1
|
Liu Y, Dietrich CH, Wei C. The impact of geographic isolation and host shifts on population divergence of the rare cicada Subpsaltria yangi. Mol Phylogenet Evol 2024; 199:108146. [PMID: 38986756 DOI: 10.1016/j.ympev.2024.108146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 07/01/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
The contributions of divergent selection and spatial isolation to population divergence are among the main focuses of evolutionary biology. Here we employed integrated methods to explore genomic divergence, demographic history and calling-song differentiation in the cicada Subpsaltria yangi, and compared the genotype and calling-song phenotype of different populations occurring in distinct habitats. Our results indicate that this species comprises four main lineages with unique sets of haplotypes and calling-song structure, which are distinctly associated with geographic isolation and habitats. The populations occurring on the Loess Plateau underwent substantial expansion at ∼0.130-0.115 Ma during the Last Interglacial. Geographic distance and host shift between pairs of populations predict genomic divergence, with geographic distance and acoustical signal together explaining > 60% of the divergence among populations. Differences in calling songs could reflect adaptation of populations to novel environments with different host plants, habitats and predators, which may have resulted from neutral divergence at the molecular level followed by natural selection. Geomorphic barriers and climate oscillations associated with Pleistocene glaciation may have been primary factors in shaping the population genetic structure of this species. Ultimately this may couple with a host shift in leading toward allopatric speciation in S. yangi, i.e., isolation by distance. Our findings improve understanding of divergence in allopatry of herbivorous insects, and may inform future studies on the molecular mechanisms underlying the association between genetic/phenotypic changes and adaptation of insects to novel niches and host plants.
Collapse
Affiliation(s)
- Yunxiang Liu
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwest Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China; State Key Laboratory of Plateau Ecology and Agriculture, Academy of Agricultural and Forestry Sciences, Qinghai University, Xining 810016, Qinghai, China
| | - Christopher H Dietrich
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois, Champaign, IL 61820, USA
| | - Cong Wei
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwest Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
2
|
Dopman EB, Shaw KL, Servedio MR, Butlin RK, Smadja CM. Coupling of Barriers to Gene Exchange: Causes and Consequences. Cold Spring Harb Perspect Biol 2024; 16:a041432. [PMID: 38191516 PMCID: PMC11293547 DOI: 10.1101/cshperspect.a041432] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Coupling has emerged as a concept to describe the transition from differentiated populations to newly evolved species through the strengthening of reproductive isolation. However, the term has been used in multiple ways, and relevant processes have sometimes not been clearly distinguished. Here, we synthesize existing uses of the concept of coupling and find three main perspectives: (1) coupling as the build-up of linkage disequilibrium among loci underlying barriers to gene exchange, (2) coupling as the build-up of genome-wide linkage disequilibrium, and (3) coupling as the process generating a coincidence of distinct barrier effects. We compare and contrast these views, show the diverse processes involved and the complexity of the relationships among recombination, linkage disequilibrium, and reproductive isolation, and, finally, we emphasize how each perspective can guide new directions in speciation research. Although the importance of coupling for evolutionary divergence and speciation is well established, many theoretical and empirical questions remain unanswered.
