1
|
Taylor ON, Grabenstein KC, Theodosopoulos AN, Leeson H, Taylor SA, Branch CL. Chickadees sing different songs in sympatry versus allopatry. J Evol Biol 2025; 38:1-9. [PMID: 39382524 DOI: 10.1093/jeb/voae114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/06/2024] [Accepted: 09/18/2024] [Indexed: 10/10/2024]
Abstract
Character displacement theory predicts that closely-related co-occurring species should diverge in relevant traits to reduce costly interspecific interactions such as competition or hybridization. While many studies document character shifts in sympatry, few provide corresponding evidence that these shifts are driven by the costs of co-occurrence. Black-capped (Poecile atricapillus) and mountain chickadees (Poecile gambeli) are closely-related, ecologically similar, and broadly distributed songbirds with both allopatric and sympatric populations. In sympatry, both species appear to suffer costs of their co-occurrence: (a) both species are in worse body condition compared to allopatry and (b) hybridization sometimes yields sterile offspring. Here, we explored character displacement in the songs of black-capped and mountain chickadees by characterizing variation in male songs from sympatric and allopatric populations. We found that mountain chickadees sing differently in sympatry versus allopatry. Specifically, they produced more notes per song, were more likely to include an extra introductory note, and produced a smaller glissando in their first notes compared to all other populations. Combined with previous research on social dominance and maladaptive hybridization between black-capped and mountain chickadees, we posit that differences in sympatric mountain chickadee song are population-wide shifts to reduce aggression from dominant black-capped chickadees and/or prevent maladaptive hybridization.
Collapse
Affiliation(s)
- Olivia N Taylor
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, United States
| | - Kathryn C Grabenstein
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, United States
- Cornell Lab of Ornithology, Cornell University, Ithaca, NY, United States
| | - Angela N Theodosopoulos
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, United States
- Department of Biology, Lund University, Lund, Sweden
| | - Harriet Leeson
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, United States
| | - Scott A Taylor
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, United States
| | - Carrie L Branch
- Department of Psychology, Advanced Facility for Avian Research, University of Western Ontario, London, ON, Canada
| |
Collapse
|
2
|
Januario M, Pinsky ML, Rabosky DL. The Metapopulation Bridge to Macroevolutionary Speciation Rates: A Conceptual Framework and Empirical Test. Ecol Lett 2025; 28:e70021. [PMID: 39737715 DOI: 10.1111/ele.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/09/2024] [Accepted: 10/09/2024] [Indexed: 01/01/2025]
Abstract
Whether large-scale variation in lineage diversification rates can be predicted by species properties at the population level is a key unresolved question at the interface between micro- and macroevolution. All else being equal, species with biological attributes that confer metapopulation stability should persist more often at timescales relevant to speciation and so give rise to new (incipient) forms that share these biological traits. Here, we develop a framework for testing the relationship between metapopulation properties related to persistence and phylogenetic speciation rates. We illustrate this conceptual approach by applying it to a long-term dataset on demersal fish communities from the North American continental shelf region. We find that one index of metapopulation persistence has phylogenetic signal, suggesting that traits are connected with range-wide demographic patterns. However, there is no relationship between demographic properties and speciation rate. These findings suggest a decoupling between ecological dynamics at decadal timescales and million-year clade dynamics, raising questions about the extent to which population-level processes observable over ecological timescales can be extrapolated to infer biodiversity dynamics more generally.
Collapse
Affiliation(s)
- Matheus Januario
- Museum of Zoology & Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Malin L Pinsky
- Department of Ecology, Evolution, and Natural Resources, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, California, USA
| | - Daniel L Rabosky
- Museum of Zoology & Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
3
|
Couvert É, Bienvenu F, Duchamps JJ, Erard A, Miró Pina V, Schertzer E, Lambert A. Opening the species box: what parsimonious microscopic models of speciation have to say about macroevolution. J Evol Biol 2024; 37:1433-1457. [PMID: 39468751 DOI: 10.1093/jeb/voae134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 10/03/2024] [Accepted: 10/22/2024] [Indexed: 10/30/2024]
Abstract
In the last two decades, lineage-based models of diversification, where species are viewed as particles that can divide (speciate) or die (become extinct) at rates depending on some evolving trait, have been very popular tools to study macroevolutionary processes. Here, we argue that this approach cannot be used to break down the inner workings of species diversification and that "opening the species box" is necessary to understand the causes of macroevolution, but that too detailed speciation models also fail to make robust macroevolutionary predictions. We set up a general framework for parsimonious models of speciation that rely on a minimal number of mechanistic principles: (a) reproductive isolation is caused by excessive dissimilarity between genotypes; (b) dissimilarity results from a balance between differentiation processes and homogenizing processes; and (c) dissimilarity can feed back on these processes by decelerating homogenization. We classify such models according to the main homogenizing process: (a) clonal evolution models (ecological drift), (b) models of genetic isolation (gene flow), and (c) models of isolation by distance (spatial drift). We review these models and their specific predictions on macroscopic variables such as species abundances, speciation rates, interfertility relationships, or phylogenetic tree structure. We propose new avenues of research by displaying conceptual questions remaining to be solved and new models to address them: the failure of speciation at secondary contact, the feedback of dissimilarity on homogenization, and the emergence in space of breeding barriers.
Collapse
Affiliation(s)
- Élisa Couvert
- Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, PSL Université, CNRS UMR 8197, INSERM U1024, Paris, France
- Centre Interdisciplinaire de Recherche en Biologie (CIRB), Collège de France, PSL Université, CNRS UMR 7241, INSERM U1050, Paris, France
- Université Paris Cité, CNRS UMR 8145, MAP5, F-75006, Paris, France
| | - François Bienvenu
- Université de Franche-Comté, CNRS, LmB, F-25000 Besançon, France
- Institute for Theoretical Studies, ETH Zürich, 8092 Zürich, Switzerland
| | | | - Adélie Erard
- Université Paris Cité, CNRS UMR 8145, MAP5, F-75006, Paris, France
| | - Verónica Miró Pina
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Emmanuel Schertzer
- Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, 1090 Wien, Austria
| | - Amaury Lambert
- Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, PSL Université, CNRS UMR 8197, INSERM U1024, Paris, France
- Centre Interdisciplinaire de Recherche en Biologie (CIRB), Collège de France, PSL Université, CNRS UMR 7241, INSERM U1050, Paris, France
| |
Collapse
|
4
|
Streicher JW, Lambert SM, Méndez de la Cruz FR, Martínez‐Méndez N, García‐Vázquez UO, Nieto Montes de Oca A, Wiens JJ. What Predicts Gene Flow During Speciation? The Relative Roles of Time, Space, Morphology and Climate. Mol Ecol 2024; 33:e17580. [PMID: 39506895 PMCID: PMC11589662 DOI: 10.1111/mec.17580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/12/2024] [Accepted: 10/22/2024] [Indexed: 11/08/2024]
Abstract
The processes that restrict gene flow between populations are fundamental to speciation. Here, we develop a simple framework for studying whether divergence in morphology, climatic niche, time and space contribute to reduced gene flow among populations and species. We apply this framework to a model system involving a clade of spiny lizards (Sceloporus) occurring mostly in northeastern Mexico, which show striking variation in morphology and habitat among closely related species and populations. We developed a new time-calibrated phylogeny for the group using RADseq data from 152 individuals. This phylogeny identified 12 putative species-level clades, including at least two undescribed species. We then estimated levels of gene flow among 21 geographically adjacent pairs of species and populations. We also estimated divergence in morphological and climatic niche variables among these same pairs, along with divergence times and geographic distances. Using Bayesian generalised linear models, we found that gene flow between pairs of lineages is negatively related to divergence time and morphological divergence among them (which are uncorrelated), and not to geographic distance or climatic divergence. The framework used here can be applied to study speciation in many other organisms having genomic data but lacking direct data on reproductive isolation. We also found several other intriguing patterns in this system, including the parallel evolution of a strikingly similar montane blue-red morph from more dull-coloured desert ancestors within two different, nonsister species.
Collapse
Affiliation(s)
- Jeffrey W. Streicher
- Natural History MuseumLondonUK
- Department of Ecology and Evolutionary BiologyUniversity of ArizonaTucsonArizonaUSA
| | - Shea M. Lambert
- Department of Ecology and Evolutionary BiologyUniversity of ArizonaTucsonArizonaUSA
| | | | - Norberto Martínez‐Méndez
- Laboratorio de Bioconservación y Manejo, Departamento de ZoologíaEscuela Nacional de Ciencias Biológicas del Instituto Politécnico NacionalMexico CityMexico
| | - Uri Omar García‐Vázquez
- Unidad Multidisciplinaria de Investigación, Facultad de Estudios Superiores ZaragozaUniversidad Nacional Autónoma de MéxicoMexico CityMexico
| | - Adrián Nieto Montes de Oca
- Departamento de Biología Evolutiva, Facultad de CienciasUniversidad Nacional Autónoma de MéxicoMexico CityMexico
| | - John J. Wiens
- Department of Ecology and Evolutionary BiologyUniversity of ArizonaTucsonArizonaUSA
| |
Collapse
|
5
|
Rader JA, Matute DR. Temperature affects conspecific and heterospecific mating rates in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.28.620639. [PMID: 39553966 PMCID: PMC11565871 DOI: 10.1101/2024.10.28.620639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Behavioral mating choices and mating success are important factors in the development of reproductive isolation during speciation. Environmental conditions, especially temperature, can affect these key traits. Environmental conditions can vary across, and frequently delimit species' geographic ranges. Pairing suboptimal conditions with relative rarity of conspecifics at range margins may set the stage for hybridization. Despite the importance of mating behaviors as a reproductive barrier, a general understanding of the interaction between behavioral choices and the environment is lacking, in part because systematic studies are rare. With this report, we begin to bridge that gap by providing evidence that temperature has a significant - but not consistent influence on mating choices and success, and thus on reproductive isolation in Drosophila. We studied mating propensity and success at four different temperatures among 14 Drosophila species in non-choice conspecific mating trials and in heterospecific trials among two Drosophila species triads that are known to regularly hybridize in the wild. We show that mating frequency varies significantly across a 10°C range (from 18°C to 28°C), both in 1:1 mating trials and in high-density en-masse trials, but that the effect of temperature is highly species-specific. We also show that mating frequency is consistently low and that temperature has a moderate effect in some heterospecific crosses. As conspecific mating propensity decreases outside of the optimal thermal range, while heterospecific matings remain constant, the proportion of heterospecific matings at suboptimal temperatures is relatively high. This result indicates that temperature can modulate behavioral choices that impose reproductive barriers and influence the rate of hybridization. More broadly, our results demonstrate that to truly understand how mating choice and reproductive isolation occur in nature, they need to be studied in an environmental context.
