China.
| |
Collapse
|
11
|
Arjona Y, Morente-López J. Digest: Parallel rather than unique local adaptation along a steep elevation gradient. Evolution 2021; 75:972-974. [PMID: 33690886 DOI: 10.1111/evo.14206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/05/2021] [Indexed: 11/29/2022]
Abstract
To what extent do parallel and unique local adaptation occur along elevational gradients? In a reciprocal transplant experiment, Bachmann and Van Buskirk found stronger evidence for parallel adaptation to elevation than for unique local adaptation in Rana temporaria populations of the Swiss Alps. This finding has important implications for understanding gene flow effects on adaptive patterns and provides a useful investigative framework for the study of adaptation.
Collapse
Affiliation(s)
- Yurena Arjona
- Island Ecology and Evolution Research Group, Institute of Natural Products and Agrobiology (IPNA-CSIC), Canary Islands, 38206, Spain
| | - Javier Morente-López
- Department of Botany, Ecology, and Plant Physiology, University of La Laguna, La Laguna, 38071, Spain
| |
Collapse
|