Collapse
Affiliation(s)
- Erik B Dopman
- Department of Biology, Tufts University, Medford, Massachusetts 02155, USA
| | - Kerry L Shaw
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York 14853, USA
| | - Maria R Servedio
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Roger K Butlin
- Ecology and Evolutionary Biology, School of Biosciences, The University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom
- Department of Marine Sciences, University of Gothenburg, Gothenburg 40530, Sweden
| | - Carole M Smadja
- Institut des Sciences de l'Evolution de Montpellier ISEM, Universite de Montpellier, CNRS, IRD, Montpellier 34095, France
| |
Collapse
|
3
|
Conner LM, Goedert D, Fitzpatrick SW, Fearnley A, Gallagher EL, Peterman JD, Forgione ME, Kokosinska S, Hamilton M, Masala LA, Merola N, Rico H, Samma E, Brady SP. Population origin and heritable effects mediate road salt toxicity and thermal stress in an amphibian. CHEMOSPHERE 2024; 357:141978. [PMID: 38608774 DOI: 10.1016/j.chemosphere.2024.141978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 03/13/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
Human impacts on wild populations are numerous and extensive, degrading habitats and causing population declines across taxa. Though these impacts are often studied individually, wild populations typically face suites of stressors acting concomitantly, compromising the fitness of individuals and populations in ways poorly understood and not easily predicted by the effects of any single stressor. Developing understanding of the effects of multiple stressors and their potential interactions remains a critical challenge in environmental biology. Here, we focus on assessing the impacts of two prominent stressors associated with anthropogenic activities that affect many organisms across the planet - elevated salinity (e.g., from road de-icing salt) and temperature (e.g. from climate change). We examined a suite of physiological traits and components of fitness across populations of wood frogs originating from ponds that differ in their proximity to roads and thus their legacy of exposure to pollution from road salt. When experimentally exposed to road salt, wood frogs showed reduced survival (especially those from ponds adjacent to roads), divergent developmental rates, and reduced longevity. Family-level effects mediated these outcomes, but high salinity generally eroded family-level variance. When combined, exposure to both temperature and salt resulted in very low survival, and this effect was strongest in roadside populations. Taken together, these results suggest that temperature is an important stressor capable of exacerbating impacts from a prominent contaminant confronting many freshwater organisms in salinized habitats. More broadly, it appears likely that toxicity might often be underestimated in the absence of multi-stressor approaches.
Collapse
Affiliation(s)
- Lauren M Conner
- Southern Connecticut State University, Biology Department, New Haven, CT, USA
| | - Debora Goedert
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, NO-7491, Trondheim, Norway
| | - Sarah W Fitzpatrick
- W.K. Kellogg Biological Station, Michigan State University, Hickory Corners, MI, USA; Department of Integrative Biology, Michigan State University, East Lansing, MI, USA; Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI, USA
| | - Amber Fearnley
- Southern Connecticut State University, Biology Department, New Haven, CT, USA
| | - Emma L Gallagher
- Southern Connecticut State University, Biology Department, New Haven, CT, USA
| | - Jessica D Peterman
- Southern Connecticut State University, Biology Department, New Haven, CT, USA
| | - Mia E Forgione
- Southern Connecticut State University, Biology Department, New Haven, CT, USA
| | - Sophia Kokosinska
- Southern Connecticut State University, Biology Department, New Haven, CT, USA
| | - Malik Hamilton
- Southern Connecticut State University, Biology Department, New Haven, CT, USA
| | - Lydia A Masala
- Southern Connecticut State University, Biology Department, New Haven, CT, USA
| | - Neil Merola
- Southern Connecticut State University, Biology Department, New Haven, CT, USA
| | - Hennesy Rico
- Southern Connecticut State University, Biology Department, New Haven, CT, USA
| | - Eman Samma
- Southern Connecticut State University, Biology Department, New Haven, CT, USA
| | - Steven P Brady
- Southern Connecticut State University, Biology Department, New Haven, CT, USA.
| |
Collapse
|
4
|
Portnoy DS, O'Leary SJ, Fields AT, Hollenbeck CM, Grubbs RD, Peterson CT, Gardiner JM, Adams DH, Falterman B, Drymon JM, Higgs JM, Pulster EL, Wiley TR, Murawski SA. Complex patterns of genetic population structure in the mouthbrooding marine catfish, Bagre marinus, in the Gulf of Mexico and U.S. Atlantic. Ecol Evol 2024; 14:e11514. [PMID: 38859886 PMCID: PMC11163162 DOI: 10.1002/ece3.11514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 06/12/2024] Open
Abstract
Patterns of genetic variation reflect interactions among microevolutionary forces that vary in strength with changing demography. Here, patterns of variation within and among samples of the mouthbrooding gafftopsail catfish (Bagre marinus, Family Ariidae) captured in the U.S. Atlantic and throughout the Gulf of Mexico were analyzed using genomics to generate neutral and non-neutral SNP data sets. Because genomic resources are lacking for ariids, linkage disequilibrium network analysis was used to examine patterns of putatively adaptive variation. Finally, historical demographic parameters were estimated from site frequency spectra. The results show four differentiated groups, corresponding to the (1) U.S. Atlantic, and the (2) northeastern, (3) northwestern, and (4) southern Gulf of Mexico. The non-neutral data presented two contrasting signals of structure, one due to increases in diversity moving west to east and north to south, and another to increased heterozygosity in the Atlantic. Demographic analysis suggested that recently reduced long-term effective population size in the Atlantic is likely an important driver of patterns of genetic variation and is consistent with a known reduction in population size potentially due to an epizootic. Overall, patterns of genetic variation resemble that of other fishes that use the same estuarine habitats as nurseries, regardless of the presence/absence of a larval phase, supporting the idea that adult/juvenile behavior and habitat are important predictors of contemporary patterns of genetic structure.