Collapse
Affiliation(s)
- Jonathan A. Rader
- Dept. of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Daniel R. Matute
- Dept. of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
6
|
Héjja‐Brichard Y, Renoult JP, Mendelson TC. Comparative analysis reveals assortative mate preferences in darters independent of sympatry and sex. Ecol Evol 2024; 14:e11498. [PMID: 39355117 PMCID: PMC11439589 DOI: 10.1002/ece3.11498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 05/10/2024] [Accepted: 05/16/2024] [Indexed: 10/03/2024] Open
Abstract
A preference for mating with conspecifics over heterospecifics is fundamental to the maintenance of species diversity in sexually reproducing organisms. This type of positive assortative preference results in sexual isolation, and a reduction in gene flow between species due to differences in mate choice. The proximate and ultimate causes of sexual isolation therefore constitute active areas of research in evolutionary biology. Sexual isolation is often stronger between closely related sympatric species as compared to allopatric species because of processes such as reinforcement. In addition, traditional theories of sexual selection suggest that because reproduction is more costly to females, they should be the choosier sex and play a more central role in sexual isolation. We conducted a comparative analysis of assortative mate preferences in males and females of sympatric and allopatric species pairs of darters (fish genus Etheostoma). We performed a meta-analysis of 17 studies, encompassing 21 species, in which assortative preference was measured when fish were (in most cases) allowed only visual information. As expected, we found stronger preferences for conspecifics over heterospecifics across studies and species. However, we did not find an effect of sympatry or sex on the strength of preference for conspecifics, but rather remarkable variation across species. We offer several testable hypotheses to explain the variation we observed in the strength of assortative preference.
Collapse
Affiliation(s)
- Yseult Héjja‐Brichard
- Department of Biological SciencesUniversity of Maryland, Baltimore CountyBaltimoreMarylandUSA
| | - Julien P. Renoult
- CEFE, Univ Montpellier, CNRS, EPHE, Univ Paul‐Valery MontpellierMontpellierOccitanieFrance
| | - Tamra C. Mendelson
- Department of Biological SciencesUniversity of Maryland, Baltimore CountyBaltimoreMarylandUSA
| |
Collapse
|
7
|
Bromham L. Combining Molecular, Macroevolutionary, and Macroecological Perspectives on the Generation of Diversity. Cold Spring Harb Perspect Biol 2024; 16:a041453. [PMID: 38503506 PMCID: PMC11368193 DOI: 10.1101/cshperspect.a041453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Charles Darwin presented a unified process of diversification driven by the gradual accumulation of heritable variation. The growth in DNA databases and the increase in genomic sequencing, combined with advances in molecular phylogenetic analyses, gives us an opportunity to realize Darwin's vision, connecting the generation of variation to the diversification of lineages. The rate of molecular evolution is correlated with the rate of diversification across animals and plants, but the relationship between genome change and speciation is complex: Mutation rates evolve in response to life history and niche; substitution rates are influenced by mutation, selection, and population size; rates of acquisition of reproductive isolation vary between populations; and traits, niches, and distribution can influence diversification rates. The connection between mutation rate and diversification rate is one part of the complex and varied story of speciation, which has theoretical importance for understanding the generation of biodiversity and also practical impacts on the use of DNA to understand the dynamics of speciation over macroevolutionary timescales.
Collapse
Affiliation(s)
- Lindell Bromham
- Macroevolution and Macroecology, Research School of Biology, Australian National University, ACT 0200, Australia
| |
Collapse
|
8
|
Thompson KA, Brandvain Y, Coughlan JM, Delmore KE, Justen H, Linnen CR, Ortiz-Barrientos D, Rushworth CA, Schneemann H, Schumer M, Stelkens R. The Ecology of Hybrid Incompatibilities. Cold Spring Harb Perspect Biol 2024; 16:a041440. [PMID: 38151331 PMCID: PMC11368197 DOI: 10.1101/cshperspect.a041440] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Ecologically mediated selection against hybrids, caused by hybrid phenotypes fitting poorly into available niches, is typically viewed as distinct from selection caused by epistatic Dobzhansky-Muller hybrid incompatibilities. Here, we show how selection against transgressive phenotypes in hybrids manifests as incompatibility. After outlining our logic, we summarize current approaches for studying ecology-based selection on hybrids. We then quantitatively review QTL-mapping studies and find traits differing between parent taxa are typically polygenic. Next, we describe how verbal models of selection on hybrids translate to phenotypic and genetic fitness landscapes, highlighting emerging approaches for detecting polygenic incompatibilities. Finally, in a synthesis of published data, we report that trait transgression-and thus possibly extrinsic hybrid incompatibility in hybrids-escalates with the phenotypic divergence between parents. We discuss conceptual implications and conclude that studying the ecological basis of hybrid incompatibility will facilitate new discoveries about mechanisms of speciation.
Collapse
Affiliation(s)
- Ken A Thompson
- Department of Biology, Stanford University, Stanford, California 94305, USA
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305, USA
| | - Yaniv Brandvain
- Department of Plant and Microbial Biology, University of Minnesota - Twin Cities, St Paul, Minnesota 55108, USA
| | - Jenn M Coughlan
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, Connecticut 06511, USA
| | - Kira E Delmore
- Department of Biology, Texas A&M University, College Station, Texas 77843, USA
| | - Hannah Justen
- Department of Biology, Texas A&M University, College Station, Texas 77843, USA
| | - Catherine R Linnen
- Department of Biology, University of Kentucky, Lexington, Kentucky 40506, USA
| | - Daniel Ortiz-Barrientos
- School of Biological Sciences, The University of Queensland, Centre of Excellence for Plant Success in Nature and Agriculture, St Lucia, Queensland 4072, Australia
| | - Catherine A Rushworth
- Department of Biology and Ecology Center, Utah State University, Logan, Utah 84322, USA
| | - Hilde Schneemann
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - Molly Schumer
- Department of Biology, Stanford University, Stanford, California 94305, USA
- Centro de Investigaciones Científicas de las Huastecas "Aguazarca," A.C., Calnali 43240, Mexico
- Hanna H. Gray Fellow, Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| | - Rike Stelkens
- Division of Population Genetics, Department of Zoology, Stockholm University, 106 91 Stockholm, Sweden
| |
Collapse
|
9
|
Morelli S, Traversa D, Di Cesare A, Colombo M, Grillini M, Paoletti B, Mondazzi A, Frangipane di Regalbono A, Iorio R, Astuti C, Tsokana CN, Diakou A. Geographical isolation and hyperendemicity of Hepatozoon felis: Epidemiological scenario in Skopelos, Greece, and phylogenetic analysis. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2024; 6:100202. [PMID: 39139660 PMCID: PMC11320469 DOI: 10.1016/j.crpvbd.2024.100202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/09/2024] [Accepted: 07/18/2024] [Indexed: 08/15/2024]
Abstract
Feline hepatozoonosis is a vector-borne disease caused by different species of the genus Hepatozoon, i.e. Hepatozoon felis, Hepatozoon silvestris and Hepatozoon canis. Knowledge on the biology, epidemiology and taxonomy of Hepatozoon spp. is still limited, despite the fact that the number of documented Hepatozoon spp. infections in domestic cats increased in recent years in different countries. This study was carried out to evaluate the prevalence and the genetic profile of Hepatozoon spp. in cats living on the island of Skopelos, Greece. Individual blood samples were collected from 54 owned cats and were subjected to Giemsa-stained blood smear examination to investigate the presence of Hepatozoon spp. gamonts and to a specific PCR protocol targeting the 18S rRNA gene of Hepatozoon. A total of 45 cats (83.3%) were found infected by Hepatozoon spp. by at least one of the methods applied. In particular, 43 (79.6%) of the cats were PCR-positive, and in 6 (11.1%) cats gamonts of Hepatozoon spp. were found in the blood smears. A total of 26 H. felis sequences were obtained and the presence of three undescribed single nucleotide polymorphisms were detected. The present results indicate that H. felis species complex may be hyperendemic in isolated/confined areas. In such contexts, geographical isolation may favor the origin of new genotypes or haplotypes or even new species.