Collapse
Affiliation(s)
- David S. Portnoy
- Marine Genomics Laboratory, Department of Life SciencesTexas A&M University – Corpus ChristiCorpus ChristiTexasUSA
| | - Shannon J. O'Leary
- Department of Biological SciencesSaint Anselm CollegeManchesterNew HampshireUSA
| | - Andrew T. Fields
- Marine Genomics Laboratory, Department of Life SciencesTexas A&M University – Corpus ChristiCorpus ChristiTexasUSA
| | - Christopher M. Hollenbeck
- Marine Genomics Laboratory, Department of Life SciencesTexas A&M University – Corpus ChristiCorpus ChristiTexasUSA
| | - R. Dean Grubbs
- Florida State University Coastal and Marine LaboratorySt. TeresaFloridaUSA
| | | | | | - Douglas H. Adams
- Florida Fish and Wildlife Conservation CommissionFish and Wildlife Research Institute, Indian River Field LabMelbourneFloridaUSA
| | | | - J. Marcus Drymon
- Mississippi State University Coastal Research and Extension CenterBiloxiMississippiUSA
- Mississippi‐Alabama Sea Grant ConsortiumOcean SpringsMississippiUSA
| | - Jeremy M. Higgs
- Center for Fisheries Research and DevelopmentThe University of Southern MississippiOcean SpringsMississippiUSA
| | - Erin L. Pulster
- U.S. Geological Survey, Columbia Environmental Research CenterColumbiaMissouriUSA
- College of Marine ScienceUniversity of South FloridaSt. PetersburgFloridaUSA
| | | | - Steven A. Murawski
- College of Marine ScienceUniversity of South FloridaSt. PetersburgFloridaUSA
| |
Collapse
|
5
|
Sun BJ, Li WM, Lv P, Wen GN, Wu DY, Tao SA, Liao ML, Yu CQ, Jiang ZW, Wang Y, Xie HX, Wang XF, Chen ZQ, Liu F, Du WG. Genetically Encoded Lizard Color Divergence for Camouflage and Thermoregulation. Mol Biol Evol 2024; 41:msae009. [PMID: 38243850 PMCID: PMC10835340 DOI: 10.1093/molbev/msae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 01/03/2024] [Accepted: 01/08/2024] [Indexed: 01/22/2024] Open
Abstract
Local adaptation is critical in speciation and evolution, yet comprehensive studies on proximate and ultimate causes of local adaptation are generally scarce. Here, we integrated field ecological experiments, genome sequencing, and genetic verification to demonstrate both driving forces and molecular mechanisms governing local adaptation of body coloration in a lizard from the Qinghai-Tibet Plateau. We found dark lizards from the cold meadow population had lower spectrum reflectance but higher melanin contents than light counterparts from the warm dune population. Additionally, the colorations of both dark and light lizards facilitated the camouflage and thermoregulation in their respective microhabitat simultaneously. More importantly, by genome resequencing analysis, we detected a novel mutation in Tyrp1 that underpinned this color adaptation. The allele frequencies at the site of SNP 459# in the gene of Tyrp1 are 22.22% G/C and 77.78% C/C in dark lizards and 100% G/G in light lizards. Model-predicted structure and catalytic activity showed that this mutation increased structure flexibility and catalytic activity in enzyme TYRP1, and thereby facilitated the generation of eumelanin in dark lizards. The function of the mutation in Tyrp1 was further verified by more melanin contents and darker coloration detected in the zebrafish injected with the genotype of Tyrp1 from dark lizards. Therefore, our study demonstrates that a novel mutation of a major melanin-generating gene underpins skin color variation co-selected by camouflage and thermoregulation in a lizard. The resulting strong selection may reinforce adaptive genetic divergence and enable the persistence of adjacent populations with distinct body coloration.