Collapse
Affiliation(s)
- Simone Morelli
- Department of Veterinary Medicine, University of Teramo, Località Piano d’Accio snc, 64100, Teramo, Italy
| | - Donato Traversa
- Department of Veterinary Medicine, University of Teramo, Località Piano d’Accio snc, 64100, Teramo, Italy
| | - Angela Di Cesare
- Department of Veterinary Medicine, University of Teramo, Località Piano d’Accio snc, 64100, Teramo, Italy
| | - Mariasole Colombo
- Department of Veterinary Medicine, University of Teramo, Località Piano d’Accio snc, 64100, Teramo, Italy
| | - Marika Grillini
- Department of Animal Medicine, Production and Health, University of Padova, 35020, Legnaro, Padova, Italy
| | - Barbara Paoletti
- Department of Veterinary Medicine, University of Teramo, Località Piano d’Accio snc, 64100, Teramo, Italy
| | - Aurora Mondazzi
- Department of Veterinary Medicine, University of Teramo, Località Piano d’Accio snc, 64100, Teramo, Italy
| | | | - Raffaella Iorio
- Department of Veterinary Medicine, University of Teramo, Località Piano d’Accio snc, 64100, Teramo, Italy
| | - Chiara Astuti
- Department of Veterinary Medicine, University of Teramo, Località Piano d’Accio snc, 64100, Teramo, Italy
| | - Constantina N. Tsokana
- School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Anastasia Diakou
- School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| |
Collapse
|
10
|
Alfieri JM, Hingoranee R, Athrey GN, Blackmon H. Domestication is associated with increased interspecific hybrid compatibility in landfowl (order: Galliformes). J Hered 2024; 115:1-10. [PMID: 37769441 PMCID: PMC10838130 DOI: 10.1093/jhered/esad059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/15/2023] [Accepted: 09/26/2023] [Indexed: 09/30/2023] Open
Abstract
Some species are able to hybridize despite being exceptionally diverged. The causes of this variation in accumulation of reproductive isolation remain poorly understood, and domestication as an impetus or hindrance to reproductive isolation remains to be characterized. In this study, we investigated the role of divergence time, domestication, and mismatches in morphology, habitat, and clutch size among hybridizing species on reproductive isolation in the bird order Galliformes. We compiled and analyzed hybridization occurrences from literature and recorded measures of postzygotic reproductive isolation. We used a text-mining approach leveraging a historical aviculture magazine to quantify the degree of domestication across species. We obtained divergence time, morphology, habitat, and clutch size data from open sources. We found 123 species pairs (involving 77 species) with known offspring fertility (sterile, only males fertile, or both sexes fertile). We found that divergence time and clutch size were significant predictors of reproductive isolation (McFadden's Pseudo-R2 = 0.59), but not habitat or morphological mismatch. Perhaps most interesting, we found a significant relationship between domestication and reproductive compatibility after correcting for phylogeny, removing extreme values, and addressing potential biases (F1,74 = 5.43, R2 = 0.06, P-value = 0.02). We speculate that the genetic architecture and disruption in selective reproductive regimes associated with domestication may impact reproductive isolation, causing domesticated species to be more reproductively labile.
Collapse
Affiliation(s)
- James M Alfieri
- Interdisciplinary Program in Ecology and Evolutionary Biology, Texas A&M University, College Station, TX, USA
- Department of Poultry Science, Texas A&M University, College Station, TX, USA
- Department of Biology, Texas A&M University, College Station, TX, USA
| | - Reina Hingoranee
- Department of Epidemiology and Biostatistics, Texas A&M University, College Station, TX, USA
| | - Giridhar N Athrey
- Interdisciplinary Program in Ecology and Evolutionary Biology, Texas A&M University, College Station, TX, USA
- Department of Poultry Science, Texas A&M University, College Station, TX, USA
| | - Heath Blackmon
- Interdisciplinary Program in Ecology and Evolutionary Biology, Texas A&M University, College Station, TX, USA
- Department of Biology, Texas A&M University, College Station, TX, USA
| |
Collapse
|
11
|
Vega-Sánchez YM, Oyama K, Mendoza-Cuenca LF, Gaytán-Legaria R, González-Rodríguez A. Genomic differentiation and niche divergence in the Hetaerina americana (Odonata) cryptic species complex. Mol Ecol 2024; 33:e17207. [PMID: 37975486 DOI: 10.1111/mec.17207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/11/2023] [Accepted: 10/27/2023] [Indexed: 11/19/2023]
Abstract
The evolution of reproductive barriers, that is, the speciation process, implies the limitation of gene flow between populations. Different patterns of genomic differentiation throughout the speciation continuum may provide insights into the causal evolutionary forces of species divergence. In this study, we analysed a cryptic species complex of the genus Hetaerina (Odonata). This complex includes H. americana and H. calverti; however, in H. americana two highly differentiated genetic groups have been previously detected, which, we hypothesize, may correspond to different species with low morphological variation. We obtained single nucleotide polymorphism (SNP) data for 90 individuals belonging to the different taxa in the complex and carried out differentiation tests to identify genetic isolation. The results from STRUCTURE and discriminant analysis of principal components (DAPC), based on almost 5000 SNPs, confirmed the presence of three highly differentiated taxa. Also, we found FST values above 0.5 in pairwise comparisons, which indicates a considerable degree of genetic isolation among the suggested species. We also found low climatic niche overlap among all taxa, suggesting that each group occurs at specific conditions of temperature, precipitation and elevation. We propose that H. americana comprises two cryptic species, which may be reproductively isolated by ecological barriers related to niche divergence, since the morphological variation is minimal and, therefore, mechanical barriers are probably less effective compared to other related species such as H. calverti.
Collapse
Affiliation(s)
- Yesenia Margarita Vega-Sánchez
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México (UNAM), Morelia, Mexico
| | - Ken Oyama
- Escuela Nacional de Estudios Superiores (ENES) Unidad Morelia, Universidad Nacional Autónoma de México (UNAM), Morelia, Mexico
| | | | - Ricardo Gaytán-Legaria
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México (UNAM), Morelia, Mexico
| | - Antonio González-Rodríguez
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México (UNAM), Morelia, Mexico
| |
Collapse
|
12
|
Mahilkar A, Nagendra P, Venkataraman P, Deshmukh S, Saini S. Rapid evolution of pre-zygotic reproductive barriers in allopatric populations. Microbiol Spectr 2023; 11:e0195023. [PMID: 37787555 PMCID: PMC10714765 DOI: 10.1128/spectrum.01950-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/14/2023] [Indexed: 10/04/2023] Open
Abstract
IMPORTANCE A population diversifies into two or more species-such a process is known as speciation. In sexually reproducing microorganisms, which barriers arise first-pre-mating or post-mating? In this work, we quantify the relative strengths of these barriers and demonstrate that pre-mating barriers arise first in allopatrically evolving populations of yeast, Saccharomyces cerevisiae. These defects arise because of the altered kinetics of mating of the participating groups. Thus, our work provides an understanding of how adaptive changes can lead to diversification among microbial populations.
Collapse
Affiliation(s)
- Anjali Mahilkar
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, Powai, Maharashtra, India
| | - Prachitha Nagendra
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, Powai, Maharashtra, India
| | - Pavithra Venkataraman
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, Powai, Maharashtra, India
| | - Saniya Deshmukh
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, Powai, Maharashtra, India
| | - Supreet Saini
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, Powai, Maharashtra, India
| |
Collapse
|
13
|
Farnitano MC, Sweigart AL. Strong postmating reproductive isolation in Mimulus section Eunanus. J Evol Biol 2023; 36:1393-1410. [PMID: 37691442 PMCID: PMC10592011 DOI: 10.1111/jeb.14219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 09/12/2023]
Abstract
Postmating reproductive isolation can help maintain species boundaries when premating barriers to reproduction are incomplete. The strength and identity of postmating reproductive barriers are highly variable among diverging species, leading to questions about their genetic basis and evolutionary drivers. These questions have been tackled in model systems but are less often addressed with broader phylogenetic resolution. In this study we analyse patterns of genetic divergence alongside direct measures of postmating reproductive barriers in an overlooked group of sympatric species within the model monkeyflower genus, Mimulus. Within this Mimulus brevipes species group, we find substantial divergence among species, including a cryptic genetic lineage. However, rampant gene discordance and ancient signals of introgression suggest a complex history of divergence. In addition, we find multiple strong postmating barriers, including postmating prezygotic isolation, hybrid seed inviability and hybrid male sterility. M. brevipes and M. fremontii have substantial but incomplete postmating isolation. For all other tested species pairs, we find essentially complete postmating isolation. Hybrid seed inviability appears linked to differences in seed size, providing a window into possible developmental mechanisms underlying this reproductive barrier. While geographic proximity and incomplete mating isolation may have allowed gene flow within this group in the distant past, strong postmating reproductive barriers today have likely played a key role in preventing ongoing introgression. By producing foundational information about reproductive isolation and genomic divergence in this understudied group, we add new diversity and phylogenetic resolution to our understanding of the mechanisms of plant speciation.
Collapse
|
14
|
Dagilis AJ, Matute DR. The fitness of an introgressing haplotype changes over the course of divergence and depends on its size and genomic location. PLoS Biol 2023; 21:e3002185. [PMID: 37459351 PMCID: PMC10374083 DOI: 10.1371/journal.pbio.3002185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/27/2023] [Accepted: 06/06/2023] [Indexed: 07/28/2023] Open
Abstract
The genomic era has made clear that introgression, or the movement of genetic material between species, is a common feature of evolution. Examples of both adaptive and deleterious introgression exist in a variety of systems. What is unclear is how the fitness of an introgressing haplotype changes as species diverge or as the size of the introgressing haplotype changes. In a simple model, we show that introgression may more easily occur into parts of the genome which have not diverged heavily from a common ancestor. The key insight is that alleles from a shared genetic background are likely to have positive epistatic interactions, increasing the fitness of a larger introgressing block. In regions of the genome where few existing substitutions are disrupted, this positive epistasis can be larger than incompatibilities with the recipient genome. Further, we show that early in the process of divergence, introgression of large haplotypes can be favored more than introgression of individual alleles. This model is consistent with observations of a positive relationship between recombination rate and introgression frequency across the genome; however, it generates several novel predictions. First, the model suggests that the relationship between recombination rate and introgression may not exist, or may be negative, in recently diverged species pairs. Furthermore, the model suggests that introgression that replaces existing derived variation will be more deleterious than introgression at sites carrying ancestral variants. These predictions are tested in an example of introgression in Drosophila melanogaster, with some support for both. Finally, the model provides a potential alternative explanation to asymmetry in the direction of introgression, with expectations of higher introgression from rapidly diverged populations into slowly evolving ones.
Collapse
Affiliation(s)
- Andrius J Dagilis
- Biology Department, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Daniel R Matute
- Biology Department, University of North Carolina, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
15
|
Cutter AD. Speciation and development. Evol Dev 2023; 25:289-327. [PMID: 37545126 DOI: 10.1111/ede.12454] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/13/2023] [Accepted: 07/20/2023] [Indexed: 08/08/2023]
Abstract
Understanding general principles about the origin of species remains one of the foundational challenges in evolutionary biology. The genomic divergence between groups of individuals can spawn hybrid inviability and hybrid sterility, which presents a tantalizing developmental problem. Divergent developmental programs may yield either conserved or divergent phenotypes relative to ancestral traits, both of which can be responsible for reproductive isolation during the speciation process. The genetic mechanisms of developmental evolution involve cis- and trans-acting gene regulatory change, protein-protein interactions, genetic network structures, dosage, and epigenetic regulation, all of which also have roots in population genetic and molecular evolutionary processes. Toward the goal of demystifying Darwin's "mystery of mysteries," this review integrates microevolutionary concepts of genetic change with principles of organismal development, establishing explicit links between population genetic process and developmental mechanisms in the production of macroevolutionary pattern. This integration aims to establish a more unified view of speciation that binds process and mechanism.
Collapse
Affiliation(s)
- Asher D Cutter
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
16
|
Bendall EE, Mattingly KM, Moehring AJ, Linnen CR. A Test of Haldane's Rule in Neodiprion Sawflies and Implications for the Evolution of Postzygotic Isolation in Haplodiploids. Am Nat 2023; 202:40-54. [PMID: 37384768 DOI: 10.1086/724820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2023]
Abstract
AbstractHaldane's rule-a pattern in which hybrid sterility or inviability is observed in the heterogametic sex of an interspecific cross-is one of the most widely obeyed rules in nature. Because inheritance patterns are similar for sex chromosomes and haplodiploid genomes, Haldane's rule may apply to haplodiploid taxa, predicting that haploid male hybrids will evolve sterility or inviability before diploid female hybrids. However, there are several genetic and evolutionary mechanisms that may reduce the tendency of haplodiploids to obey Haldane's rule. Currently, there are insufficient data from haplodiploids to determine how frequently they adhere to Haldane's rule. To help fill this gap, we crossed a pair of haplodiploid hymenopteran species (Neodiprion lecontei and Neodiprion pinetum) and evaluated the viability and fertility of female and male hybrids. Despite considerable divergence, we found no evidence of reduced fertility in hybrids of either sex, consistent with the hypothesis that hybrid sterility evolves slowly in haplodiploids. For viability, we found a pattern opposite to that of Haldane's rule: hybrid females, but not males, had reduced viability. This reduction was most pronounced in one direction of the cross, possibly due to a cytoplasmic-nuclear incompatibility. We also found evidence of extrinsic postzygotic isolation in hybrids of both sexes, raising the possibility that this form or reproductive isolation tends to emerge early in speciation in host-specialized insects. Our work emphasizes the need for more studies on reproductive isolation in haplodiploids, which are abundant in nature but underrepresented in the speciation literature.
Collapse
|
17
|
Postel Z, Mauri T, Lensink MF, Touzet P. What is the potential impact of genetic divergence of plastid ribosomal genes between Silene nutans lineages in hybrids? An in silico approach using the 3D structure of the plastid ribosome. FRONTIERS IN PLANT SCIENCE 2023; 14:1167478. [PMID: 37223795 PMCID: PMC10201985 DOI: 10.3389/fpls.2023.1167478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/31/2023] [Indexed: 05/25/2023]
Abstract
Introduction Following the integration of cyanobacteria into the eukaryotic cells, many genes were transferred from the plastid to the nucleus. As a result, plastid complexes are encoded both by plastid and nuclear genes. Tight co-adaptation is required between these genes as plastid and nuclear genomes differ in several characteristics, such as mutation rate and inheritance patterns. Among these are complexes from the plastid ribosome, composed of two main subunits: a large and a small one, both composed of nuclear and plastid gene products. This complex has been identified as a potential candidate for sheltering plastid-nuclear incompatibilities in a Caryophyllaceae species, Silene nutans. This species is composed of four genetically differentiated lineages, which exhibit hybrid breakdown when interlineage crosses are conducted. As this complex is composed of numerous interacting plastid-nuclear gene pairs, in the present study, the goal was to reduce the number of gene pairs that could induce such incompatibilities. Method We used the previously published 3D structure of the spinach ribosome to further elucidate which of the potential gene pairs might disrupt plastid-nuclear interactions within this complex. After modeling the impact of the identified mutations on the 3D structure, we further focused on one strongly mutated plastid-nuclear gene pair: rps11-rps21. We used the centrality measure of the mutated residues to further understand if the modified interactions and associated modified centralities might be correlated with hybrid breakdown. Results and discussion This study highlights that lineage-specific mutations in essential plastid and nuclear genes might disrupt plastid-nuclear protein interactions of the plastid ribosome and that reproductive isolation correlates with changes in residue centrality values. Because of this, the plastid ribosome might be involved in hybrid breakdown in this system.
Collapse
Affiliation(s)
- Zoé Postel
- Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, Lille, France
| | - Théo Mauri
- Univ. Lille, CNRS, UMR 8576 – UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Marc F. Lensink
- Univ. Lille, CNRS, UMR 8576 – UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Pascal Touzet
- Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, Lille, France
| |
Collapse
|
18
|
Touchard F, Simon A, Bierne N, Viard F. Urban rendezvous along the seashore: Ports as Darwinian field labs for studying marine evolution in the Anthropocene. Evol Appl 2023; 16:560-579. [PMID: 36793678 PMCID: PMC9923491 DOI: 10.1111/eva.13443] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 06/16/2022] [Accepted: 06/19/2022] [Indexed: 11/30/2022] Open
Abstract
Humans have built ports on all the coasts of the world, allowing people to travel, exploit the sea, and develop trade. The proliferation of these artificial habitats and the associated maritime traffic is not predicted to fade in the coming decades. Ports share common characteristics: Species find themselves in novel singular environments, with particular abiotic properties-e.g., pollutants, shading, protection from wave action-within novel communities in a melting pot of invasive and native taxa. Here, we discuss how this drives evolution, including setting up of new connectivity hubs and gateways, adaptive responses to exposure to new chemicals or new biotic communities, and hybridization between lineages that would have never come into contact naturally. There are still important knowledge gaps, however, such as the lack of experimental tests to distinguish adaptation from acclimation processes, the lack of studies to understand the putative threats of port lineages to natural populations or to better understand the outcomes and fitness effects of anthropogenic hybridization. We thus call for further research examining "biological portuarization," defined as the repeated evolution of marine species in port ecosystems under human-altered selective pressures. Furthermore, we argue that ports act as giant mesocosms often isolated from the open sea by seawalls and locks and so provide replicated life-size evolutionary experiments essential to support predictive evolutionary sciences.
Collapse
Affiliation(s)
| | - Alexis Simon
- ISEM, EPHE, IRDUniversité MontpellierMontpellierFrance
- Center of Population Biology and Department of Evolution and EcologyUniversity of California DavisDavisCaliforniaUSA
| | | | | |
Collapse
|
19
|
Toll K. An evolutionary framework for understanding habitat partitioning in plants. AMERICAN JOURNAL OF BOTANY 2023; 110:e16119. [PMID: 36585942 PMCID: PMC10107657 DOI: 10.1002/ajb2.16119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Many plant species with overlapping geographic ranges segregate at smaller spatial scales. This spatial segregation-zonation when it follows an abiotic gradient and habitat partitioning when it does not-has been experimentally investigated for over a century often using distantly related taxa, such as different genera of algae or barnacles. In those foundational studies, trade-offs between stress tolerance and competitive ability were found to be the major driving factors of habitat partitioning for both animals and plants. Yet, the evolutionary relationships among segregating species are usually not taken into account. Since close relatives are hypothesized to compete more intensely and are more likely to interact during mating compared to distant relatives, the mechanisms underlying habitat partitioning may differ depending on the relatedness of the species in question. Here, I propose an integration of ecological and evolutionary factors contributing to habitat partitioning in plants, specifically how the relative contributions of factors predictably change with relatedness of taxa. Interspecific reproductive interactions in particular are understudied, yet important drivers of habitat partitioning. In spatially segregated species, interspecific mating can reduce the fitness of rare immigrants, preventing their establishment and maintaining patterns of spatial segregation. In this synthesis, I review the literature on mechanisms of habitat partitioning in plants within an evolutionary framework, identifying knowledge gaps and detailing future directions for this rapidly growing field of study.