Collapse
Affiliation(s)
- Bao-Jun Sun
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wei-Ming Li
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Peng Lv
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guan-Nan Wen
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Dan-Yang Wu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shi-Ang Tao
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ming-Ling Liao
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao 266003, China
| | - Chang-Qing Yu
- Ecology Laboratory, Beijing Ecotech Science and Technology Ltd, Beijing 100190, China
| | - Zhong-Wen Jiang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yang Wang
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Hong-Xin Xie
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xi-Feng Wang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | | | - Feng Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wei-Guo Du
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
6
|
Anderson SAS, López-Fernández H, Weir JT. Ecology and the origin of non-ephemeral species. Am Nat 2022; 201:619-638. [PMID: 37130236 DOI: 10.1086/723763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AbstractResearch over the past three decades has shown that ecology-based extrinsic reproductive barriers can rapidly arise to generate incipient species-but such barriers can also rapidly dissolve when environments change, resulting in incipient species collapse. Understanding the evolution of unconditional, "intrinsic" reproductive barriers is therefore important for understanding the longer-term buildup of biodiversity. In this article, we consider ecology's role in the evolution of intrinsic reproductive isolation. We suggest that this topic has fallen into a gap between disciplines: while evolutionary ecologists have traditionally focused on the rapid evolution of extrinsic isolation between co-occurring ecotypes, speciation geneticists studying intrinsic isolation in other taxa have devoted little attention to the ecological context in which it evolves. We argue that for evolutionary ecology to close this gap, the field will have to expand its focus beyond rapid adaptation and its traditional model systems. Synthesizing data from several subfields, we present circumstantial evidence for and against different forms of ecological adaptation as promoters of intrinsic isolation and discuss alternative forces that may be significant. We conclude by outlining complementary approaches that can better address the role of ecology in the evolution of nonephemeral reproductive barriers and, by extension, less ephemeral species.
Collapse
|
7
|
Meek MH, Beever EA, Barbosa S, Fitzpatrick SW, Fletcher NK, Mittan-Moreau CS, Reid BN, Campbell-Staton SC, Green NF, Hellmann JJ. Understanding Local Adaptation to Prepare Populations for Climate Change. Bioscience 2022. [DOI: 10.1093/biosci/biac101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Abstract
Adaptation within species to local environments is widespread in nature. Better understanding this local adaptation is critical to conserving biodiversity. However, conservation practices can rely on species’ trait averages or can broadly assume homogeneity across the range to inform management. Recent methodological advances for studying local adaptation provide the opportunity to fine-tune efforts for managing and conserving species. The implementation of these advances will allow us to better identify populations at greatest risk of decline because of climate change, as well as highlighting possible strategies for improving the likelihood of population persistence amid climate change. In the present article, we review recent advances in the study of local adaptation and highlight ways these tools can be applied in conservation efforts. Cutting-edge tools are available to help better identify and characterize local adaptation. Indeed, increased incorporation of local adaptation in management decisions may help meet the imminent demands of managing species amid a rapidly changing world.
Collapse
Affiliation(s)
- Mariah H Meek
- Department of Integrative Biology, AgBio Research, and the Ecology, Evolution, and Behavior Program Michigan State University , East Lansing, Michigan, United States
| | - Erik A Beever
- Department of Ecology, Montana State University , Bozeman, Montana, United States
| | - Soraia Barbosa
- Department of Fish and Wildlife Sciences, University of Idaho , Moscow, Idaho, United States
| | - Sarah W Fitzpatrick
- Department of Integrative Biology, Michigan State University , Hickory Corners, Michigan, United States
| | - Nicholas K Fletcher
- Department of Ecology and Evolutionary Biology, Cornell University , Ithaca, New York, United States
- Department of Biology, University of Maryland , College Park, Maryland, United States
| | - Cinnamon S Mittan-Moreau
- Department of Integrative Biology, Michigan State University , Hickory Corners, Michigan, United States
- Department of Ecology and Evolutionary Biology, Cornell University , Ithaca, New York, United States
| | - Brendan N Reid
- Department of Integrative Biology, Michigan State University , Hickory Corners, Michigan, United States
- Department of Ecology, Evolution, and Natural Resources, Rutgers University , New Brunswick, New Jersey, United States
| | - Shane C Campbell-Staton
- Department of Ecology and Evolutionary Biology, Princeton University , Princeton, New Jersey, United States
| | - Nancy F Green
- US Fish and Wildlife Service, Falls Church , Virginia, United States
| | - Jessica J Hellmann