Collapse
Affiliation(s)
- Katherine Toll
- Department of Plant BiologyMichigan State UniversityEast LansingMI48824USA
| |
Collapse
|
20
|
Perrier A, Willi Y. Intraspecific variation in reproductive barriers between two closely related Arabidopsis sister species. J Evol Biol 2023; 36:121-130. [PMID: 36436201 PMCID: PMC10100320 DOI: 10.1111/jeb.14122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/07/2022] [Accepted: 09/25/2022] [Indexed: 11/29/2022]
Abstract
Reproductive isolation (RI) is a critical component of speciation and varies strongly in timing and strength among different sister taxa, depending on, for example the geography of speciation and divergence time. However, these factors may also produce variation in timing and strength among populations within species. Here we tested for variation in the expression of RI among replicate population pairs between the sister taxa Arabidopsis lyrata subsp. lyrata and A. arenicola. While the former is predominantly outcrossing, the latter is predominantly selfing. We focused on intrinsic prezygotic and postzygotic RI as both species occur largely in allopatry. We assessed RI by performing within-population crosses and interspecific between-population crosses, and by raising offspring. RI was generally high between all interspecific population pairs, but it varied in timing and strength depending on population history. Prezygotic isolation was strongest between the closest-related population pair, while early postzygotic isolation was high for all other population pairs. Furthermore, the timing and strength of RI depended strongly on cross direction. Our study provides empirical support that reproductive barriers between species are highly variable among population pairs and asymmetric within population pairs, and this variation seems to follow patterns typically described across species pairs.
Collapse
Affiliation(s)
- Antoine Perrier
- Department of Environmental Sciences, University of Basel, Basel, Switzerland.,Department of Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Yvonne Willi
- Department of Environmental Sciences, University of Basel, Basel, Switzerland
| |
Collapse
|
21
|
Kopania EEK, Watson EM, Rathje CC, Skinner BM, Ellis PJI, Larson EL, Good JM. The contribution of sex chromosome conflict to disrupted spermatogenesis in hybrid house mice. Genetics 2022; 222:iyac151. [PMID: 36194004 PMCID: PMC9713461 DOI: 10.1093/genetics/iyac151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/27/2022] [Indexed: 12/13/2022] Open
Abstract
Incompatibilities on the sex chromosomes are important in the evolution of hybrid male sterility, but the evolutionary forces underlying this phenomenon are unclear. House mice (Mus musculus) lineages have provided powerful models for understanding the genetic basis of hybrid male sterility. X chromosome-autosome interactions cause strong incompatibilities in M. musculus F1 hybrids, but variation in sterility phenotypes suggests a more complex genetic basis. In addition, XY chromosome conflict has resulted in rapid expansions of ampliconic genes with dosage-dependent expression that is essential to spermatogenesis. Here, we evaluated the contribution of XY lineage mismatch to male fertility and stage-specific gene expression in hybrid mice. We performed backcrosses between two house mouse subspecies to generate reciprocal Y-introgression strains and used these strains to test the effects of XY mismatch in hybrids. Our transcriptome analyses of sorted spermatid cells revealed widespread overexpression of the X chromosome in sterile F1 hybrids independent of Y chromosome subspecies origin. Thus, postmeiotic overexpression of the X chromosome in sterile F1 mouse hybrids is likely a downstream consequence of disrupted meiotic X-inactivation rather than XY gene copy number imbalance. Y chromosome introgression did result in subfertility phenotypes and disrupted expression of several autosomal genes in mice with an otherwise nonhybrid genomic background, suggesting that Y-linked incompatibilities contribute to reproductive barriers, but likely not as a direct consequence of XY conflict. Collectively, these findings suggest that rapid sex chromosome gene family evolution driven by genomic conflict has not resulted in strong male reproductive barriers between these subspecies of house mice.
Collapse
Affiliation(s)
- Emily E K Kopania
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Eleanor M Watson
- School of Life Sciences, University of Essex, Colchester CO4 3SQ, UK
| | - Claudia C Rathje
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK
| | | | - Peter J I Ellis
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK
| | - Erica L Larson
- Department of Biological Sciences, University of Denver, Denver, CO 80208, USA
| | - Jeffrey M Good
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| |
Collapse
|
22
|
Augustijnen H, Patsiou T, Lucek K. Secondary contact rather than coexistence-Erebia butterflies in the Alps. Evolution 2022; 76:2669-2686. [PMID: 36117267 PMCID: PMC9828779 DOI: 10.1111/evo.14615] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 08/05/2022] [Accepted: 08/30/2022] [Indexed: 01/22/2023]
Abstract
Secondary contact zones are ideal systems to study the processes that govern the evolution of reproductive barriers, especially at advanced stages of the speciation process. An increase in reproductive isolation resulting from selection against maladaptive hybrids is thought to contribute to reproductive barrier buildup in secondary contact zones. Although such processes have been invoked for many systems, it remains unclear to which extent they influence contact zone dynamics in nature. Here, we study a very narrow contact zone between the butterfly species Erebia cassioides and Erebia tyndarus in the Swiss Alps. We quantified phenotypic traits related to wing shape and reproduction as well as ecology to compare the degree of intra- and interspecific differentiation. Even though only very few first-generation hybrids occur, we find no strong indications for current reinforcing selection, suggesting that if reinforcement occurred in our system, it likely operated in the past. Additionally, we show that both species differ less in their ecological niche at the contact zone than elsewhere, which could explain why coexistence between these butterflies may currently not be possible.
Collapse
Affiliation(s)
- Hannah Augustijnen
- Department of Environmental SciencesUniversity of BaselBaselCH‐4056Switzerland
| | - Theofania Patsiou
- Institute of Plant SciencesUniversity of BernBernCH‐3013Switzerland
- Department of BiologyUniversity of FribourgFribourgCH‐1700Switzerland
| | - Kay Lucek
- Department of Environmental SciencesUniversity of BaselBaselCH‐4056Switzerland
| |
Collapse
|
23
|
Dagilis AJ, Peede D, Coughlan JM, Jofre GI, D'Agostino ERR, Mavengere H, Tate AD, Matute DR. A need for standardized reporting of introgression: Insights from studies across eukaryotes. Evol Lett 2022; 6:344-357. [PMID: 36254258 PMCID: PMC9554761 DOI: 10.1002/evl3.294] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/04/2022] [Accepted: 06/12/2022] [Indexed: 01/04/2023] Open
Abstract
With the rise of affordable next-generation sequencing technology, introgression-or the exchange of genetic materials between taxa-has become widely perceived to be a ubiquitous phenomenon in nature. Although this claim is supported by several keystone studies, no thorough assessment of the frequency of introgression across eukaryotes in nature has been performed to date. In this manuscript, we aim to address this knowledge gap by examining patterns of introgression across eukaryotes. We collated a single statistic, Patterson's D, which can be used as a test for introgression across 123 studies to further assess how taxonomic group, divergence time, and sequencing technology influence reports of introgression. Overall, introgression has mostly been measured in plants and vertebrates, with less attention given to the rest of the Eukaryotes. We find that the most frequently used metrics to detect introgression are difficult to compare across studies and even more so across biological systems due to differences in study effort, reporting standards, and methodology. Nonetheless, our analyses reveal several intriguing patterns, including the observation that differences in sequencing technologies may bias values of Patterson's D and that introgression may differ throughout the course of the speciation process. Together, these results suggest the need for a unified approach to quantifying introgression in natural communities and highlight important areas of future research that can be better assessed once this unified approach is met.
Collapse
Affiliation(s)
| | - David Peede
- Biology DepartmentUniversity of North CarolinaChapel HillNCUSA
- Department of Ecology, Evolution, and Organismal BiologyBrown UniversityProvidenceRIUSA
- Center for Computational Molecular BiologyBrown UniversityProvidenceRIUSA
| | - Jenn M. Coughlan
- Biology DepartmentUniversity of North CarolinaChapel HillNCUSA
- Department of Ecology and Evolutionary BiologyYale UniversityNew HavenCTUSA
| | - Gaston I. Jofre
- Biology DepartmentUniversity of North CarolinaChapel HillNCUSA
| | - Emmanuel R. R. D'Agostino
- Biology DepartmentUniversity of North CarolinaChapel HillNCUSA
- Department of Ecology and Evolutionary BiologyPrinceton UniversityPrincetonNJUSA
| | - Heidi Mavengere
- Biology DepartmentUniversity of North CarolinaChapel HillNCUSA
| | | | | |
Collapse
|
24
|
Christie K, Fraser LS, Lowry DB. The strength of reproductive isolating barriers in seed plants: Insights from studies quantifying premating and postmating reproductive barriers over the past 15 years. Evolution 2022; 76:2228-2243. [PMID: 35838076 PMCID: PMC9796645 DOI: 10.1111/evo.14565] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 06/23/2022] [Accepted: 06/30/2022] [Indexed: 01/22/2023]
Abstract
Speciation is driven by the evolution of reproductive isolating barriers that reduce, and ultimately prevent, substantial gene flow between lineages. Despite its central role in evolutionary biology, the process can be difficult to study because it proceeds differently among groups and may occur over long timescales. Due to this complexity, we typically rely on generalizations of empirical data to describe and understand the process. Previous reviews of reproductive isolation (RI) in flowering plants have suggested that prezygotic or extrinsic barriers generally have a stronger effect on reducing gene flow compared to postzygotic or intrinsic barriers. Past conclusions have rested on relatively few empirical estimates of RI; however, RI data have become increasingly abundant over the past 15 years. We analyzed data from recent studies quantifying multiple pre- and postmating barriers in plants and compared the strengths of isolating barriers across 89 taxa pairs using standardized RI metrics. Individual prezygotic barriers were on average stronger than individual postzygotic barriers, and the total strength of prezygotic RI was approximately twice that of postzygotic RI. These findings corroborate that ecological divergence and extrinsic factors, as opposed to solely the accumulation of genetic incompatibilities, are important to speciation and the maintenance of species boundaries in plants. Despite an emphasis in the literature on asymmetric postmating and postzygotic RI, we found that prezygotic barriers acted equally asymmetrically. Overall, substantial variability in the strengths of 12 isolating barriers highlights the great diversity of mechanisms that contribute to plant diversification.