- Institute of the Environment and Department of Ecology, Evolution, and Behavior, University of Minnesota , Saint Paul, Minnesota, United States
| |
Collapse
|
8
|
O'Brien EK, Walter GM, Bridle J. Environmental variation and biotic interactions limit adaptation at ecological margins: lessons from rainforest Drosophila and European butterflies. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210017. [PMID: 35184592 PMCID: PMC8859522 DOI: 10.1098/rstb.2021.0017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 01/06/2022] [Indexed: 12/27/2022] Open
Abstract
Models of local adaptation to spatially varying selection predict that maximum rates of evolution are determined by the interaction between increased adaptive potential owing to increased genetic variation, and the cost genetic variation brings by reducing population fitness. We discuss existing and new results from our laboratory assays and field transplants of rainforest Drosophila and UK butterflies along environmental gradients, which try to test these predictions in natural populations. Our data suggest that: (i) local adaptation along ecological gradients is not consistently observed in time and space, especially where biotic and abiotic interactions affect both gradient steepness and genetic variation in fitness; (ii) genetic variation in fitness observed in the laboratory is only sometimes visible to selection in the field, suggesting that demographic costs can remain high without increasing adaptive potential; and (iii) antagonistic interactions between species reduce local productivity, especially at ecological margins. Such antagonistic interactions steepen gradients and may increase the cost of adaptation by increasing its dimensionality. However, where biotic interactions do evolve, rapid range expansion can follow. Future research should test how the environmental sensitivity of genotypes determines their ecological exposure, and its effects on genetic variation in fitness, to predict the probability of evolutionary rescue at ecological margins. This article is part of the theme issue 'Species' ranges in the face of changing environments (Part II)'.
Collapse
Affiliation(s)
- Eleanor K. O'Brien
- School of Biological Sciences, University of Bristol, Bristol, UK
- Centre for Precision Health, School of Medical and Health Sciences, Edith Cowan University, Perth, Australia
| | - Greg M. Walter
- School of Biological Sciences, Monash University, Melbourne, Australia
| | - Jon Bridle
- School of Biological Sciences, University of Bristol, Bristol, UK
- Department of Genetics, Evolution and Environment, University College London, London, UK
| |
Collapse
|
9
|
Mérot C. Evolution: How important is the dimensionality of natural selection in local adaptation? Curr Biol 2022; 32:R274-R276. [PMID: 35349813 DOI: 10.1016/j.cub.2022.02.052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Organisms adapt to their local environments, which may vary in one aspect, or many. A new study shows that such dimensionality matters, as it impacts the magnitude and dynamics of local adaptation, with broader ecological consequences, such as the evolution of generalists.
Collapse
Affiliation(s)
- Claire Mérot
- Institut de Biologie Intégrative des Systèmes, Département de Biologie, Université Laval, QC G1V 0A6, Canada; UMR 6553 Ecobio, Université de Rennes, OSUR, CNRS, 35000 Rennes, France.
| |
Collapse
|
10
|
Bendall EE, Bagley RK, Sousa VC, Linnen CR. Faster-haplodiploid evolution under divergence-with-gene-flow: simulations and empirical data from pine-feeding hymenopterans. Mol Ecol 2022; 31:2348-2366. [PMID: 35231148 DOI: 10.1111/mec.16410] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/10/2022] [Accepted: 02/21/2022] [Indexed: 11/28/2022]
Abstract
Although haplodiploidy is widespread in nature, the evolutionary consequences of this mode of reproduction are not well characterized. Here, we examine how genome-wide hemizygosity and a lack of recombination in haploid males affects genomic differentiation in populations that diverge via natural selection while experiencing gene flow. First, we simulated diploid and haplodiploid "genomes" (500-kb loci) evolving under an isolation-with-migration model with mutation, drift, selection, migration, and recombination; and examined differentiation at neutral sites both tightly and loosely linked to a divergently selected site. So long as there is divergent selection and migration, sex-limited hemizygosity and recombination cause elevated differentiation (i.e., produce a "faster-haplodiploid effect") in haplodiploid populations relative to otherwise equivalent diploid populations, for both recessive and codominant mutations. Second, we used genome-wide SNP data to model divergence history and describe patterns of genomic differentiation between sympatric populations of Neodiprion lecontei and N. pinetum, a pair of pine sawfly species (order: Hymenoptera; family: Diprionidae) that are specialized on different pine hosts. These analyses support a history of continuous gene exchange throughout divergence and reveal a pattern of heterogeneous genomic differentiation that is consistent with divergent selection on many unlinked loci. Third, using simulations of haplodiploid and diploid populations evolving according to the estimated divergence history of N. lecontei and N. pinetum, we found that divergent selection would lead to higher differentiation in haplodiploids. Based on these results, we hypothesize that haplodiploids undergo divergence-with-gene-flow and sympatric speciation more readily than diploids.