Collapse
Affiliation(s)
- Kyle Christie
- Department of Plant BiologyMichigan State UniversityEast LansingMichigan48824,Department of Biological SciencesNorthern Arizona UniversityFlagstaffArizona86011
| | - Linnea S. Fraser
- Department of Plant BiologyMichigan State UniversityEast LansingMichigan48824
| | - David B. Lowry
- Department of Plant BiologyMichigan State UniversityEast LansingMichigan48824
| |
Collapse
|
25
|
Butlin RK. The language of isolation: a commentary on Westram et al., 2022. J Evol Biol 2022; 35:1195-1199. [PMID: 36063154 PMCID: PMC9543646 DOI: 10.1111/jeb.14029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 05/13/2022] [Indexed: 01/01/2023]
Affiliation(s)
- Roger K Butlin
- School of Biosciences, The University of Sheffield, Sheffield, UK.,Department of Marine Sciences, Tjärnö Marine Laboratory, University of Gothenburg, Strömstad, Sweden
| |
Collapse
|
26
|
Stuckert AMM, Matute DR. Using neutral loci to quantify reproductive isolation and speciation: a commentary on Westram et al., 2022. J Evol Biol 2022; 35:1169-1174. [PMID: 36063155 DOI: 10.1111/jeb.14057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 01/23/2023]
Affiliation(s)
- Adam M M Stuckert
- Biology Department, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Daniel R Matute
- Biology Department, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
27
|
Barley AJ, Nieto-Montes de Oca A, Manríquez-Morán NL, Thomson RC. The evolutionary network of whiptail lizards reveals predictable outcomes of hybridization. Science 2022; 377:773-777. [PMID: 35951680 DOI: 10.1126/science.abn1593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Hybridization between diverging lineages is associated with the generation and loss of species diversity, introgression, adaptation, and changes in reproductive mode, but it is unknown when and why it results in these divergent outcomes. We estimate a comprehensive evolutionary network for the largest group of unisexual vertebrates and use it to understand the evolutionary outcomes of hybridization. Our results show that rates of introgression between species decrease with time since divergence and suggest that species must attain a threshold of evolutionary divergence before hybridization results in transitions to unisexuality. Rates of hybridization also predict genome-wide patterns of genetic diversity in whiptail lizards. These results distinguish among models for hybridization that have not previously been tested and suggest that the evolutionary outcomes can be predictable.
Collapse
Affiliation(s)
- Anthony J Barley
- Department of Evolution and Ecology, University of California, Davis, Davis, CA 95616, USA.,School of Life Sciences, University of Hawai'i, Honolulu, HI 96822, USA
| | - Adrián Nieto-Montes de Oca
- Laboratorio de Herpetología and Museo de Zoología Alfonso L. Herrera, Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, Alcadía Coyoacán, Ciudad de México, México
| | - Norma L Manríquez-Morán
- Laboratorio de Sistemática Molecular, Centro de Investigaciones Biológicas, Universidad Autónoma del Estado de Hidalgo, Colonia Carboneras, Mineral de la Reforma, Hidalgo, México
| | - Robert C Thomson
- School of Life Sciences, University of Hawai'i, Honolulu, HI 96822, USA
| |
Collapse
|
28
|
Lewanski AL, Golcher-Benavides J, Rick JA, Wagner CE. Variable hybridization between two Lake Tanganyikan cichlid species in recent secondary contact. Mol Ecol 2022; 31:5041-5059. [PMID: 35913373 DOI: 10.1111/mec.16636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 12/01/2022]
Abstract
Closely related taxa frequently exist in sympatry before the evolution of robust reproductive barriers, which can lead to substantial gene flow. Post-divergence gene flow can promote several disparate trajectories of divergence ranging from the erosion of distinctiveness and eventual collapse of the taxa to the strengthening of reproductive isolation. Among many relevant factors, understanding the demographic history of divergence (e.g. divergence time, extent of historical gene flow) can be particularly informative when examining contemporary gene flow between closely related taxa because this history can influence gene flow's prevalence and consequences. Here, we used genotyping-by-sequencing data to investigate speciation and contemporary hybridization in two closely related and sympatrically distributed Lake Tanganyikan cichlid species in the genus Petrochromis. Demographic modeling supported a speciation scenario involving divergence in isolation followed by secondary contact with bidirectional gene flow. Further investigation of this recent gene flow found evidence of ongoing hybridization between the species that varied in extent between different co-occurring populations. Relationships between abundance and the degree of admixture across populations suggest that the availability of conspecific mates may influence patterns of hybridization. These results, together with the observation that sets of recently diverged cichlid taxa are generally geographically separated in the lake, suggest that ongoing speciation in Lake Tanganyikan cichlids relies on initial spatial isolation. Additionally, the spatially heterogeneous patterns of admixture between the Petrochromis species illustrates the complexities of hybridization when species are in recent secondary contact.
Collapse
Affiliation(s)
| | - Jimena Golcher-Benavides
- Department of Botany, University of Wyoming, Laramie, WY, USA.,Program in Ecology, University of Wyoming, Laramie, WY, USA
| | - Jessica A Rick
- Department of Botany, University of Wyoming, Laramie, WY, USA.,Program in Ecology, University of Wyoming, Laramie, WY, USA
| | - Catherine E Wagner
- Department of Botany, University of Wyoming, Laramie, WY, USA.,Program in Ecology, University of Wyoming, Laramie, WY, USA.,Biodiversity Institute, University of Wyoming, Laramie, WY, USA
| |
Collapse
|
29
|
Linnen CR, Brandvain Y, Unckless RL. Theme: Recent work in speciation research by women authors. Evolution 2022; 76:1100-1103. [PMID: 35122428 DOI: 10.1111/evo.14444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/27/2021] [Accepted: 01/10/2022] [Indexed: 01/21/2023]
Affiliation(s)
| | - Yaniv Brandvain
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, Minnesota
| | - Robert L Unckless
- Department of Molecular Biosciences and Center for Genomics, University of Kansas, Lawrence, Kansas
| |
Collapse
|
30
|
Hagberg L, Celemín E, Irisarri I, Hawlitschek O, Bella JL, Mott T, Pereira RJ. Extensive introgression at late stages of species formation: Insights from grasshopper hybrid zones. Mol Ecol 2022; 31:2384-2399. [PMID: 35191134 DOI: 10.1111/mec.16406] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/02/2022] [Accepted: 02/14/2022] [Indexed: 11/30/2022]
Abstract
The process of species formation is characterised by the accumulation of multiple reproductive barriers. The evolution of hybrid male sterility, or Haldane's rule, typically characterises later stages of species formation, when reproductive isolation is strongest. Yet, understanding how quickly reproductive barriers evolve and their consequences for maintaining genetic boundaries between emerging species remains a challenging task because it requires studying taxa that hybridise in nature. Here, we address these questions using the meadow grasshopper Pseudochorthippus parallelus, where populations that show multiple reproductive barriers, including hybrid male sterility, hybridise in two natural hybrid zones. Using mitochondrial data, we infer that such populations have diverged some 100,000 years ago, at the beginning of the last glacial cycle in Europe. Nuclear data shows that contractions at multiple glacial refugia, and post-glacial expansions have facilitated genetic differentiation between lineages that today interact in hybrid zones. We find extensive introgression throughout the sampled species range, irrespective of current strength of reproductive isolation. Populations exhibiting hybrid male sterility in two hybrid zones show repeatable patterns of genomic differentiation, consistent with shared genomic constraints affecting ancestral divergence or with the role of those regions in reproductive isolation. Together, our results suggest that reproductive barriers that characterise late stages of species formation can evolve relatively quickly, particularly when associated with strong demographic changes. Moreover, we show that such barriers persist in the face of extensive gene flow, allowing future studies to identify associated genomic regions.
Collapse
Affiliation(s)
- Linda Hagberg
- Division of Evolutionary Biology, Faculty of Biology II, Ludwig-Maximilians-Universität München, Grosshaderner Strasse 2, 82152, Planegg-Martinsried, Germany
| | - Enrique Celemín
- Division of Evolutionary Biology, Faculty of Biology II, Ludwig-Maximilians-Universität München, Grosshaderner Strasse 2, 82152, Planegg-Martinsried, Germany.,Unit of Evolutionary Biology/Systematic Zoology, Institute of Biochemistry and Biology, Universität Potsdam, Karl-Liebknecht-Strasse 24-25, 14476, Potsdam, Germany
| | - Iker Irisarri
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077, Göttingen, Germany.,Campus Institute Data Science (CIDAS), Göttingen, Germany
| | - Oliver Hawlitschek
- Leibniz Institute for the Analysis of Biodiversity Change, Zoological Museum, Martin-Luther-King-Platz 3, 20146, Hamburg, Germany.,Zoologische Staatssammlung (SNSB-ZSM), Münchhausenstr. 21, 81247, Munich, Germany
| | - José L Bella
- Departamento de Biología (Genética), Facultad de Ciencias, Universidad Autónoma de Madrid, 28049, Madrid, Spain.,Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Tamí Mott
- Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, 57072-900, Maceió, Alagoas, Brazil
| | - Ricardo J Pereira
- Division of Evolutionary Biology, Faculty of Biology II, Ludwig-Maximilians-Universität München, Grosshaderner Strasse 2, 82152, Planegg-Martinsried, Germany
| |
Collapse
|
31
|
Postel Z, Poux C, Gallina S, Varré JS, Godé C, Schmitt E, Meyer E, Van Rossum F, Touzet P. Reproductive isolation among lineages of Silene nutans (Caryophyllaceae): A potential involvement of plastid-nuclear incompatibilities. Mol Phylogenet Evol 2022; 169:107436. [DOI: 10.1016/j.ympev.2022.107436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 01/28/2022] [Accepted: 02/02/2022] [Indexed: 11/26/2022]
|
32
|
Pyron RA, O’Connell KA, Lemmon EM, Lemmon AR, Beamer DA. Candidate-species delimitation in Desmognathus salamanders reveals gene flow across lineage boundaries, confounding phylogenetic estimation and clarifying hybrid zones. Ecol Evol 2022; 12:e8574. [PMID: 35222955 PMCID: PMC8848459 DOI: 10.1002/ece3.8574] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 12/19/2022] Open
Abstract
Dusky Salamanders (genus Desmognathus) currently comprise only 22 described, extant species. However, recent mitochondrial and nuclear estimates indicate the presence of up to 49 candidate species based on ecogeographic sampling. Previous studies also suggest a complex history of hybridization between these lineages. Studies in other groups suggest that disregarding admixture may affect both phylogenetic inference and clustering-based species delimitation. With a dataset comprising 233 Anchored Hybrid Enrichment (AHE) loci sequenced for 896 Desmognathus specimens from all 49 candidate species, we test three hypotheses regarding (i) species-level diversity, (ii) hybridization and admixture, and (iii) misleading phylogenetic inference. Using phylogenetic and population-clustering analyses considering gene flow, we find support for at least 47 candidate species in the phylogenomic dataset, some of which are newly characterized here while others represent combinations of previously named lineages that are collapsed in the current dataset. Within these, we observe significant phylogeographic structure, with up to 64 total geographic genetic lineages, many of which hybridize either narrowly at contact zones or extensively across ecological gradients. We find strong support for both recent admixture between terminal lineages and ancient hybridization across internal branches. This signal appears to distort concatenated phylogenetic inference, wherein more heavily admixed terminal specimens occupy apparently artifactual early-diverging topological positions, occasionally to the extent of forming false clades of intermediate hybrids. Additional geographic and genetic sampling and more robust computational approaches will be needed to clarify taxonomy, and to reconstruct a network topology to display evolutionary relationships in a manner that is consistent with their complex history of reticulation.
Collapse
Affiliation(s)
- Robert Alexander Pyron
- Department of Biological SciencesThe George Washington UniversityWashingtonDistrict of ColumbiaUSA
- Division of Amphibians and ReptilesDepartment of Vertebrate ZoologyNational Museum of Natural History Smithsonian InstitutionWashingtonDistrict of ColumbiaUSA
| | - Kyle A. O’Connell
- Department of Biological SciencesThe George Washington UniversityWashingtonDistrict of ColumbiaUSA
- Division of Amphibians and ReptilesDepartment of Vertebrate ZoologyNational Museum of Natural History Smithsonian InstitutionWashingtonDistrict of ColumbiaUSA
- Global Genome InitiativeNational Museum of Natural History Smithsonian InstitutionWashingtonDistrict of ColumbiaUSA
- Biomedical Data Science LabDeloitte Consulting LLPArlingtonVirginiaUSA
| | | | - Alan R. Lemmon
- Department of Scientific ComputingFlorida State UniversityTallahasseeFloridaUSA
| | - David A. Beamer
- Department of Natural SciencesNash Community CollegeRocky MountNorth CarolinaUSA
| |
Collapse
|
33
|
Singhal S, Colli GR, Grundler MR, Costa GC, Prates I, Rabosky DL. No link between population isolation and speciation rate in squamate reptiles. Proc Natl Acad Sci U S A 2022; 119:e2113388119. [PMID: 35058358 PMCID: PMC8795558 DOI: 10.1073/pnas.2113388119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 11/19/2021] [Indexed: 11/26/2022] Open
Abstract
Rates of species formation vary widely across the tree of life and contribute to massive disparities in species richness among clades. This variation can emerge from differences in metapopulation-level processes that affect the rates at which lineages diverge, persist, and evolve reproductive barriers and ecological differentiation. For example, populations that evolve reproductive barriers quickly should form new species at faster rates than populations that acquire reproductive barriers more slowly. This expectation implicitly links microevolutionary processes (the evolution of populations) and macroevolutionary patterns (the profound disparity in speciation rate across taxa). Here, leveraging extensive field sampling from the Neotropical Cerrado biome in a biogeographically controlled natural experiment, we test the role of an important microevolutionary process-the propensity for population isolation-as a control on speciation rate in lizards and snakes. By quantifying population genomic structure across a set of codistributed taxa with extensive and phylogenetically independent variation in speciation rate, we show that broad-scale patterns of species formation are decoupled from demographic and genetic processes that promote the formation of population isolates. Population isolation is likely a critical stage of speciation for many taxa, but our results suggest that interspecific variability in the propensity for isolation has little influence on speciation rates. These results suggest that other stages of speciation-including the rate at which reproductive barriers evolve and the extent to which newly formed populations persist-are likely to play a larger role than population isolation in controlling speciation rate variation in squamates.
Collapse
Affiliation(s)
- Sonal Singhal
- Department of Biology, California State University, Dominguez Hills, Carson, CA 90747;
| | - Guarino R Colli
- Departamento de Zoologia, Universidade de Brasília, Brasília, Distrito Federal 70910-900, Brazil
| | - Maggie R Grundler
- Department of Environmental Science, Policy, & Management, University of California, Berkeley, CA 94720
- Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720
| | - Gabriel C Costa
- Department of Biology and Environmental Sciences, Auburn University at Montgomery, Montgomery, AL 36117
| | - Ivan Prates
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109
- Museum of Zoology, University of Michigan, Ann Arbor, MI 48109
| | - Daniel L Rabosky
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109;
- Museum of Zoology, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
34
|
Freeman BG, Rolland J, Montgomery GA, Schluter D. Faster evolution of a premating reproductive barrier is not associated with faster speciation rates in New World passerine birds. Proc Biol Sci 2022; 289:20211514. [PMID: 34982949 PMCID: PMC8727149 DOI: 10.1098/rspb.2021.1514] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 12/07/2021] [Indexed: 01/14/2023] Open
Abstract
Why are speciation rates so variable across the tree of life? One hypothesis is that this variation is explained by how rapidly reproductive barriers evolve. We tested this hypothesis by conducting a comparative study of the evolution of bird song, a premating barrier to reproduction. Speciation in birds is typically initiated when geographically isolated (allopatric) populations evolve reproductive barriers. We measured the strength of song as a premating barrier between closely related allopatric populations by conducting 2339 field experiments to measure song discrimination for 175 taxon pairs of allopatric or parapatric New World passerine birds, and estimated recent speciation rates from molecular phylogenies. We found evidence that song discrimination is indeed an important reproductive barrier: taxon pairs with high song discrimination in allopatry did not regularly interbreed in parapatry. However, evolutionary rates of song discrimination were not associated with recent speciation rates. Evolutionary rates of song discrimination were also unrelated to latitude or elevation, but species with innate song (suboscines) evolved song discrimination much faster than species with learned song (oscines). We conclude that song is a key premating reproductive barrier in birds, but faster evolution of this reproductive barrier between populations does not consistently result in faster diversification between species.
Collapse
Affiliation(s)
- Benjamin G. Freeman
- Biodiversity Research Centre, University of British Columbia, Vancouver, Canada V6T1Z4
- Department of Zoology, University of British Columbia, Vancouver, Canada V6T1Z4
| | - Jonathan Rolland
- Biodiversity Research Centre, University of British Columbia, Vancouver, Canada V6T1Z4
- Department of Zoology, University of British Columbia, Vancouver, Canada V6T1Z4
- CNRS, UMR5174, Laboratoire Evolution et Diversité Biologique, Université Toulouse 3 Paul Sabatier, Bâtiment 4R1, 118 Route de Narbonne, Toulouse 31062, France
| | - Graham A. Montgomery
- Department of Ecology and Evolutionary Biology, UCLA, Los Angeles, CA 90095, USA
| | - Dolph Schluter
- Biodiversity Research Centre, University of British Columbia, Vancouver, Canada V6T1Z4
- Department of Zoology, University of British Columbia, Vancouver, Canada V6T1Z4
| |
Collapse
|
35
|
Chhina AK, Thompson KA, Schluter D. Adaptive divergence and the evolution of hybrid trait mismatch in threespine stickleback. Evol Lett 2022; 6:34-45. [PMID: 35127136 PMCID: PMC8802241 DOI: 10.1002/evl3.264] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 10/31/2021] [Indexed: 12/31/2022] Open
Abstract
Selection against mismatched traits in hybrids is the phenotypic analogue of intrinsic hybrid incompatibilities. Mismatch occurs when hybrids resemble one parent population for some phenotypic traits and the other parent population for other traits, and is caused by dominance in opposing directions or from segregation of alleles in recombinant hybrids. In this study, we used threespine stickleback fish (Gasterosteus aculeatus L.) to test the theoretical prediction that trait mismatch in hybrids should increase with the magnitude of phenotypic divergence between parent populations. We measured morphological traits in parents and hybrids in crosses between a marine population representing the ancestral form and twelve freshwater populations that have diverged from this ancestral state to varying degrees according to their environments. We found that trait mismatch was greater in more divergent crosses for both F1 and F2 hybrids. In the F1, the divergence–mismatch relationship was caused by traits having dominance in different directions, whereas it was caused by increasing segregating phenotypic variation in the F2. Our results imply that extrinsic hybrid incompatibilities accumulate as phenotypic divergence proceeds.