Collapse
Affiliation(s)
- Emily E Bendall
- Department of Biology, University of Kentucky, Lexington, Kentucky, 40506, USA.,Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Robin K Bagley
- Department of Biology, University of Kentucky, Lexington, Kentucky, 40506, USA.,Department of Evolution, Ecology, and Organismal Biology, The Ohio State University at Lima, Lima, OH, 45804, USA
| | - Vitor C Sousa
- CE3C - Centre for Ecology, Evolution and Environmental Changes, Department of Animal Biology, Faculdade de Ciências da Universidade de Lisboa, University of Lisbon, Campo Grande 1749-016, Lisboa, Portugal
| | - Catherine R Linnen
- Department of Biology, University of Kentucky, Lexington, Kentucky, 40506, USA
| |
Collapse
|
11
|
White NJ, Beckerman AP, Snook RR, Brockhurst MA, Butlin RK, Eyres I. Experimental evolution of local adaptation under unidimensional and multidimensional selection. Curr Biol 2022; 32:1310-1318.e4. [DOI: 10.1016/j.cub.2022.01.048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/25/2021] [Accepted: 01/18/2022] [Indexed: 01/17/2023]
|
12
|
Filipe JC, Rymer PD, Byrne M, Hardy G, Mazanec R, Ahrens CW. Signatures of natural selection in a foundation tree along Mediterranean climatic gradients. Mol Ecol 2022; 31:1735-1752. [PMID: 35038378 PMCID: PMC9305101 DOI: 10.1111/mec.16351] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 01/04/2022] [Accepted: 01/10/2022] [Indexed: 11/30/2022]
Abstract
Temperature and precipitation regimes are rapidly changing, resulting in forest dieback and extinction events, particularly in Mediterranean‐type climates (MTC). Forest management that enhance forests’ resilience is urgently required, however adaptation to climates in heterogeneous landscapes with multiple selection pressures is complex. For widespread trees in MTC we hypothesized that: patterns of local adaptation are associated with climate; precipitation is a stronger factor of adaptation than temperature; functionally related genes show similar signatures of adaptation; and adaptive variants are independently sorting across the landscape. We sampled 28 populations across the geographic distribution of Eucalyptus marginata (jarrah), in South‐west Western Australia, and obtained 13,534 independent single nucleotide polymorphic (SNP) markers across the genome. Three genotype‐association analyses that employ different ways of correcting population structure were used to identify putatively adapted SNPs associated with independent climate variables. While overall levels of population differentiation were low (FST = 0.04), environmental association analyses found a total of 2336 unique SNPs associated with temperature and precipitation variables, with 1440 SNPs annotated to genic regions. Considerable allelic turnover was identified for SNPs associated with temperature seasonality and mean precipitation of the warmest quarter, suggesting that both temperature and precipitation are important factors in adaptation. SNPs with similar gene functions had analogous allelic turnover along climate gradients, while SNPs among temperature and precipitation variables had uncorrelated patterns of adaptation. These contrasting patterns provide evidence that there may be standing genomic variation adapted to current climate gradients, providing the basis for adaptive management strategies to bolster forest resilience in the future.
Collapse
Affiliation(s)
- J C Filipe
- Centre for Terrestrial Ecosystem Science and Sustainability, Harry Butler Institute, Murdoch University
| | - P D Rymer
- Hawkesbury Institute for the Environment, Western Sydney University
| | - M Byrne
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions
| | - G Hardy
- Centre for Terrestrial Ecosystem Science and Sustainability, Harry Butler Institute, Murdoch University
| | - R Mazanec
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions
| | - C W Ahrens
- Hawkesbury Institute for the Environment, Western Sydney University
| |
Collapse
|