Collapse
Affiliation(s)
- Avneet K. Chhina
- Department of Zoology & Biodiversity Research Centre University of British Columbia Vancouver BC V6T 1Z4 Canada
| | - Ken A. Thompson
- Department of Zoology & Biodiversity Research Centre University of British Columbia Vancouver BC V6T 1Z4 Canada
| | - Dolph Schluter
- Department of Zoology & Biodiversity Research Centre University of British Columbia Vancouver BC V6T 1Z4 Canada
| |
Collapse
|
36
|
Stöck M, Dedukh D, Reifová R, Lamatsch DK, Starostová Z, Janko K. Sex chromosomes in meiotic, hemiclonal, clonal and polyploid hybrid vertebrates: along the 'extended speciation continuum'. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200103. [PMID: 34304588 PMCID: PMC8310718 DOI: 10.1098/rstb.2020.0103] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2021] [Indexed: 12/15/2022] Open
Abstract
We review knowledge about the roles of sex chromosomes in vertebrate hybridization and speciation, exploring a gradient of divergences with increasing reproductive isolation (speciation continuum). Under early divergence, well-differentiated sex chromosomes in meiotic hybrids may cause Haldane-effects and introgress less easily than autosomes. Undifferentiated sex chromosomes are more susceptible to introgression and form multiple (or new) sex chromosome systems with hardly predictable dominance hierarchies. Under increased divergence, most vertebrates reach complete intrinsic reproductive isolation. Slightly earlier, some hybrids (linked in 'the extended speciation continuum') exhibit aberrant gametogenesis, leading towards female clonality. This facilitates the evolution of various allodiploid and allopolyploid clonal ('asexual') hybrid vertebrates, where 'asexuality' might be a form of intrinsic reproductive isolation. A comprehensive list of 'asexual' hybrid vertebrates shows that they all evolved from parents with divergences that were greater than at the intraspecific level (K2P-distances of greater than 5-22% based on mtDNA). These 'asexual' taxa inherited genetic sex determination by mostly undifferentiated sex chromosomes. Among the few known sex-determining systems in hybrid 'asexuals', female heterogamety (ZW) occurred about twice as often as male heterogamety (XY). We hypothesize that pre-/meiotic aberrations in all-female ZW-hybrids present Haldane-effects promoting their evolution. Understanding the preconditions to produce various clonal or meiotic allopolyploids appears crucial for insights into the evolution of sex, 'asexuality' and polyploidy. This article is part of the theme issue 'Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part II)'.
Collapse
Affiliation(s)
- Matthias Stöck
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries - IGB (Forschungsverbund Berlin), Müggelseedamm 301, 12587 Berlin, Germany
- Amphibian Research Center, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Dmitrij Dedukh
- Institute of Animal Physiology and Genetics, Laboratory of Fish Genetics, The Czech Academy of Sciences, 277 21 Libechov, Czech Republic
| | - Radka Reifová
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, Prague 2, 128 00, Czech Republic
| | - Dunja K. Lamatsch
- Research Department for Limnology, University of Innsbruck, Mondseestrasse 9, A-5310 Mondsee, Austria
| | - Zuzana Starostová
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, Prague 2, 128 00, Czech Republic
| | - Karel Janko
- Institute of Animal Physiology and Genetics, Laboratory of Fish Genetics, The Czech Academy of Sciences, 277 21 Libechov, Czech Republic
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, 701 03 Ostrava, Czech Republic
| |
Collapse
|
37
|
Wheeler TB, Thompson V, Conner WR, Cooper BS. Wolbachia in the spittlebug Prosapia ignipectus: Variable infection frequencies, but no apparent effect on host reproductive isolation. Ecol Evol 2021; 11:10054-10065. [PMID: 34367558 PMCID: PMC8328426 DOI: 10.1002/ece3.7782] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/31/2021] [Accepted: 04/20/2021] [Indexed: 02/03/2023] Open
Abstract
Animals serve as hosts for complex communities of microorganisms, including endosymbionts that live inside their cells. Wolbachia bacteria are perhaps the most common endosymbionts, manipulating host reproduction to propagate. Many Wolbachia cause cytoplasmic incompatibility (CI), which results in reduced egg hatch when uninfected females mate with infected males. Wolbachia that cause intense CI spread to high and relatively stable frequencies, while strains that cause weak or no CI tend to persist at intermediate, often variable, frequencies. Wolbachia could also contribute to host reproductive isolation (RI), although current support for such contributions is limited to a few systems. To test for Wolbachia frequency variation and effects on host RI, we sampled several local Prosapia ignipectus (Fitch) (Hemiptera: Cercopidae) spittlebug populations in the northeastern United States over two years, including closely juxtaposed Maine populations with different monomorphic color forms, "black" and "lined." We discovered a group-B Wolbachia (wPig) infecting P. ignipectus that diverged from group-A Wolbachia-like model wMel and wRi strains in Drosophila-6 to 46 MYA. Populations of the sister species Prosapia bicincta (Say) from Hawaii and Florida are uninfected, suggesting that P. ignipectus acquired wPig after their initial divergence. wPig frequencies were generally high and variable among sites and between years. While phenotyping wPig effects on host reproduction is not currently feasible, the wPig genome contains three divergent sets of CI loci, consistent with high wPig frequencies. Finally, Maine monomorphic black and monomorphic lined populations of P. ignipectus share both wPig and mtDNA haplotypes, implying no apparent effect of wPig on the maintenance of this morphological contact zone. We hypothesize P. ignipectus acquired wPig horizontally as observed for many Drosophila species, and that significant CI and variable transmission produce high but variable wPig frequencies.
Collapse
Affiliation(s)
| | - Vinton Thompson
- Division of Invertebrate ZoologyAmerican Museum of Natural HistoryNew YorkNYUSA
| | | | | |
Collapse
|
38
|
Hancock ZB, Lehmberg ES, Bradburd GS. Neo-darwinism still haunts evolutionary theory: A modern perspective on Charlesworth, Lande, and Slatkin (1982). Evolution 2021; 75:1244-1255. [PMID: 33999415 PMCID: PMC8979413 DOI: 10.1111/evo.14268] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/14/2021] [Accepted: 05/14/2021] [Indexed: 12/31/2022]
Abstract
The Modern Synthesis (or "Neo-Darwinism"), which arose out of the reconciliation of Darwin's theory of natural selection and Mendel's research on genetics, remains the foundation of evolutionary theory. However, since its inception, it has been a lightning rod for criticism, which has ranged from minor quibbles to complete dismissal. Among the most famous of the critics was Stephen Jay Gould, who, in 1980, proclaimed that the Modern Synthesis was "effectively dead." Gould and others claimed that the action of natural selection on random mutations was insufficient on its own to explain patterns of macroevolutionary diversity and divergence, and that new processes were required to explain findings from the fossil record. In 1982, Charlesworth, Lande, and Slatkin published a response to this critique in Evolution, in which they argued that Neo-Darwinism was indeed sufficient to explain macroevolutionary patterns. In this Perspective for the 75th Anniversary of the Society for the Study of Evolution, we review Charlesworth et al. in its historical context and provide modern support for their arguments. We emphasize the importance of microevolutionary processes in the study of macroevolutionary patterns. Ultimately, we conclude that punctuated equilibrium did not represent a major revolution in evolutionary biology - although debate on this point stimulated significant research and furthered the field - and that Neo-Darwinism is alive and well.
Collapse
Affiliation(s)
- Zachary B. Hancock
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, Michigan
- Department of Integrative Biology, Michigan State University, East Lansing, Michigan
| | - Emma S. Lehmberg
- Department of Biology, Texas A&M University, College Station, Texas
- Ecology and Evolutionary Biology Interdisciplinary Program, Texas A&M University, College Station, Texas
| | - Gideon S. Bradburd
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, Michigan
- Department of Integrative Biology, Michigan State University, East Lansing, Michigan
| |
Collapse
|
39
|
Stankowski S, Ravinet M. Defining the speciation continuum. Evolution 2021; 75:1256-1273. [PMID: 33754340 DOI: 10.1111/evo.14215] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 03/01/2021] [Accepted: 03/13/2021] [Indexed: 02/06/2023]
Abstract
A primary roadblock to our understanding of speciation is that it usually occurs over a timeframe that is too long to study from start to finish. The idea of a speciation continuum provides something of a solution to this problem; rather than observing the entire process, we can simply reconstruct it from the multitude of speciation events that surround us. But what do we really mean when we talk about the speciation continuum, and can it really help us understand speciation? We explored these questions using a literature review and online survey of speciation researchers. Although most researchers were familiar with the concept and thought it was useful, our survey revealed extensive disagreement about what the speciation continuum actually tells us. This is due partly to the lack of a clear definition. Here, we provide an explicit definition that is compatible with the Biological Species Concept. That is, the speciation continuum is a continuum of reproductive isolation. After outlining the logic of the definition in light of alternatives, we explain why attempts to reconstruct the speciation process from present-day populations will ultimately fail. We then outline how we think the speciation continuum concept can continue to act as a foundation for understanding the continuum of reproductive isolation that surrounds us.
Collapse
Affiliation(s)
- Sean Stankowski
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, United Kingdom.,Current Address: Sean Stankowski, IST Austria, Klosterneuburg, 3400, Austria
| | - Mark Ravinet
- Centre for Ecological and Evolutionary Synthesis, University of Oslo, Oslo, 0316, Norway.,School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| |
Collapse
|